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Piezo-optic effect of high-harmonic generation in semiconductors
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We theoretically investigate the piezo-optic effect of high-harmonic generation (HHG) in shear-strained
semiconductors. By focusing on a typical semiconductor, GaAs, we show that there is optical activity, meaning
different responses to right-handed and left-handed elliptically polarized electric fields. We also show that this
optical activity is more pronounced for higher harmonics whose perturbative order exceeds the band-gap energy.
These findings point to a useful pathway for strain engineering of nonlinear optics to control the reciprocity
of HHG.
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I. INTRODUCTION

High-harmonic generation (HHG) is one of the most
fundamental topics in nonlinear optics [1–3]. Experimental
progress from the perturbative to the nonperturbative regime
in gaseous media has paved the way for developing novel op-
tical devices for, e.g., generating short-wavelength attosecond
pulses [4–9]. Moreover, HHG in the nonperturbative regime
has been experimentally observed in solids [10–15], and en-
suing studies have opened up a new field in condensed matter
science [16–27]. In contrast to gaseous media, HHG in solids
has various inherent properties that are rooted in the crys-
tallinity of the medium and may provide means of developing
new optical devices that use HHG. Thus, it is important to
study the characteristics of HHG in various materials and to
devise a control method that can provide a possible route to
novel optical technology.

The most important aspects that determine the properties
of HHG are the band structures of the materials and the
corresponding Bloch wave functions. The Hamiltonian of the
light-matter interaction is principally made up of these ele-
ments and HHG is expected to yield unusual new features by
appropriately choosing those materials. A recent experimental
study reported that HHG in monolayer MoS2 was polarized
perpendicular to the linearly polarized pump field [19], an
effect that was mainly explained in terms of the anomalous
transverse intraband current arising from the material’s Berry
curvature. Thus, the properties of the Bloch wave functions
in materials directly affect the characteristics of HHG, and
thus, exploring methods of controlling these wave functions
are crucial for applications of HHG.

One possible way to control the Bloch wave functions in
materials is strain engineering [28–48]. Mechanical defor-
mation of a material modifies the Bloch wave functions by
distorting the crystal structure, and it can be used to control
various physical properties such as transport and optical re-
sponse. We expect, for example, that shear strain will rotate
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the direction of the generated current (see Fig. 1). This ro-
tation of the current direction indicates left-right symmetry
breaking in materials leading to emergent optical activity of
HHG, i.e., different responses to right-handed and left-handed
elliptically polarized electric fields [49,50]. In particular, the
piezo-optic effect of HHG referred to here could be used for
applications such as spatially resolved distortion measurement
and mechanical control of HHG, which are considered impos-
sible for gaseous media [51,52].

In this paper, we theoretically investigate the characteris-
tics of HHG in shear-strained semiconductors. We construct a
theoretical framework based on the Luttinger-Kohn-Bir-Pikus
Hamiltonian [53–62], which provides us with a general plat-
form to treat various semiconductors under external shear
strain. By performing a dynamical simulation on GaAs, a
typical III-V semiconductor, we find that external shear strain
indeed causes different responses to right-handed and left-
handed elliptically polarized electric fields. We also find that
this nonreciprocity is more pronounced for higher harmonics
whose perturbative order exceeds the band-gap energy.

The organization of this paper is as follows. In Sec. II,
we introduce the theoretical framework for HHG using the
Luttinger-Kohn-Bir-Pikus Hamiltonian. In Sec. III, we show
numerical results for HHG emitted from shear-strained GaAs.
We also discuss the optical activity of HHG in detail by
examining the different optical responses to right- and left-
handed elliptically polarized light. Section IV summarizes the
conclusions of this study. In the Appendix, we discuss the
ellipticity of emitted harmonics.

II. FORMULATION

The general formulation introduced here for HHG is ap-
plicable to various semiconductors with a direct band gap at
the � point. First, we describe the eight-band Luttinger-Kohn
model in Sec. II A; then, we extend it to the strained case,
called the Pikus-Bir Hamiltonian model, in Sec. II B. Next, we
derive the light-matter interaction in terms of the Luttinger-
Kohn-Pikus-Bir model in Sec. II C. Finally, we describe the
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FIG. 1. Schematic diagram of the current J(t ) generated by a lin-
early polarized electric field. The left figure indicates the generated
current in the absence of strain, while the right figure indicates the
generated current when an external shear strain is applied. In the
absence of strain, current is generated only in the z direction parallel
to the electric field of the incident light. When shear strain is applied
to the system, the direction of the current is distorted and J(t ) has
both z and x components.

time-dependent Schrödinger equation for electrons and define
the polarization currents in Sec. II D.

A. Luttinger-Kohn model

Let us consider a general microscopic Hamiltonian,

H = p2

2m0
+

∑
i

[
Vi(x) + h̄

4m2
0c2

(∇Vi × p) · σ

]
, (1)

where m0 is the electron mass, p is the momentum of the
electron, and Vi(x) = V (x − Ri ) is the periodic core potential
of atoms located at Ri. The second term in brackets expresses
the spin-orbit coupling, where σ is the spin angular momen-
tum. By performing a band calculation, the Hamiltonian can
be diagonalized as

H |�nk〉 = Enk|�nk〉, (2)

where n is the band index, k is the Bloch wave number, Enk is
the energy dispersion of the nth band, and |�nk〉 is the Bloch
wave function. Here, we will focus on the bands near the
band edge at the � point (k = 0) and restrict them to eight
bands composed of one conduction band (n = 1) and three
valence bands, i.e., a heavy-hole band (n = 2), a light-hole
band (n = 3), and a split-off band (n = 4), and their time-
reversal counterparts (n = 5, 6, 7, 8).

We apply conventional k · p perturbation theory [63–66]
around the � point using these eight bands. We rewrite the
Bloch wave function as |�nk〉 = eik·x |unk〉. The eigenvalue
equation is rewritten as H̃ |unk〉 = Enk |unk〉, where H̃ is an
effective Hamiltonian defined as

H̃ ≡ e−ik·xHeik·x ≡ H̃0 + Ṽ , (3)

H̃0 = p2

2m0
+

∑
i

[
Vi(x) + h̄

4m2
0c2

(∇Vi × p) · σ

]
, (4)

Ṽ = h̄

m0
k · p + h̄2k2

2m0
. (5)

The unperturbed Hamiltonian H̃0 is diagonalized by the
wave function at the � point, |un〉 ≡ |unk=0〉. Following con-
ventional k · p perturbation theory, we incorporate the k
dependence of the eigen wave functions by second-order

perturbation with respect to Ṽ , taking the effect of outside
bands other than the target bands into account. The resultant
effective Hamiltonian is [57]

〈un|H̃ eff
0 |un′ 〉 =

(
Hk

uu Hk
ul

Hk
lu Hk

ll

)
, (6)

where Hk
uu, Hk

ul , Hk
lu, and Hk

ll are 4 × 4 submatrices. The sub-
matrix Hk

uu has the form

Hk
uu =

⎛
⎜⎜⎜⎜⎝

ECB −√
3T

√
2U −U

−√
3T ∗ EHH

√
2S −S√

2U
√

2S∗ ELH −√
2Q

−U −S∗ −√
2Q ESO

⎞
⎟⎟⎟⎟⎠, (7)

while the submatrix Hll is defined as Hll = H∗
uu. The subma-

trices, Hul and Hlu, are expressed as

Hk
ul =

⎛
⎜⎜⎜⎜⎝

0 0 −T ∗ −√
2T ∗

0 0 −R −√
2R

T ∗ R 0
√

3S√
2T ∗ √

2R −√
3S 0

⎞
⎟⎟⎟⎟⎠, (8)

and Hlu = H†
ul . The diagonal elements of Huu and Hll are

defined as

ECB = Eg + O, (9)

EHH = −(P + Q), (10)

ELH = −(P − Q), (11)

ESO = −(P + �SO). (12)

The subscripts CB, HH, LH, and SO stand for conduction,
heavy-hole, light-hole, and split-off bands, respectively, and
Eg and �SO are the band-gap energy and the split-off energy
due to the spin-orbit interaction, where Eg = 1.42 eV and
�SO = 0.34 eV in GaAs.

In the absence of external strain, the matrix elements are

O = h̄2

2m0
γC

(
k2

x + k2
y + k2

z

)
, (13)

P = h̄2

2m0
γ1

(
k2

x + k2
y + k2

z

)
, (14)

Q = h̄2

2m0
γ2

(
k2

x + k2
y − 2k2

z

)
, (15)

R = h̄2

2m0

√
3
[
γ2

(
k2

x − k2
y

) − 2iγ3kxky
]
, (16)

S = h̄2

2m0

√
6γ3(kx − iky)kz, (17)

T = 1√
6

P0(kx + iky), (18)

U = 1√
3

P0kz. (19)

Here, kx, ky, and kz denote components of the Bloch wave
vector along the [100], [010], and [001] crystallographic
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directions, respectively, and γ0, γ1, γ2, and γ3 are the Lut-
tinger parameters. We set the Luttinger parameters of GaAs
to be γC = 0.5, γ1 = 2.7, γ2 = −0.1, and γ3 = 0.7 following
Ref. [60]. The dipole matrix element (the Kane matrix ele-
ment) is defined as

P0 = −i

(
h̄

m0

)
〈s; σ |pλ|λ; σ 〉 , (20)

where λ = x, y, z. The value of P0 can be absorbed into the
definition of the Rabi frequency introduced later.

B. Strain-induced effect in semiconductors

Strain in the crystal is expressed by displacement of the lat-
tice vectors from those of the unstrained crystal xi (i = x, y, z):

δx j
i =

∑
i

δi jx
j
i , (21)

where x j
i is the jth component of xi ( j = x, y, z), and δi j

(i, j = x, y, z) denote components of the strain tensor. The
effect of the strain can be incorporated into the k · p band-
structure calculations by adding an extra perturbation term
to the unstrained potential [61]. Thus, the change in the
matrix elements in the presence of the strain is obtained as
O → O + δO, P → P + δP, and so on, where [53–62]

δO = +ac(δxx + δyy + δzz ), (22)

δP = −av (δxx + δyy + δzz ), (23)

δQ = −bv

2
(δxx + δyy + δzz ), (24)

δR = −
√

3

2
bv (δxx − δyy) + idvδxy, (25)

δS = − dv√
2

(δzx − iδyz ), (26)

δT = − 1√
6

P0

∑
j

(δx j + iδy j )k j, (27)

δU = − 1√
3

P0

∑
j

δz jk j . (28)

Here, ac and av are the conduction- and valence-band hy-
drostatic deformation potentials of the host material, and bv

and dv are the shear deformation potentials along the [001]
and [111] directions of the host material, respectively. Here,
we will set the deformation potentials of GaAs to be ac =
−9.3 eV, av = −0.7 eV, bv = 2.0 eV, and dv = 5.4 eV, fol-
lowing Ref. [56].

C. Light-matter interaction

Next, let us consider a bulk crystal of GaAs that is driven
by elliptically polarized electric fields. Here, we take the z axis
([001] direction) to be the major axis and the x axis ([100]
directions) to be the minor axis. Then, the vector potential of
the elliptically polarized electric field A(t ) can be defined as

A(t ) = (Ax(t ), 0, Az(t ))

= A0 f (t )(η sin ωt, 0, cos ωt ), (29)

where η and A0 are the ellipticity and the amplitude of the
electric field, respectively, and f (t ) is the envelop function
defined as

f (t ) = exp

(
− (t − t0)2

τ 2

)
. (30)

Here, we set t0 = 24π/ω and τ = 4π/ω.
We introduce the light-matter interaction through the vec-

tor potential:

H0 + Hex = 1

2m0

(
p − e

c
A(t )

)2

+
∑

i

[
Vi(x) + h̄

4m2
0c2

(∇Vi × p) · σ

]
. (31)

Here, we have assumed that the term caused by the replace-
ment p → p − e/cA(t ) in the spin-orbit interaction is small
enough to be neglected. Thus, the Hamiltonian for the light-
matter interaction is

Hex = − e

m0c
A(t ) · p + e2

2m0c2
A2(t ). (32)

The second term in Hex can be eliminated by performing a
unitary transformation Hex → U −1

1 HexU1, where

U1 = exp

[
ie2

2m0c2h̄2

∫ t

0
dt ′ A2(t ′)

]
. (33)

Hex is then rewritten as H̃ex, which operates on the eigenstate
|unk〉:

H̃ex ≡ e−ik·xHexeik·x

= − e

m0c
[A(t ) · h̄k + A(t ) · p]. (34)

Here, we can also eliminate the first term in brackets through
the unitary transformation H̃ex → U −1

2 H̃exU2, whose matrix
elements are expressed as

〈unk|U2 |un′k′ 〉 = exp

(
−i

e

m0c

∫ t

0
dt ′ k · A(t ′)

)
δk,k′δn,n′ .

(35)

Thus, the Hamiltonian of the light-matter interaction becomes

H̃ex = − e

m0c
A(t ) · p. (36)

To express the light-matter interaction in a simple matrix
form, we will return to the elemental basis set of |s↑〉, |px ↑〉,
|py ↑〉, |pz ↑〉, |s↓〉, |px ↓〉, |py ↓〉, and |pz ↓〉, and we will
redefine them as |vm〉 (m = 1, 2, · · · , 8) for simplicity of no-
tation. Note that the eigen wave functions at the � point, |un〉’s
(n = 1, 2, · · · , 8), are expressed by a linear combination of
|vm〉 (see Appendix A for the explicit forms). In this basis set,
almost all of the matrix elements in H̃ex are zero because of
parity symmetry. The nonzero matrix elements are given as

〈sσ |H̃ex|pxσ 〉 = (〈pxσ |H̃ex|sσ 〉)∗

= −ih̄R0 f (t ) cos ωt, (37)

〈sσ |H̃ex|pzσ 〉 = (〈pzσ |H̃ex|sσ 〉)∗

= −ih̄R0η f (t ) sin ωt, (38)
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for σ =↑,↓, where we have defined the Rabi frequency
as R0 = (e/ch̄2)P0A0 ≡ dzE0/h̄. Thus, we have derived the
light-matter interaction Hamiltonian in a simple matrix form
using the elemental basis set |vm〉. Here, we set Eg = 7h̄ω and
R0 = 4ω, respectively. Since the band-gap energy of GaAs
is 1.42 eV, the frequency of the laser field is ω ≈ 49 THz.
Then, the envelope parameters of the laser field, t0 and τ , are
estimated as t0 ≈ 1.54 ps and τ ≈ 0.26 ps, respectively. By
assuming dz = 0.6 [e nm], the maximum intensity of the laser
field is estimated as E0 ≈ 13.5 MV/cm.

D. Dynamical simulation

We solve the time-dependent Schrödinger equation

ih̄
∂

∂t
|uk(t )〉 = H̃k

tot |uk(t )〉 , (39)

where H̃k
tot = H̃k

eff + H̃ex is the total Hamiltonian. In the sim-
ulation, we employed the atomic basis |vm〉 and expanded the
wave function |uk(t )〉 as

|uk(t )〉 =
8∑

m=1

amk(t ) |vm〉 . (40)

Using this basis set, the matrix elements of the light-matter
interaction H̃ex are given by Eqs. (37) and (38), while those of
the system Hamiltonian are given as(

H̃k
eff

)
mm′ ≡ 〈vm| H̃k

eff |vm′ 〉

=
8∑

n,n′=1

〈vm|un〉 〈un|H̃k
eff |un′ 〉 〈un′ |vm′ 〉 . (41)

Here, 〈un|H̃k
eff |un′ 〉 is as in Eq. (6), and (U )nm = 〈un|vm〉 is

the unitary matrix for the basis transformation, whose ex-
plicit forms are in Appendix A. Thus, the time-dependent
Schrödinger equation finally becomes

ih̄
damk

dt
=

8∑
m′=1

(
H̃k

eff + H̃ex
)

mm′am′k(t ). (42)

The generated currents along the [001] and [100] directions
are calculated as

Jx(t ) = −c

〈
∂Hex

∂Ax

〉

∝ −i
∑
kσ

[asσk(t )∗apxσk(t ) − c.c.] (43)

Jz(t ) = −c

〈
∂Hex

∂Az

〉

∝ −i
∑
kσ

[asσk(t )∗apzσk(t ) − c.c.] (44)

The HHG spectra in GaAs along the [001] and [100] direc-
tions are calculated as Iz = |ωJz(ω)|2 and Ix = |ωJx(ω)|2,
where Jz(ω) and Jx(ω) are the Fourier transforms of the
generated currents Jz(t ) and Jx(t ). Here, we multiply a win-
dow function f (t ) = exp ( − (t − t0)2/τ 2) to the generated
current before its Fourier transformation. We numerically
solve the time-dependent differential equation (42) under the

initial conditions where |uk(t = 0)〉 = |un〉 for occupied va-
lence bands (n = 2, 3, 4, 6, 7, 8) and sum up the currents with
respect to these six initial conditions and the Bloch wave num-
ber k. We employed the fourth-order Runge-Kutta method
with a temporal mesh δt = 0.05ω−1. We performed numerical
integration with respect to the Bloch wave number using the
general-purpose multidimensional integration library, CUBA
[67,68].

III. RESULTS AND DISCUSSION

In this section, we discuss the characteristics of HHG
originating from shear-strained GaAs. First, let us examine
the numerical results of HHG caused by a linearly polarized
electric field in Sec. III A. Here, we identify a rotation of the
polarization axis of the emitted light. Next, let us examine
the numerical results of HHG caused by elliptically polarized
light in Sec. III B. These results indicate a breakdown in
reciprocity of HHG in the shear-strained material. Sec. III C
discusses the physical interpretation of the numerical results.
In the Appendix, we provide information of the ellipticity of
generated high harmonics.

A. Linearly polarized electric fields

Now, let us consider the case of linearly polarized electric
fields (η = 0) in shear-strained GaAs:

δi j =
{
δzx �= 0, (i, j) = (z, x),

0, (otherwise).
(45)

Figure 2(a) shows a schematic diagram of the effect of strain
on HHG (δzx �= 0). When the electric field of the incident light
is polarized in the z direction, current is generated along the
major (z) and minor (x) axes (see also Fig. 1). As a result, the
electric fields of the emitted light also include an x component,
resulting in a rotation of the polarized light.

Figure 2(b) shows the calculated HHG spectra for shear-
strained GaAs (δzx = 0.01). The blue and red curves denote
the intensity of the emitted light parallel to the major (z) and
minor (x) axes, respectively. We note that a few megapascal
pressure yields one percent displacement of the lattice vectors
in GaAs (δzx = 0.01) that can be realized in an experiment by
using the boat technique or the liquid encapsulated Czochral-
ski technique [69]. The spectra for the z direction (the major
axis) exhibit several features characteristics of HHG; the
peaks correspond to nω for odd n, and their heights first decay
exponentially with respect to n in the perturbative regime
(n < 7), eventually reaching a plateau in the intermediate
regime (7 � n � 13), and finally collapsing exponentially
again for large n (>13). The spectra for the x direction (the
minor axis) are similar to those in the z direction except that
their intensity is much smaller. Here, it is remarkable that the
ratio of the intensity in the x direction relative to that of the
z direction is enhanced around the band-gap energy, that is,
nω ≈ Eg, where Eg is the band-gap energy. To discuss this
strain-induced effect in detail, the next subsection examines
the case of elliptically polarized electric fields.
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FIG. 2. (a) Schematic diagram of HHG in shear-strained GaAs caused by a linearly polarized electric field (η = 0). The polarization axis
of the light rotates as it propagates through the shear-strained material. As a result, the electric field of the emitted light includes components
along the major axis (the z direction) and the minor axis (the x direction). (b) Numerical result of HHG spectra in shear-strained GaAs caused
by linearly polarized electric field (η = 0) in the case of δzx = 0.01. The blue and red lines show the HHG spectra emitted along the major axis
(z axis) and minor axis (x axis), respectively.

B. Elliptically polarized electric fields

Next, let us discuss the case of elliptically polarized elec-
tric fields (η �= 0). Figure 3(a) shows a schematic diagram
of the strain-induced effect on GaAs driven by elliptically
polarized electric fields (δzx �= 0). The z and x components of
the electric fields of the emitted light are modified from those
of the incident light. The intensities of the emitted light in the
two directions are plotted as a function of ellipticity η. As a
reference, Fig. 3(b) plots the ellipticity dependencies of the
seventh harmonics emitted along to the z axis (blue line) and
x axis (red line) for unstrained GaAs (δzx = 0). In this figure,
we can identify that the HHG intensity in the z direction (the
major axis) has a single Gaussian-like peak at η = 0, while the
intensity in the x direction (the minor axis) has two peaks at
finite values of η. These features have already been identified
in the previous work [70]; the double peaks in the x direction
grow with increasing field intensity and become especially
pronounced in the semimetal regime [71]. This phenomenon
was observed in an experiment on HHG using graphene and
MoS2 [20].

Figure 4 shows high-order harmonic intensities of the third
[(a1) and (b1)], fifth [(a2) and (b2)], seventh [(a3) and (b3)],
and ninth harmonics [(a4) and (b4)] as a function of ellipticity
η for three values of δzx. The red, green, and blue lines indicate
the HHG spectra for δzx = 0.01, 0.005, and 0, respectively.
For unstrained GaAs (δzx = 0), the HHG intensity is symmet-
ric with respect to an inversion of ellipticity (η → −η). This
inversion symmetry, however, is broken for strained GaAs
(δzx = 0.005, 0.01). The peak position in the z direction (the
major axis) shifts toward positive η [see Figs. 4(a1)–4(a4)].
As the order of HHG increases, the peak shift becomes more
significant, and its height gradually decreases in comparison
with the unstrained case. For the x direction (the minor axis),
the heights of the two peaks become different in the strained
case [see Figs. 4(b1)–4(b4)]. From the numerical results of
the seventh and ninth HHG [see Figs. 4(b3) and 4(b4)], we
find that one of the two peaks disappears for sufficiently large

FIG. 3. (a) Schematic diagram of HHG for shear-strained GaAs
caused by elliptically polarized electric fields (η �= 0). (b) Numerical
result for the calculated ellipticity dependence of HHG in the absence
of strain. The blue and red lines show the ellipticity dependencies of
HHG emitted along to the major axis (z axis) and minor axis (x axis),
respectively. The finite shear strain changes these dependencies and
is expected to cause optical activity, i.e., different responses to the
right-handed (η > 0) and left-handed (η < 0) elliptically polarized
electric fields.
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FIG. 4. Calculated ellipticity dependencies of high-order harmonic intensities focusing on the third [(a1) and (b1)], fifth [(a2) and (b2)],
seventh [(a3) and (b3)], and ninth harmonics [(a4) and (b4)]. Figures (a1)–(a4) show the harmonic intensities emitted along the major axis (z
axis), while figures (b1)– (b4) show those along the minor axis (x axis). The red, green, and blue lines indicate the ellipticity dependencies for
δzx= 0, 0.005, and 0.01, respectively. These figures indicate that the right-handed (η > 0) and left-handed (η < 0) elliptically polarized electric
fields yield the different HHG spectra. This breakdown of reciprocity becomes significant for the high-order harmonics above the band-gap
energy (n � Eg/h̄ω = 7).

strain. We note that the ellipticity dependencies of HHG for
δzx = −δ coincides with the result for δzx = δ by reversing
the ellipticity (η → −η).

It is known that a circularly polarized electric field have a
strict selection rule that completely suppresses the all-order
harmonics in atomic system. In our numerical calculation
for GaAs, we could identify almost complete suppression

of high harmonics for the unstained case. For the strained
case, however, this selection rule is broken down. This can
be identified in Fig. (b1); a finite intensity of HHG exists even
for a circularly polarized field (η = ±1) when δzx �= 0. This
breakdown of the selection rule originates from the symmetry
reduction of the crystal structure that would be discussed in
the next subsection.
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C. Breakdown of reciprocity

The breakdown of the reciprocity relation between the
right-handed (η > 0) and left-handed (η < 0) elliptically po-
larized electric fields obtained in this work can be understood
in terms of symmetry reduction of the crystal structure. The
external shear strain changes the crystal structure of GaAs
from cubic (zinc blende structure) into monoclinic, inducing
off-diagonal elements in the dielectric tensor εzx [1,72]. The
emergence of εzx directly means optical activity, i.e., different
responses to left-handed and right-handed elliptically polar-
ized electric fields. It should be noted that the breakdown in
reciprocity becomes rather pronounced when the emitted pho-
ton energy exceeds the band-gap energy, which is Eg = 7h̄ω

in our calculation. The origin of this feature is conjectured
to be as follows. When the emitted photon energy is larger
than the band-gap energy, the number of excitation channels
relevant to HHG largely increases in comparison with those
for the low-order harmonics below the band-gap energy. The
increase in the available channels contributes to emergence of
the plateau structure in the HHG spectra [73], as well as oscil-
latory behavior as a function of field strength [74]. Thus, we
suppose that the sensitivity of the high-order harmonics above
the band-gap energy to the external strain effect is caused
by an increase in the excitation channels. This breakdown of
reciprocity in HHG that is sensitive to shear strain may be
used for applications such as spatially-resolved measurement
of lattice deformation. The features revealed here may also be
useful for developing a mechanical control of HHG ellipticity.
This sensitivity can be controlled by tuning the ratio Eg/h̄ω;
the emitted lower-order harmonics near the band-gap energy
are expected to show the sensitivity for the shear-strain effect.
For a short pulse, another possibility for controlling the piezo-
optic effect is carrier envelope phase (CEP), which is the
offset angle between the field envelope and the carrier wave.
Although the CEP effect may be important for application of
the piezo-optic effect, it is beyond the scope of this paper.

Note that the strain effect (piezo-optic effect) should ap-
pear in other semiconductors, such as AlAs and InAs, in
accordance with the same formulation based on the Luttinger-
Kohn-Bir-Pikus model. By performing numerical calculations
with different Luttinger parameters, we can easily identify
similar properties of HHG in these materials. We also suppose
that the piezo-optic effect obtained here is not specific to mate-
rials covered by the Luttinger-Kohn-Bir-Pikus model and that
it appears in various systems, because the symmetry reduction
of the lattice structure can be induced by shear strain. For a
general discussion, we need to extend our theory to take the
details of the band structure of the materials as well as the
corresponding Bloch wave functions into account.

We also comment on how the nonperturbative effect in
HHG is important for obtaining a large piezo-optical effect.
According to the previous work [20,70], the ellipticity de-
pendence of HHG parallel to the minor axis (x axis) is not
so pronounced in the multiphoton absorption (perturbative)
regime. Therefore, to obtain a sufficiently large piezo-optical
effect, we have to apply a strong field so that nonperturba-
tive regimes, which were identified as the ac Zener or the
semimetal regimes in Ref. [71], are realized. For GaAs, this
threshold intensity between the perturbative and nonpertur-

bative regimes could be estimated at around several MV/cm
[74]. Because the amplitude of the perturbation is roughly
estimated by the ratio between the field intensity (the Rabi
frequency) and the band-gap energy, it is expected that the
piezo-optical effect discussed here can be observed more
clearly by using narrow-gap and zero-gap semiconductors,
such as InSb and graphene.

Finally, we will refer to influence of the interparticle
Coulomb interactions on HHG in GaAs. Major effects of the
interparticle Coulomb interaction are a band-gap renormal-
ization and scattering between excited electrons (holes). Both
effects are expected to be weak in GaAs, because the dielectric
constant is large (εr � 13), indicating large screening effect,
which weakens interparticle Coulomb interaction. The former
effect is regarded as a variation in the band-gap energy, whose
order is, at most, several meV [75], while the latter can be
taken into account in terms of relaxation/dephasing effect that
does not influence so much on the nonlinear optical processes
[1–3]. In addition, since the Coulomb interaction equally af-
fects each harmonic, the results of this paper would not change
qualitatively.

IV. CONCLUSION

We theoretically investigated the shear-strain effect of
HHG in GaAs. By constructing a theoretical framework based
on the Luttinger-Kohn-Bir-Pikus model, we calculated the
spectra of HHG emissions parallel to the major and minor
axes. Our numerical results for linearly polarized incident
light implied that shear-stained materials have optical activity
(nonreciprocity), i.e., different responses to right-handed and
left-handed elliptically polarized electric fields. To verify this
conjecture, we calculated the ellipticity dependence of HHG
emitted from shear-strained GaAs. Consequently, we found
a breakdown in reciprocity with respect to inversion of the
ellipticity. We also found that this breakdown is much more
pronounced for higher-order harmonics that exceed the band-
gap energy. These features can be understood in terms of a
reduction in the symmetry of the crystal structure of GaAs
inducing off-diagonal elements in the dielectric tensor εzx. The
conclusions presented in this paper are generally applicable to
various semiconductors because the symmetry reduction can
be induced by the shear-strain effect. Our study thus provides
a foundation for strain engineering of nonlinear optics, includ-
ing HHG, that is impossible in gaseous media.
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APPENDIX A: BASIS TRANSFORMATION

The eigen wave functions at the � point, |�nk=0〉 = |un〉
(n = 1, 2, · · · , 8) are given as a superposition of atomic or-
bitals. In the presence of the spin-orbit interaction, they are
categorized by |J, Jz〉, where J is the total orbital angu-
lar momentum and Jz is the z component of the angular
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momentum:

|u1〉 ≡
∣∣∣∣1

2
,+1

2

〉
= |s↑〉 ,

|u2〉 ≡
∣∣∣∣3

2
,+3

2

〉
= i√

2
(|px ↑〉 + i |py ↑〉),

|u3〉 ≡
∣∣∣∣3

2
,+1

2

〉
= i√

6
(|px ↓〉 + i |py ↓〉 − 2 |pz ↑〉),

|u4〉 ≡
∣∣∣∣1

2
,+1

2

〉
= i√

3
(|px ↓〉 + i |py ↓〉 + |pz ↑〉).

Here, we define |sσ 〉, |pxσ 〉, |pyσ 〉, and |pzσ 〉 to be the s-,
px-, py-, and pz-like wave functions, respectively, for spin
components σ =↑ or ↓. The remaining set of Bloch basis
states are expressed as

|u5〉 ≡
∣∣∣∣1

2
,−1

2

〉
= − |s↓〉 , (A1)

|u6〉 ≡
∣∣∣∣3

2
,−3

2

〉
= − i√

2
(|px ↓〉 − i |py ↓〉), (A2)

|u7〉 ≡
∣∣∣∣3

2
,−1

2

〉
= i√

6
(|px ↑〉 − i |py ↑〉 + 2 |pz ↓〉), (A3)

|u8〉 ≡
∣∣∣∣1

2
,−1

2

〉
= i√

3
(|px ↑〉 − i |py ↑〉 − |pz ↓〉). (A4)

From these expressions, one can easily obtain the matrix ele-
ment of the unitary operation, (U )nm = 〈un|vm〉.

APPENDIX B: ELLIPTICITY OF EMITTED HARMONICS

In this Appendix, we discuss the ellipticity of emitted
harmonics. The ellipticity of the emitted nth-order harmonics
is defined as ε = |A/B|, where A and B are the amplitude of
the electric field of the semimajor and semiminor axes for the
elliptic light:

A = |Jnth(ω)|
√

1+
√

1−sin2 (2θ ) sin2 β

2 ,

B = |Jnth(ω)|
√

1−
√

1−sin2 (2θ ) sin2 β

2 .

Here, Jnth(ω) = (Jnth
z (ω), Jnth

x (ω)) = (|Jnth(ω)| cos θ,

|Jnth(ω)| sin θ ) is the Fourier transforms of the generated
currents Jnth

z (t ) and Jnth
x (t ), and β is a difference

between arguments of Jnth
z (ω) and Jnth

x (ω), that is,
β = Arg[Jnth

z (ω)] − Arg[Jnth
x (ω)]. We show in Figs. 5(a)

and 5(b) the ellipticity of emitted fifth and seventh-order

FIG. 5. Ellipticity of emitted fifth- (a) and seventh-order harmon-
ics (b) as a function of the ellipticity of the incident electric field. The
red, blue, and green curves denote the ellipticity of the harmonics for
the cases of δzx = 0, 0.005, and 0.01, respectively.

harmonics for the cases of δzx = 0 (red line), 0.005 (blue
line), and 0.01 (green line), respectively. These figures
indicate that the ellipticity of the emitted harmonics vanishes
at η = 0 for the unstrained case (red lines). For the strained
cases (blue and green lines), the value of η at which the
ellipticity of the emitted harmonics vanishes shifts toward
the negative direction. This shift is emphasized for the
seventh-order harmonics in comparison with the fifth-order
one. These features may be helpful for a control of the emitted
HHG in the shear-strain semiconductors.
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