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Non-Hermitian skin effects and exceptional points are topological phenomena characterized by integer
winding numbers. In this study, we give methods to theoretically detect skin effects and exceptional points
by generalizing inversion symmetry. The generalization of inversion symmetry is unique to non-Hermitian
systems. We show that parities of the winding numbers can be determined from energy eigenvalues on the
inversion-invariant momenta when generalized inversion symmetry is present. The simple expressions for the
winding numbers allow us to easily analyze skin effects and exceptional points in non-Hermitian bands. We also
demonstrate the methods for (second-order) skin effects and exceptional points by using lattice models.
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I. INTRODUCTION

Non-Hermitian physics has been recently investigated be-
cause the interplay of non-Hermiticity and topology creates
many exotic phenomena beyond Hermitian physics [1,2]. As
examples, non-Hermitian skin effects and exceptional points
have been intensively studied. Their topological structures
called point-gap topology [3-5] are unique to non-Hermitian
systems. Importantly, the non-Hermitian topological phenom-
ena have been observed experimentally in various platforms
[6-15].

In non-Hermitian systems, energy spectra are strongly sen-
sitive to boundary conditions. The phenomenon is called a
non-Hermitian skin effect [16]. Skin effects give rise to states
localized at the boundary under an open boundary condition
(OBC), which can be described by a non-Bloch band theory
[16-23]. Because of the localization, analysis of skin modes
is significant to non-Hermitian bulk-boundary correspon-
dence [16,17,19,24-35]. Skin effects are also understandable
as topological phenomena characterized by point-gap topol-
ogy [4,22,36-41]. Interestingly, recent works have revealed
skin effects in nondissipative bosonic systems [42-44] and
strongly correlated systems [45,46].

As another topological object, exceptional points arise
from band degeneracy between two states under a periodic
boundary condition (PBC). At exceptional points, eigen-
state coalescence happens. In general, band touching induces
exceptional points [47-50] and lines [51-59] in two- and
three-dimensional non-Hermitian systems, respectively. In-
triguingly, exceptional points are topologically stable at
generic points in the Brillouin zone (BZ). As with skin effects,
exceptional nodes have been investigated in strongly corre-
lated and disordered systems [48,53,60-67].

Symmetry also plays an important role to characterize band
topology. Symmetry classes are enriched in non-Hermitian
systems because transposition and complex conjugation for
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the Hamiltonians are inequivalent [3]. Accordingly, various
symmetry-protected skin effects [37,68—72] and exceptional
nodes [49,60,73-77] have been theoretically suggested.
Meanwhile, crystal symmetries give constraints on band struc-
tures. For instance, inversion symmetry prohibits a skin effect
[3,21,78,79]. In Hermitian systems, symmetry constraints
have been utilized to diagnose band topology from occupied
states only at the high-symmetry points [80-94]. Our purpose
is to extend this idea to detect nontrivial non-Hermitian point-
gap topology.

In fact, there are some difficulties in the computation for
skin effects and exceptional points. First, while a non-Bloch
band theory can give details of skin modes, it requires nu-
merical precision to calculate energy eigenvalues in a large
open system. In addition, the non-Bloch band theory has not
been completely established in high-dimensional multiband
systems. Second, because exceptional points and lines appear
at generic points, we need to scan the entire BZ for the search.
Thus, we propose different methods based on crystal symme-
try.

In this work, we study topological invariants that re-
veal whether skin modes and exceptional points appear
by inversion symmetry. Skin effects and exceptional points
are characterized by winding numbers [37,49]. This study
simplifies expressions of the winding numbers to reduce
the calculation task by non-Hermitian symmetry. For the
derivation, we generalize inversion symmetry similarly to
the ramification of nonspatial symmetries for non-Hermitian
Hamiltonians. We show that the winding numbers modulo
2 can be obtained from energy eigenvalues at the inversion-
invariant momenta. This analysis is beneficial to diagnose
non-Hermitian band topology.

The paper is organized as follows. In Sec. II, we in-
troduce generalized inversion symmetry for non-Hermitian
Hamiltonians. By generalized inversion symmetry, we pro-
vide formulas to obtain the parity of the winding numbers for

©2021 American Physical Society
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FIG. 1. (a) Complex energy spectra under the PBC and under the
OBC. The thick lines represent the energy spectra closing the point
gap. The winding number can be nonzero at each reference energy
inside the energy spectrum under the PBC. As long as the point
gap is open, the winding number does not change. (b) Topological
characterization of an exceptional point and an exceptional line.

skin effects and exceptional points. In Sec. III, we study skin
effects in lattice models by using simplified expressions of
the winding numbers. Exceptional points and lines in lattice
models are also analyzed with our topological invariants in
Sec. IV. Our conclusion is summarized in Sec. V.

II. WINDING NUMBERS AND SYMMETRY
A. Topology for skin effects and exceptional points

A non-Hermitian skin effect and an exceptional point are
topologically characterized by winding numbers. To see the
topology, we review point-gap topology for the topological
characterization [3,4]. A point gap for a Hamiltonian H is
open at a reference energy E if det(H — E) #* 0. When a point
gap is open at E, the topology for H corresponds to that for
the following extended Hermitian Hamiltonian given by

ﬁz(HTEE* HEE)' M

Extended Hermitian Hamiltonians have additional chiral sym-
metry represented by THI~! = —H with

1 0
r— (0 _1). @)

Therefore, H belongs to a one-dimensional (1D) Hermitian
class with chiral symmetry. Because of the topological cor-
respondence between H and H, H under the PBC can be
characterized by a winding number. The integer winding num-
ber is [3,4,37]

W(E):/ d—k,ilndet[H(k)—E]. 3)
BZ 2ridk

The integral is performed over the 1D first BZ. Figure 1(a)
shows a nontrivial winding structure of a complex spectrum
under the PBC. For point-gap topology, the winding number
in Eq. (3) reflects the topology of energy spectra rather than
that of the eigenstates.

Essentially, no 1D non-Hermitian systems can have non-
trivial winding structures of complex energy spectra under the
OBC [22,37]. Therefore, energy spectra need to change the
structures in the complex plane, depending on the boundary
conditions. The change leads to a non-Hermitian skin effect.
Hence, if a winding number is nonzero at a reference energy
under the PBC, a skin effect inevitably occurs under the OBC.
In terms of band topology, the localization of skin modes orig-
inates from that of Hermitian zero-energy boundary modes
through a nonzero winding number [37].

On the other hand, exceptional points appear from band
touching in two-dimensional (2D) non-Hermitian systems un-
der the full PBC [7,47-49]. Exceptional points close a point
gap in the BZ. Therefore, we can regard an exceptional point
as a 1D topological phase transition in the 2D BZ. Hence,
an exceptional point (EP) at the energy Egp is characterized
by a 1D winding number to find the change of the topology.
To see the characterization, suppose that a 2D non-Hermitian
system H (k) has an exceptional point at energy Egp. Then,
the exceptional point can be characterized by the following
winding number written as [49]

dk
Wip = % — - Vi Indet[H (k) — Egpl, “)
C 2mi

where C is a 1D integral path in the BZ. A winding number in
Eq. (4) becomes nonzero if the path C encircles the position
of an exceptional point [Fig. 1(b)].

Moreover, three-dimensional (3D) non-Hermitian systems
can host an exceptional line from band touching between two
states since the point nodes become a line. In a similar way to
the 2D case, a winding number in Eq. (4) characterizes excep-
tional lines. A winding number is topologically nontrivial if an
exceptional line pierces any surface bounded by the integral
path C.

B. Generalized inversion symmetry

We generalize an idea of crystal symmetry to grasp
non-Hermitian band topology. In general, extended Hermi-
tian Hamiltonians can obtain symmetries that the original
non-Hermitian Hamiltonians do not have [3,4]. Therefore,
additional crystal symmetries can also emerge for an extended
Hermitian Hamiltonian, which affects topological charac-
terization based on point-gap topology [71,72]. Hence, we
introduce generalized inversion symmetry to give an extended
Hermitian Hamiltonian with inversion symmetry, although the
generalization is not unique [95,96].

We define generalized inversion symmetry for a Hamilto-
nian H (k) as

UHK)U;™ = H (—k), ®)

where U; is a unitary matrix that satisfies U, ,2 = 1. When H (k)
is Hermitian, generalized inversion symmetry is just conven-
tional inversion symmetry. In the same way as conventional
inversion symmetry, we define inversion-invariant momenta
as wave vectors satisfying I' = —T modulo a reciprocal-
lattice vector. Then, H'(T') = U;H (I')U,_I can be satisfied at
the inversion-invariant momenta by choosing a proper gauge.
For example, inversion-invariant momenta in 3D systems are
given by Ticuonn) = X i, . 1Gj/2, where nj_y . take
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the values O and 1, and G,—, . are three reciprocal-lattice
vectors.

Generalized inversion symmetry U; gives inversion sym-
metry to an extended Hermitian Hamiltonian A with a real
reference energy E. When E is real, H acquires inversion
symmetry [ represented by

TG = (k). T= (0 U’>, ©)

u 0
which satisfies > = IT" = 1. The inversion operator / anti-
commutes with the chiral operator I'. In other words, we have
IT = —T'I. In this paper, we utilize inversion symmetry I for
topological characterizations of skin effects and exceptional
points. While we consider here a real reference energy, gen-
eralized inversion symmetry can be defined for a complex
reference energy. We show the representation in Appendix A.

We mention conventional inversion symmetry defined as
PH(k)P~' = H(—k) for a non-Hermitian Hamiltonian H (k).
Conventional inversion symmetry P satisfies P = P' and
P? = 1. In the presence of P, any extended Hermitian Hamil-
tonian has inversion symmetry given by PH (k)P~! = H(—k)
with P = diag(P, P). Then, we have P? = PP" = 1, whereas
PT' =T'P. Generally, band topology depends on whether
inversion and chiral operators commute or anticommute
[97-99]. When PT" = I'P, the 1D inversion-symmetric system
does not show skin modes characterized by a winding number
in Eq. (3), which stems from the topological difference. In
Appendix B, we discuss the absence of the skin effect due to
conventional inversion symmetry.

C. Parity of winding numbers for skin effects

We derive simple formulas for a winding number in
Eq. (3) in the presence of generalized inversion symmetry.
To do so, we use the topological correspondence between
non-Hermitian Hamiltonians and extended Hermitian Hamil-
tonians. We set a reference energy E to be real in order to
exploit inversion symmetry hereafter.

1. 1D skin effect

By using generalized inversion symmetry, we study a 1D
skin effect characterized by a winding number in Eq. (3).
Before the discussion on the skin effect, we introduce conven-
tional topology for 1D Hermitian Hamiltonians with inversion
and chiral symmetries to employ the topological correspon-
dence. If a 1D chiral-symmetric Hermitian Hamiltonian has
inversion symmetry, the parity of the winding number can
be calculated from the number of states with negative parity
eigenvalues below zero energy at the inversion-invariant mo-
menta [84-86,88,100]. The expression is

DY = (=)0, )
where n_(0) and n_(7r) are the number of states with negative
parity eigenvalues below zero energy at k = 0 and 7, respec-
tively.

As explained in Sec. II, a winding number of a non-
Hermitian Hamiltonian coincides with that of the extended
Hermitian Hamiltonian. Thus, if a non-Hermitian Hamilto-
nian has generalized inversion symmetry, the parity of the

—r— 0o “—— An
N- N+
—9—0—0—0—9—'—9—0—0—0—9—) -
- "t eigenvalues of H
(PAn)

FIG. 2. The relationship of eigenvalues of U;(H(I';) — E) and
H (T;) at the inversion-invariant momentum I'; on the real axes. The
signs 4 represent parity eigenvalues of the eigenstates of H(T';)
below zero energy.

winding number can be given from Eq. (7) via topology in
the extended Hermitian Hamiltonian.

We rewrite Eq. (7) here for non-Hermitian cases. We
consider an N x N non-Hermitian Hamiltonian H with gen-
eralized inversion symmetry U;. We assume that the point
gap is open at a real reference energy E under the PBC. The
extended Hermitian Hamiltonian at the inversion-invariant
momentum ['; is rewritten as

0 H(T;) — E>

H{T) = <U1H(F,»)U,_1 —E 0 ®)

Since UH(I';))U;' = HY(T';), the matrix U;(H(T;) — E) is
Hermitian. Hence, the eigenvalues A,(I';)) (n =1, ..., N) are
real. We write the eigenvector with A, (I";) as |A,(I";)). The
explicit eigenvalue equation is

U(H(T;) = E) [1(T3)) = An(T3) |2, (1)) - ®

All the -eigenvalues A,(I';) are nonzero because
det[U;(H(T';) — E)] # 0 by assumption. As a result, we
can find 2N eigenstates of H(I';) given by |p, pA,(I')) =
U |M(TH)Y, plaa(T)))T with p = £1 because

gopaf Ur (L)) _ AU 12a(T)
H(F’)<p|xn<r,->>>—”*"(F')(pmn(r,-)))' (19)

Therefore, eigenstates of H(T;) can be constructed by those
of U;(H(T";) — E). The states |p, pA,(I';)) are also eigenstates
of inversion symmetry 7. The eigenstates |+(—), +(—)A,(I"}))
have even (odd) parity because we have

I1p, pra(T)) = plp. pra(T)) . )

The simultaneous eigenstates can also be seen from the fact
that H(I';) and I are block-diagonalized by the following

unitary matrix:
1 (U U
o- (1 4)

By the unitary transformation Q~'H(I";)Q, H(T;) is block-
diagonalized into the matrices +U;(H (I';) — E).

We can evaluate the parity of W(E) for H by using
Eqgs. (10) and (11). Let Ny(_(I";) be the number of eigen-
vectors |A,(I";)) with the positive (negative) eigenvalue at
I'; (Fig. 2). By definition, n_(I";) is the number of eigen-
states |—, —A,(T";)) below zero energy. Therefore, the number
n_(T;) is equal to the number of corresponding eigenvectors
|1, (T;)) with positive A, (I';). Namely, we have

n_(Ti) = Np.(T'y) [= N — N_(T3)].

12)

13)
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Equation (13) is one of the significant formulas to relate
H(T;) to H(T;) in this paper, and it holds true in any di-
mension. In particular, when Uj is the identity matrix, n_(I';)
is directly connected with energy eigenvalues of H(I;).
Let ¢,(I';) (n =1, ..., N) be eigenvalues of H(I';). Because
we obtain A,(I";) = &,([";) — E, the number n_(T";) becomes
equal to the number of states whose eigenvalue satisfies
8,,(F,~) > FE.
From Egs. (7) and (13), we can rewrite Eq. (3) as

(_l)W(E) — (_1)N+(0)—N+(7r) (14)
= (=N O (15)

where we have used N =N, ([';)+N_(I';). By using
(—DN-TD = sgn(det[U;(H(I';) — E)]) and (detU;)> =1,
we eventually obtain

(—D"® = [T sen(det/H(T) —E).  (16)

Ii=0,7

Now det[H(I';) —E] takes the real values since
UH(T)U; ' = HY(I;) and E is real. Equation (16) is a
central result of this paper. The formula allows us to easily
calculate the parity of a 1D winding number for the skin
effect.

We note that this formula in Eq. (16) is also applicable to
diagnose (weak) topological skin effects in high-dimensional
systems when only one direction is open. For instance,
we can apply the formula to a mirror skin effect in 2D
mirror-symmetric systems [69]. The mirror skin effect is char-
acterized by the winding numbers of mirror sectors on the
1D mirror-invariant lines. Therefore, if the mirror sectors have
1D generalized inversion symmetry, the parity of the winding
number in each mirror sector is obtainable from Eq. (16).

2. 2D second-order topological skin effect

When a 2D non-Hermitian Hamiltonian has generalized
inversion symmetry, the system can show skin modes local-
ized at the corner [72]. The skin modes stem from intrinsic
second-order topology protected by chiral and inversion sym-
metries. The second-order topology can also be understood by
a winding number defined for a 1D ribbon geometry open in
one direction. While the winding number of a 1D ribbon de-
scribes zero-energy corner modes in the 2D Hermitian system
[101-103], it contributes to skin modes localized at the corner
in the corresponding non-Hermitian system [72].

To begin with, we introduce the 2D Hermitian second-
order topology characterized by inversion symmetry. Let
us introduce a winding number Wi-oBc for an inversion-
symmetric ribbon geometry open in the x; direction. Because
the ribbon geometry is periodic in the other direction, the
winding number gives the number of topological zero-energy
modes under the full OBC with the corners. Importantly,
if inversion symmetry is present, the winding number can
be evaluated from the number of states with negative parity
eigenvalues below zero energy at the inversion-invariant mo-
menta in the 2D BZ. The relationship is expressed as [72]

(_I)W,x/,osc — (_1)#/'/2, (17)

where
Wijmxy =n_(0,0) —n_(mw,m) +§j[n_(w,0) —n_(0, )],
(18)

with 5,y = +1 (=1). Here, n_(TI;) is the number of states
with negative parity eigenvalues below zero energy at the
inversion-invariant momentum I';. Therefore, when w;—, , =
2 (mod 4), it can lead to a nonzero winding number W, .opc-
By the bulk-corner correspondence, we can have zero-energy
corner modes under the full OBC if W;,-oBc =1 (mod 2).
We stress that W, _opc can be defined only when the ribbon
geometry is gapped at zero energy. For instance, if u; is an
odd integer, the system necessarily has gapless points at zero
energy [72,91]. Therefore, W,,-oBc cannot be defined if p; is
an odd integer.

Henceforth, we investigate a second-order topological
skin effect associated with inversion symmetry. If a 2D
non-Hermitian Hamiltonian H has generalized inversion sym-
metry, an extended Hermitian Hamiltonian H with a real
reference energy E obtains inversion symmetry. Then, H and
H can be characterized by the same topological invariants
W.,.oBc(E) and w;(E). Because W, opc(E) for H is also
defined for an inversion-symmetric ribbon open in the x;
direction, the winding number describes whether a skin effect
occurs under the full OBC. Because Eq. (13) is valid in 2D
systems, we have

wi(E) = N4(0,0) = Ny(m, ) + 3;[N4 (7w, 0) — N0, 7).
19)
Therefore, if the point gap is open at E, we can obtain

1 Waosc(E) (13N (0,0)= N ()45, [N (7,0) =N (0,71}
(=™ =(-1 .
(20)

Thanks to generalized inversion symmetry, we can evalu-
ate the parity of W, _opc(E) by eigenvalues of H under the
full PBC. Namely, if u;(E) =2 (mod 4) is obtained from
Eq. (19), we can easily detect second-order topological skin
modes localized at the corner under the full OBC.

D. Topological invariants for exceptional points

In this section, we give a method to search for exceptional
points in the BZ by generalized inversion symmetry. Because
band touching happens at any energy, it is not easy to know
the energy Egp of exceptional points. Thus, a winding number
cannot be used for the search in general. Nevertheless, the
energy can be typically set to be Egp = 0 if the Hamiltonian
has additional symmetry or if the energy origin can be theo-
retically shifted. For example, two bands touch each other at
zero energy when sublattice symmetry or parity-particle-hole
symmetry is present. Therefore, we assume here that band
touching closes a point gap at zero energy, and we discuss
topological invariants for the exceptional points and lines.

1. Exceptional points in 2D
We analyze exceptional points in 2D systems with gener-
alized inversion symmetry. Because H'(—k) = U;H (k)UI_l,
exceptional points appear at k and —k under the full PBC.
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(a)

CY

FIG. 3. (a) The integral path in the winding number to detect
exceptional points in the 2D BZ. The black points indicate inversion-
invariant momenta in the BZ. (b) An illustrative example of the
exceptional line for vE? =1 (mod 2).

Thus, it is sufficient to search one half of the BZ. For Eq. (4),
we choose an integral path C that encircles one half of the 2D
BZ, as illustrated in Fig. 3(a). Here, we take a gauge to give
H(k) = H(k + G;). Let vE? be the winding number with the
path C. Because of the gauge choice, the winding number vE?
can be calculated from

dk
UEP:(/ +/ >—.~Vk1ndetH(k). @1
Cap Cea 2mi

Here, C;; is the contour that contains the two inversion-
invariant momenta I'; and I';, as shown in Fig. 3(a). In the
same manner as the derivation of Eq. (16), the parity of the
topological invariant vEP is obtained from

(=" =[] sen(det H(T))). (22)

T;

Therefore, when band touching happens at zero energy,
Eq. (22) reveals whether exceptional points exist in the 2D
BZ. Namely, if vB? = 1 (mod 2), the system has exceptional
points at Egp = 0 in the BZ.

2. Exceptional line in 3D

Next, we generalize the 2D topological invariant in
Eq. (22) to 3D non-Hermitian systems. In 3D non-Hermitian
systems, band touching can produce an exceptional line un-
der the full PBC. To find an exceptional line, we define the
following topological invariant:

(—1)% = H sgn(det H(T))),

T;

(23)

where the product is taken over all eight inversion-invariant

momenta in the 3D BZ. Below, we show that if vi¥ =1

(mod 2), an exceptional line lies at zero energy in the BZ.
Equation (23) can be rewritten as

(-1 )v(')ip = (—1 )vEP(k,:O)(_l)vEP(ki:n)’ (24)

where k; represents any of the wave vectors k,, k,, and k..
Equation (24) means that vE* can be described by a product
of the invariants vE? for the two planes k; = 0 and 7. Thus, if
ve? =1 (mod 2), one of vEP(k; = 0) and vEP (k; = 7) equals
one modulo 2. Hence, the 3D system needs to possess at least
one exceptional line that pierces one of the 2D planes k; = 0
and k; = m, as shown in Fig. 3(b). As a consequence, if v(')EP =
1 (mod 2), an exceptional line appears when band touching
occurs at zero energy.

III. MODELS FOR SKIN EFFECTS

We apply the formulas to investigate various skin effects
in non-Hermitian lattice models with generalized inversion
symmetry. We evaluate the parity of winding numbers for
a real reference energy E. Whereas a reference energy is
basically complex, a winding number is unchanged as long
as a point gap is open. Therefore, we can focus on a winding
number for a real reference energy E to know whether a skin
effect occurs.

A. Generalized Hatano-Nelson model

First, we study a 1D non-Hermitian one-band model. The
Hamiltonian is

M
H= Z Z [tl(?m)ciirmci + t](jn)cj—ci+m]a

i m=l

where 7™ and 1" are real mth nearest-neighbor hopping

parameters, and the range is M. When M = 1, the Hamil-
tonian describes the Hatano-Nelson model without disorder
[104,105]. Thus, this model is a generalization of the Hatano-
Nelson model.

The model under the PBC is given by

(25)

M
hk) = Z [tl(em)e_ikm + tim)eikm].

m=1

(26)

The model has generalized inversion symmetry represented
by U; = 1. Therefore, we can apply Eq. (16) to the model.
When a point gap is open at a real reference energy E, the
winding number modulo 2 can be calculated from

M
(—1)"® =sgn (Z [t + 13" - E)

m=1

M
X sgn <Z(—1)m[tz’") +1] - E) (27)
m=1

If the system has only the nearest-neighbor hopping, i.e., M =
1, the winding number is given by

(—DHVE = sgn(E — tlgl))sgn(E + til) + tl(el)). (28)

The Hatano-Nelson model shows the skin effect under the
OBC because the winding number is nonzero for E < |t£1) +
t,(el)|, which agrees with previous works [22,37].

If a real reference energy E lies between h(0) and h(r),
the winding number is always an odd integer when the band
is gapped at E. The case with M = 3 is demonstrated in
Fig. 4(a). As seen in Figs. 4(b)-4(d), skin modes necessarily
appear under the OBC in this case. Moreover, even though
a point gap closes at a real reference energy between h(0)
and h(rr), the parity of the winding number does not change
because of constraints from generalized inversion symmetry.
Meanwhile, because a nonzero winding number signals a skin
effect, skin modes appear near the regions not only with
W(E) = £1 but also with W (E') = 2. Additionally, any wind-
ing number is invariant unless the point gap closes. Hence, we
can evaluate a winding number at a complex reference energy
from the topology on the real energy axis.

&)
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. °
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Site Site

FIG. 4. (a),(b) Energy eigenvalues for a one-band model under
the PBC and under the OBC (r\"” = 1.0, " = 0.8, = 0.6, 1" =
0.5, = —0.4,and 7" = 0.2). At the inversion-invariant momenta,
the energy eigenvalues under the PBC are given by 4(0) = 2.7 and
h(m) = —0.5, represented by the black points in (a). Despite the
point-gap closing between A(w) and h(0), the parity of the wind-
ing number is unchanged between the two points on the real axis.
Part (b) shows the skin effect associated with the winding number.
(c),(d) Spatial distribution |y/|> of skin modes in the dotted circles
in (b).

B. Non-Hermitian Su-Schrieffer-Heeger model

As another representative example, we consider the Su-
Schrieffer-Heeger (SSH) model with a non-Hermitian term
leading to a skin effect. The non-Hermitian SSH model is
described as [16,19]

Hssu(k) = (1 +tr cosk)o, + tr sinko, + ido, 29)

where o, and o, are Pauli matrices that represent two sublat-
tices. Here, #; and #, are real hopping parameters between the
two sublattices, and § is also a real parameter leading to non-
Hermiticity. The model has generalized inversion symmetry
given by U; = o,. Thus, we can easily see that the skin effect
happens by the winding number. By using Eq. (16), the parity
of the winding number for a real reference energy E can be
calculated from

(DY = [T senlE? + 6% — (11 + 502’1, (30)
s==%1

if the point gap is open at E. As can be seen from Eq. (30),
W (E) is nonzero on the real axis when the non-Hermiticity is
weak. Therefore, as the winding number is obviously nonzero
from Fig. 5(a), skin modes collapse the point gap under the
OBC [Fig. 5(b)].

Interestingly, another inversion symmetry also emerges in
the extended Hermitian Hamiltonian with a purely imaginary
reference energy. The corresponding generalized inversion
symmetry is represented by oyHssy(k)o, = — STSH(—k) (see
also Appendix A). By the transformation H (k) — H'(k) =
—iH (k), we can redefine generalized inversion symmetry for a
real reference energy as o, Hgyy (K)o, = [Hg (—k)]" with the

(a) PBC (b) OBC
0.1
ImE 0.0 ‘l 1 — ——
\
-0.1
-1.5 0.0 1.5-15 0.0 1.5
ReE ReE
(c) PBC (d) OBC
2.0 S B
i —
ImE 0.0
<IIIT> —_—
-2.0
-0.8 0.0 0.8-0.8 0.0 0.8
ReE ReE

FIG. 5. Energy eigenvalues of the non-Hermitian SSH model.
The spectra are calculated under the PBC in (a) and (c) and under
the OBC in (b) and (d). We set t; = 1.0, r, = 0.4, and § = 0.2 for
(a) and (b), and t; = 1.0, r, = 0.4, and § = 1.8 for (c) and (d). In
(a) and (c), the winding numbers under the PBC are nonzero on the
real axis and on the imaginary axis inside the spectra, respectively.

point-gap topology preserved. Thus, a winding number for a
purely imaginary energy E’ is also evaluated from

(—DVE = TT sendet[Hgy(I") + iE'] 31)
r=0,7

=[] senlE” + 6> — (1 +s0)°].  (32)
s==%1

If § is sufficiently larger than the hopping parameters, W (E’)
can be finite on the imaginary axis [Fig. 5(c)]. Then, skin
modes also appear under the OBC, as shown in Fig. 5(d).

C. Second-order skin effect

We investigate a second-order skin effect in non-Hermitian
systems with generalized inversion symmetry. We study the
following 2D model given by

H(k) = (m —c Z cos k_,->s0 + it sin kys,

j=xy
+ it sin kysy — BySy — Bysy, (33)

where the parameters m, c, t, By, and B, are real. Here, sy, .
are Pauli matrices and sy is the identity matrix. Generalized
inversion symmetry of the system is given by U; = 59, which
can characterize a second-order topological skin effect. Al-
though Ref. [72] studied the second-order topological skin
effect via the extended Hermitian Hamiltonian, our method
in this paper can directly diagnose it from the non-Hermitian
Hamiltonian in Eq. (33).

Let us analyze the second-order skin effect by using parity
invariants u ;(E) in Eq. (19). Because Uj is the identity matrix
in this model, u ;(E) can be obtained from the energy eigen-
values at the the inversion-invariant momenta I';. Namely,
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b ) N
15 (a) full PBC 15 (b) OBC in the x direction
ImE 0§ C ¢ 0
-1.5 1 1 3 -1.5 > ] 3
ReE ReE
full OBC
15 M @ 30
|0.32
ImE 0 1571
-0.00
1
1577 7 3 1 15 30
ReE

FIG. 6. (a)-(c) Energy eigenvalues of the 2D non-Hermitian
Hamiltonian under the PBC, the OBC only in the x direction, and
the full OBC. We set m=c=1.0, t =0.8, and B, =B, =0.15
for the calculations. Part (c) shows second-order topological skin
modes near the regions with w(E) = —2 =2 (mod 4). (d) Spatial
distribution of the skin mode in the dotted circle in (c). The axes x
and y indicate the coordinates.

N, (T;) is given by the number of the eigenstates at I'; whose
eigenvalue is larger than a real reference energy E. The energy
eigenvalues at the inversion-invariant momenta are

££(0,0)=m —2c % /B2 + B2, (34)
si(O,n)=8i(n,0)=m:|:,/B§+B§, (35)
ex(m,m)=m+2c+ /B%—i—B%. (36)

Since €4(0, 1) = e+(7r,0), we have N (0, 1) = Ny(m, 0).
Thus, the parity invariants p, and u, satisfy

px(E) = py(E) = N4(0,0) — Ny (o, ). (37)
For simplicity, we set w(E) = pu,(E) = uy(E), and we as-

sume that ¢ > /B2 + B)2,. Then, we have

e_(0,0) <e4(0,0) <e_(m,m) < e4(m, 7). (38)

Therefore, we can obtain w(E) = —2 for a real reference
energy E in the region (£4(0,0),e_(m,m)) except E =
£+(0, ) on the real axis. When the point gap at E is open
near the region with u(E) = —2, the corresponding winding
number W, opc(E) is nonzero under the OBC only in one
direction. As a result, the system can show second-order topo-
logical skin modes under the full OBC.

We compute energy spectra under the various boundary
conditions [Figs. 6(a)-6(c)]. Within the regions with
W(E)=—-2=2 (mod 4), the spectrum is gapped in
(€4(0,0),e-(0, 7)) and (e4(m,0),e_(r,m)). Figure. 6(c)
shows skin modes around the regions with w(E) =2
(mod 4). The skin modes are indeed localized at the corner
under the full OBC, as shown in Fig. 6(d).

IV. MODELS FOR EXCEPTIONAL POINTS AND LINES

Finally, we confirm that the topological invariants in
Egs. (22) and (23) can detect exceptional nodes in 2D and
3D lattice models.

A. 2D model with exceptional points

We study a 2D non-Hermitian model that can have excep-
tional points. The Hamiltonian under the full PBC is

Hyp(k) = (M +1 Z cos k,~> Ty + (iyx + vy Sink, )7,

i=x,y
+ (i + vy sinky)1., (39)

where 7, ,. are Pauli matrices. All the parameters in the
Hamiltonian are real. The model has been also investigated
as a non-Hermitian Chern insulator [17,106]. The Hamilto-
nian has generalized inversion symmetry U; = t,. Moreover,
the Hamiltonian satisfies parity-particle-hole symmetry repre-
sented by

UcpHyp (k) U = —Hop(k), Ucp = 1y. (40)

Thus, the band touching happens at zero energy. Therefore,
we can use Eq. (22) to search for exceptional points.

By Eq. (22), the parity of the topological invariant vE can
be computed from the eigenvalues at the inversion-invariant
momenta Ii—¢, »)= (n:Gx + n,G,)/2. In this model, we
have

0" = 1] sgn{m + M+t Z(—l)”f]

nyy=0,1 i=x,y

x sgn|:|)/| -M—t Z(—l)"f], 1)

i=x,y

where we set |y| = /y? + )/\2 Figure 7(a) shows parameter

regions for vEP for the 2D model.

We search for exceptional points at zero energy in the
2D BZ. When vF¥ = 1 (mod 2), the 2D model necessarily
has exceptional points at zero energy in the BZ. In contrast,
whether some parameter regions with v¥¥ = 0 (mod 2) have
exceptional points depends on the other parameters v, and
vy. Therefore, we calculate band structures of the model with
vEP =1 (mod 2). As shown in Figs. 7(b)-7(d), we can easily
see that two exceptional points exist at zero energy in the
model.

B. 3D model with an exceptional line

We extend the model in Eq. (39) to a 3D system with
generalized inversion symmetry. We add a term #, cos k, T, to
the 2D Hamiltonian. The 3D Hamiltonian is given by

Hip(k) = (M +1t Z cosk; +t, cos kz> 7,

i=x,y
+ (iyy + vy sinky )Ty, + (iyy + vy sinky)z,.  (42)

The 3D model also has generalized inversion symmetry and
parity-particle-hole symmetry.
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2) yEP=1 VEP=1
*
ly|/t'o
_of VEP=1 VEP=1
-2 0
M/t

wavevector (2m.0)

FIG. 7. (a) The parameter regions for the topological invariant vE?. The blue-shaded regions give vEP = 1 (mod 2). The star in the shaded
region indicates the parameters (M/t' = 2.0 and |y |/t" = 1.0) for the band calculation in the 2D model. (b),(c) The exceptional points in the 2D
model with M/t' = 2.0, v, /t' = y,/t' =1/ V2, and v, /1’ = v,/t" = 1.0. The two points in (b) represent the positions of the exceptional points
in the 2D BZ. In (c), the solid (dotted) lines are the real (imaginary) part of the energy bands along the dotted arrow in (b). (d) The real and
imaginary parts of energy bands in the 2D BZ. (e) The exceptional ring in the 3D model with M/t' = 3.0,1./t' = 1.0, y,/t' = p,/t’ = 1/4/2,

and v, /t" = v,/t' = 1.0.

Since generalized inversion symmetry is present, we can
find an exceptional line by Eq. (23). The topological invariant
vg¥ in this model is given by

-0 = ] sgn|:|y|+M+I’Z(—l)""+tz(—l)”f:|

My y,:=0,1

X sgn[lyl —M =1 (=" —tz(—l)”i].

i=x,y

i=x,y

(43)
If vfP =1 (mod 2), the system always has an exceptional
line at zero energy.

We compute zero-energy eigenvalues of the 3D model with
vE? =1 (mod 2) under the full PBC. Figure 7(e) shows the
exceptional ring in the 3D BZ. The exceptional line pierces
the k;j—, .. = 7 planes. The structure of the exceptional line is
consistent with the discussion in Sec. II.

V. CONCLUSION AND DISCUSSION

In this paper, we have presented methods using topological
invariants to analyze point-gap topology in non-Hermitian
systems with generalized inversion symmetry. The simple for-
mulas allow us to evaluate the parity of winding numbers for
skin effects and exceptional points from energy eigenvalues
only at inversion-invariant momenta. The analysis is helpful
to find skin effects and exceptional points even in multiband
systems. Our results can be applied to various skin effects such
as a second-order skin effect and a mirror skin effect. We have
also given topological invariants to search for exceptional
points and lines. The validity of our methods is confirmed by
using lattice models.

Additionally, this work has clarified a relationship between
point-gap topology and generalized inversion symmetry. The
generalized inversion symmetry is defined by using the sym-
metry ramification in non-Hermitian systems. The concept
can be extended to other crystal symmetries. Therefore, novel
non-Hermitian band topology may be discovered by gener-

alizing other crystal symmetries. Moreover, a recent work
has revealed that skin effects occur when exceptional points
and lines lie in the high-dimensional BZ [107]. Because our
method can detect exceptional points, the skin effects from
exceptional nodes can also be predicted at the same time.

Note added in proof. We became aware of a related work
which also studies symmetry indicators for non-Hermitian
bands with pseudo-inversion symmetry included in general-
ized inversion symmetry [108].
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APPENDIX A: GENERALIZED INVERSION SYMMETRY
FOR COMPLEX REFERENCE POINTS

In this Appendix, we show that generalized inversion
symmetry can be introduced to an extended Hermitian
Hamiltonian with a complex reference energy E. We define
generalized inversion symmetry for a Hamiltonian H (k) as

UpHUOU, ! = " H (k). (A1)

where U, is a unitary matrix that satisfies U;,2 = 1, and 6
is real. Equation (5) in the main text corresponds to the case
of 6 =0 in Eq. (Al). When 6 = /2, Eq. (Al) becomes
UIGH(k)UI;1 = —H"(—k). This case is also discussed for the
non-Hermitian SSH model in Sec. III. When ¢ E is real,
H (k) with E has the following inversion symmetry J:

i0
0 e U,H) (A2)

LHKIL ' =H(-k), I= (e‘igUl 0

The inversion operator J; anticommutes with the chiral
operator I', and I;z = 191(; = 1. Hence, generalized inversion
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symmetry can be defined even though reference points are
complex.

We note that the generalized inversion symmetry for a
complex reference energy is equivalent to that for a real ref-
erence energy in terms of non-Hermitian band topology. Let
us consider the transformation H (k) — Hy(k) := e "V H (k).
Then, we can rewrite Eq. (A1) as

Uy, Hy(k)U;" = [Hy(—K)]". (A3)

Therefore, Uj, gives inversion symmetry to Hy (k) with a real
reference energy Ey := e "’ E. Because this transformation
only rotates non-Hermitian bands on the complex plane, the
band topology does not change [4,109]. Thus, we can evaluate
a winding number W (E) for H (k) with Hy(k). For example,
we give the formula corresponding to Eq. (16). For e FE e
R, we obtain

(—=DYE = T sendetlHy(T;) — Eo] (A4)
=07

- 1_[ sgndetle (H(T;) — E)].  (A5)
I'i=0,7

As a result, various formulas in this paper can be used to
see non-Hermitian band topology with generalized inversion
symmetry in Eq. (Al).

APPENDIX B: ABSENCE OF THE SKIN EFFECT BY
CONVENTIONAL INVERSION SYMMETRY

We show that conventional inversion symmetry P prevents
skin effects unless other symmetry protects them. Although
the non-Bloch theory can prove that conventional inversion
symmetry prohibits skin effects [3,21], we discuss it in view
of the winding number in order to compare the two types of
inversion symmetries. When PH (—k)P~!' = H (k) is satisfied,
we obtain

W(E) /n dk d Indet[PH(—k)P~' — E]
= — —Inde - -
_. 2midk

_ _/” dk d | GetlH®K) — E]=0.  (B1)

g 2widk
Because the winding number for H (k) becomes zero, the skin
effect is not allowed to happen.

Here, we compare conventional inversion symmetry with
generalized inversion symmetry. Topological classification
of Hamiltonians depends on the (anti)commutation rela-
tion between crystal and chiral symmetries. 1D Hermitian
inversion-symmetric systems in class AIIl can become topo-
logically nontrivial only if the chiral operator anticommutes
with the inversion operator [97,98]. Therefore, our result is
consistent with the topological classification.
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