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Acoustic plasmons in type-I Weyl semimetals
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Massless chiral fermions emergent in inversion symmetry-breaking Weyl semimetals (WSMs) reside in the
vicinity of multiple low-symmetry nodes and thus acquire strongly anisotropic dispersion. We investigate the
longitudinal electromagnetic modes of two-component degenerate Weyl plasma relevant to the realistic band
structure of type-I WSM. We show that the actual spectrum of three-dimensional collective density excitations
in the TaAs family of WSM is gapless due to emergence of acoustic plasmons corresponding to out-of-phase
oscillations of the plasma components. These modes exist around the [001] crystallographic direction and are
weakly damped, due to large difference in the Weyl velocities of the W1 and W2 quasiparticles propagating
along [001]. We show that acoustic plasmons can manifest themselves as slow beatings of electric potential
superimposed on fast plasmonic oscillations upon charge relaxation. The revealed acoustic modes can stimulate
purely electronic superconductivity, collisionless plasmon instabilities, and formation of Weyl soundarons.
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I. INTRODUCTION

Weyl fermion (WF)–like [1] quasiparticles in the recently
discovered Weyl semimetals (WSMs) manifest themselves in
peculiar optical and transport phenomena [2,3] related to high-
energy physics analogies. Imposed by the specific nature of
single-particle excitations, the plasma modes of WFs in WSM
[4,5] mimic the ones of ultrarelativistic plasma [6]. The con-
sistent theory of the bulk plasmon dispersion in WSMs taking
into account ultraviolet cutoff was elaborated in Refs. [7–9]
for both extrinsic and intrinsic cases, including the case of
parallel electric and magnetic fields, related to the nontrival
topological issue of chiral anomaly inherent to WSM [10].
Due to nontrivial topology, a type of topological surface col-
lective excitations associated with Fermi arcs arose [11–13],
and the conventional surface plasmon polaritons in time-
reversal symmetry-breaking WSM become nonreciprocal at
zero magnetic field [14,15]. These features, in addition to the
characteristic plasmon energy on the order of tens of meV
[15], make WSMs promising materials for THz plasmonics
[16].

The band structure of real WSM materials is more compli-
cated than that given by the “prototypical” Weyl Hamiltonian
[1], since it is multinodal [17–23]. Because of the low local
symmetry of the Weyl nodes, WF dispersion acquires strong
anisotropy and tilt [24–28]. This leads to qualitative differ-
ence in predictions of the prototypical and realistic models
of WSM, including existence of type-II WSM [2] undamped
plasmon modes in it [29], photocurrent effects [30,31], and
Auger recombination [32].

In the realistic band structure of type-I WSMs, there are
at least two (nonequivalent) degenerate distributions of car-
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riers resident in the vicinity of different Weyl nodes, which
coexist at any direction of the wave vector, thus making the
WF plasma in WSM multicomponent. The difference in the
Fermi wave vectors kF = μ/v (hereinafter h̄ = 1) between
two groups of WFs can originate solely from the Weyl ve-
locity anisotropy v2 �= v1 while the Fermi levels are equal
μ2 = μ1 [Fig. 1(a)], as happens in the doped WSMs of HgTe
family [33] possessing a single node group, e.g., in HgTe
[22] under strain or chalcopyrite compounds [23]. Further, we
will refer to this case as homogeneous Weyl plasma (WP). In
heterogeneous Weyl plasma [Fig. 1(b)] specific to the TaAs
family [17–20] of WSMs [34], both unequal values of the
chemical potentials and Weyl velocities at the nodes con-
tribute to complexity of the WP properties.

In this paper, we show that the structure of plasma ex-
citations in real WSM materials, such as TaAs, NbAs, TaP,
and NbP, is fundamentally different from the one expected
in the prototypical model [7–9]. The dielectric response of
two-component WP supports formation of the acoustic plas-
mons [35], corresponding to out-of-phase density oscillations
in components, even in isotropic approximation for each com-
ponent, above some contrast in the WF velocities and/or
concentrations (Sec. II A). The anisotropic WP behaves as
an isotropic one with the direction-dependent WF velocities
and effective concentrations (Sec. II B). Thus, the existence of
an acoustic mode depends on the direction as well. Strongly
anisotropic dispersion of WFs and heterogeneous nature of
the WP in TaAs family of WSM are favorable for propagation
of the acoustic plasmons in some range of directions. As a
result, the spectrum of plasma excitations in real WSM is
gapless. In order to demonstrate that the acoustic modes can
be directly observed in experiments, we calculate (Sec. II C)
the energy loss function within a full random phase approx-
imation (RPA) and investigate (Sec. III) relaxation of initial
perturbation in two-component WP. This problem is related to
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FIG. 1. Implementation of the two-component degenerate
plasma in Weyl semimetals: (a) homogeneous plasma formed within
the single Weyl node group, and (b) heterogeneous plasma in the
multigroup Weyl semimetals (TaAs-like).

time-domain experimental setups. Some other intriguing phe-
nomena related to acoustic plasmons in WSMs and potential
applications are discussed in Sec. IV.

II. PLASMA EXCITATION MODE STRUCTURE OF
TYPE-I WSM

A. Acoustic modes in two-component isotropic WP

To reveal the gapless nature of WP excitations in WSM, we
start with the minimal model describing two-component WP
formed by WFs with isotropic Weyl velocities v1,2 occupying
the Weyl nodes with degeneracy factors η1,2 and the Fermi
levels μ1 and μ2, respectively. The Weyl Hamiltonian for two
types of WFs ( j = 1, 2) reads

Hj = v jk · σ. (1)

The dielectric function of two-component WP is given by

ε(ω, q) = 1 + �ε1(ω, q) + �ε2(ω, q), (2)

where contributions of the WP components �ε j (ω, q) are ad-
ditive and are given by the dielectric function of prototypical
WSM [7] with the parameters v, η, and μ, specific to each
component.

To find the collective modes of the two-component WP, we
need to solve the standard equation Re ε(ω, q) = 0 [36]. In
the quasiclassical domain (ω, v jq � 2μ j), the contributions
to dielectric function from the WP components are given by

�ε j (ω, q) =
q2

T j

q2

[
1 + ω

2v jq
ln

∣∣∣∣ω − v jq

ω + v jq

∣∣∣∣
]

+ iπ
ω

2v jq

q2
T j

q2
�(v jq − ω), (3)

where qT j = √
2η jα j/πκ0kF j is the Thomas-Fermi wave vec-

tor, α j = e2/v jκb is the Weyl fine structure constant, κb

is the background dielectric constant, κ0 = 1 + η1α1

3π
ln ω	

2μ1
+

η2α2

3π
ln ω	

2μ2
describes the renormalization of κb [7,8], and ω	

is the cutoff energy of the WF model [8,37].
We focus on the emergence of acoustic plasmon modes

ωac(q) = sq [35] lying between the WF dispersion lines of the
slow and fast plasma components v1q < ω < v2q. In the limit
of q → 0, Re ε(ωac(q), q) = 0 transforms into the equation

FIG. 2. Existence conditions and velocities of acoustic plasmons.
The relative difference of Weyl velocities δv is varied along the
horizontal axis, and the relative difference of carrier densities of two
types δn is varied along the vertical one. The color encodes the veloc-
ity of acoustic plasmon s (in units of minimum Weyl velocity). In the
middle blue-filled region, acoustic plasmon does not exist. Solid lines
correspond to homogeneous plasma (e.g., doped HgTe [22] under
strain or chalcopyrite compounds [23]), heterogeneous plasma of
TaAs (μ2/μ1 = 5 [17]), and NbAs (μ1/μ2 = 8.25 [20,28]). Dashed
part of the TaAs composition line corresponds to the anisotropic
WP in (110) and (11̄0) planes within the numerically predicted band
structure [24,28].

for sound velocity

∣∣∣ s − v1

s + v1

∣∣∣sq2
T 1

/2v1 ∣∣∣ s − v2

s + v2

∣∣∣sq2
T 2

/2v2

= e−(q2
T 1

+q2
T 2

) (4)

depending on the ratios of WF velocities δv = v2/v1 and
Thomas-Fermi wave vectors δqT = qT 2/qT 1 . Using the relation

qT 2

qT 1

=
(

η2n2
2v

3
1

η1n2
1v

3
2

)1/6

, (5)

it is convenient to consider solution of Eq. (4) in terms of the
dimensionless parameters

�v = E2(q) − E1(q)

E2(q) + E1(q)
= v2 − v1

v2 + v1
, (6)

�n = n2 − n1

n2 + n1
, (7)

expressing degree of the quantum mechanical and statistical
imbalance between the WP components. Here Ej (q) = v jq
denotes the dispersion of WFs and nj are concentrations in
the plasma components

n j = η j

6π2

μ3
j

v3
j

. (8)

The color diagram in Fig. 2 shows the existence domain and
velocity of acoustic plasmons (in the units of the smaller WF
velocity–v1 at �v > 0 and v2 at �v < 0). It is asymmetric
with respect to permutation of plasma components (i.e., to the
simultaneous transformations �n → −�n and �v → −�v)
representing the effect of the difference in Weyl node degener-
acy on the acoustic plasmon formation. In Fig. 2, we consider
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δη = η2/η1 = 2 characteristic for TaAs family of WSMs, so
at �v > 0 the number of the fast nodes is greater then the
slow ones, while at �v < 0 the situation is opposite.

Since the ratio of Fermi energies δμ = μ2/μ1 in real
WSMs is fixed, but the ratio of densities n j can be different,
realistic two-component WP compositions are presented on
the diagram by the curves

�n(�v) = δηδμ3(1 − �v)3 − (1 + �v)3

δηδμ3(1 − �v)3 + (1 + �v)3
(9)

at the specific δμ and δη. Figure 2 shows that in the ho-
mogeneous plasma (depicted by the blue line) the acoustic
mode arises only at extreme difference between velocities of
the WP components �v � 0.99, i.e., v2/v1 � 20, when the
�n(�v) line (9) at δμ = 1 and δη = 1 enters the acoustic
plasmon domain. With the increase of heterogeneity δμ, WP
composition line crosses the border at moderate �v and the
acoustic mode tends to exist at a wider range of �v. Namely,
the heterogeneous WP lines corresponding to TaAs and NbAs
lie well inside the acoustic plasmon domain. The upper curves
lying predominantly at �n > −�v correspond to μ2 > μ1,
and the lower ones correspond to μ2 < μ1.

A similar mechanism governs the formation of acoustic
spin plasmon in spin-polarized degenerate two-dimensional
electron gas [38] at P = (n↑ − n↓)/(n↑ + n↓) > 1/7. In
this case, quasiparticles with different spins possess equal
parabolic dispersions and thus Fermi velocities vF j are
determined by the concentrations of plasma components.
Therefore, the only independent parameter controlling the
emergence of linearly dispersing collective modes is spin po-
larization P analogous to �n in (7).

Acoustic plasmon mode lies in the domain of small, but
nonzero Landau damping provided by the interband single-
particle excitations in the fast component. Therefore, the
criteria of its existence is smallness of the collisionless
damping γac(q) = Imε/ ∂Re ε

∂ω
|
ωac (q)

compared to the plasmon
frequency ωac(q). In the quasiclassical domain, the ratio
γac(q)/ωac(q) is constant and its explicit form is given by

γac(q)

ωac(q)
= π

2

s

v2

q2
T 2

(
s2 − v2

1

)(
v2

2 − s2
)

q2
T 1

v2
1

(
v2

2 − s2
) − q2

T 2
v2

2

(
s2 − v2

1

) . (10)

Figure 3 displays the contour plot of γac(q)/ωac(q) for
two-component WP compositions supporting the acoustic col-
lective mode (Fig. 2). With account for damping, the domain
of acoustic plasmon existence shrinks to the area of greater
|�v|, but TaAs and NbAs lines reside in the region of well-
defined acoustic mode.

B. Plasmon spectrum of type-I WSM

In experimentally relevant WSMs, WF reside in the vicin-
ity of multiple Weyl nodes belonging to the single or multiple
node groups Wn. Weyl nodes of the same group are linked
by the crystal symmetry operations gi ∈ G × T where T is
the time reversal and G is the point group of WSM, e.g., C4v

for TaAs family WSM [2] and D2d for HgTe family WSMs
[22,23]; see Fig. 4. Because of the low local symmetry, WF
states near the node Wn,i are described by the generalized Weyl

FIG. 3. Contour plot of the dimensionless damping parameter
(10) for acoustic plasmon in the region of its existence in WSM with
η2/η1 = 2.

Hamiltonian

Hi,n = v(t )
n gikσ0 + v̂ngik · σ, (11)

where k is the WF wave vector with respect to the position of
Wn,i in the Brillouin zone, σ0 is the identity matrix, and v(t )

n
and v̂n are tilt and Weyl velocities respectively.

The dielectric response of the multinode WF system is
given by the sum of individual contributions from each Weyl
node. Linearity of the Hamiltonian (11) in k allows one to
relate the contribution to the dielectric function from a node
Wn,i with that of the prototypical WSM with the Fermi level
μn and the average Weyl velocity vn = |det v̂n|1/3, �εn(ω, q),
via a linear coordinate transform [32]. Thus, the total ε(ω, q)
is given by

ε(ω, q) = 1 +
∑
n,i

�εn
(
ω − v(t )

n giq,
∣∣v−1

n v̂ngiq
∣∣). (12)

This expression is applicable to the arbitrary type-I WSM until
the tilt becomes large enough to form the type-II WSM. Since
every node has a time-reversal partner with the same chirality
but opposite tilt velocity, the expansion of (12) in powers of
|v(t )

n |/|v̂neq| starts with the quadratic terms and the tilt-induced
linear Doppler shift in ε(ω, q) is absent [28].

(a) (b)

FIG. 4. Projection of the band structure of (a) TaAs family
WSMs and (b) HgTe family WSMs on the (001) crystallographic
plane. Filled ellipses show the cross sections of the approximate
Fermi surfaces. Red dashed lines denote mirror symmetry planes
perpendicular to (001). Blue lines and dots correspond to symmetry
axes.
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Following properties of the individual WFs, WP in type-I
WSM is substantially anisotropic and multicomponent be-
cause of nonequivalence in energies of the WFs from different
nodes (of either the same or different groups) at a given wave
vector q. In the directions and planes of high symmetry, the
WP of experimentally available WSMs reduces to two com-
ponents. The dielectric response is thus equivalent to the one
of isotropic two-component WP considered in Sec. II A, but
with the direction-dependent parameters

n j → n j (eq) = η j[kF j (eq)]3/6π2, (13)

v j → v j (eq) = v̂ jeq, (14)

where eq = q/q. Thus, �n(eq) and �v(eq) in (7), (6), and (9)
become direction dependent. The position of the correspond-
ing WP composition line and the range of actual �v(eq) (i.e.,
points on it) are determined by specific band structure param-
eters of WSM: heterogeneity δμ, the values and anisotropy of
Weyl velocities v j (eq), and orientation of the principal axes
of v̂n with respect to crystal lattice. Below, we consider the
spectrum of the collective excitations of WP in WSMs of TaAs
and HgTe families, within the realistic band structure.

Weyl nodes present in TaAs-like WSMs are gener-
ally located in low-symmetry points of the Brillouin zone
close to high-symmetry mirror planes (100) and (010)
[17,19,20,24,28]. The overall 24 nodes are divided into two
groups with different Fermi energies: 8 nodes of type W1 in the
(001) plane and 16 nodes W2 in the two planes perpendicular
to [001] with |kz| �= 0. According to numerical calculations
of the band structure [24,28], principal axes of Weyl velocity
tensors v̂1,2 for both groups W1,2 are almost collinear to the
cubic ones. Since the Weyl nodes of opposite chiralities are
connected via the mirror reflections and time reversal, we can
neglect this small misorientation. We also ignore the minor
difference between vx,y for W1,2 and consider the averaged
velocity v̄x,y = v(1)

x,y/2 + v(2)
x,y/2 instead. In this section v(n)

c ,
c = x, y, z denote the principal values of the Weyl velocity
tensor v̂n in the group Wn.

With the band structure of TaAs-like WSMs shown in
Fig. 4(a), the embodied WP is exactly two component only
in the (110), (11̄0), and (001) planes. Namely, the dielectric
response in the (001) plane is given by the WFs belonging
to the two sets of Weyl nodes connected via C4 rotation
around the [001] axis. Due to the multigroup structure of
TaAs-like WSMs, WFs with v(001)(eq) and v(001)(C4eq) can
belong to both degenerate distributions described by the
Fermi energies μ1,2 respectively. Thus, WP in the (001)
plane is effectively homogeneous with the Fermi energy√

(η1μ
2
1 + η2μ

2
2)/(η1 + η2). The maximum velocity differ-

ence between the plasma components is achieved in [100] and
[010] directions and its magnitude v̄x/v̄y = 1.56 guaranties
(see Sec. II A) the absence of acoustic plasmons in the (001)
plane.

In the (110) crystallographic plane, WFs belonging to the
W1 and W2 groups of Weyl nodes form, respectively, the slow
and the fast components of anisotropic heterogeneous WP.
According to the phase diagram shown in Fig. 2, the part
of the TaAs composition line which describes the WP in the
(110) plane (denoted by the white dashes) lies well inside the

FIG. 5. Anisotropy (red curve) of acoustic plasmon velocity s(θ )
[in units of v

(1)
(110)(θ )] in the upper half of the (110) crystallographic

plane of TaAs with Weyl velocities taken from Ref. [28]. Directions
in which acoustic plasmon can propagate lie inside the 2θ

(110)
crit angle

formed by the two solid blue lines.

acoustic plasmon domain and the linearly dispersive collective
mode is supported. The maximum speed of sound is achieved
in the most favorable direction [001] due to the huge ratio
[17,19,20,24] of v(2)

z /v(1)
z ≈ 15 [28]. This direction is shown

on the TaAs composition line by the right endpoint of the
dashed part at �v[001] = 0.875. With the increase of the polar
angle θ with respect to the [001] direction, the difference in
the velocities of plasma components

v
( j)
(110)(θ ) =

√
v2

[110] sin2 θ + [
v

( j)
z

]2
cos2 θ (15)

becomes smaller and the speed of acoustic plasmon rapidly
decreases (see Fig. 5). The point {�n(�v(110)(θ )),�v(110)(θ )}
describing the (110) WP on the phase diagram moves, respec-
tively, along the TaAs composition line toward �v[110] = 0
corresponding to the [110] (or [11̄0]) direction, when v

(1)
(110)(θ )

and v
(2)
(110)(θ ) merge into v2

[110] = (v̄2
x + v̄2

y )/2. Thus, acoustic
plasmon does not propagate in the range of directions in the
(110) plane lying between [110] and the critical direction
corresponding to the polar angle θ

(110)
crit (δμ) ≈ 0.9.

Anisotropy of the acoustic plasmon velocity in the (110)
plane is also affected by the crystal point symmetry. Because
of the presence of the M(11̄0) mirror plane, the s(eq) plot
presented in Fig. 5 is symmetric with respect to the flip
of the vertical axis, i.e., to the [11̄0] ↔ [1̄10] permutation.
Strictly speaking, acoustic plasmons which propagate toward
[100] (0 < θ < π/2) and opposite to it (π/2 < θ < π ) are
not equivalent in inversion symmetry-breaking WSMs like
TaAs. The lack of inversion symmetry is introduced into the
dielectric function of type-I WSM (12) via nonzero but rather
small tilt velocity. The tilt affects the difference of acoustic
plasmon velocities s(θ ) �= s(π − θ ) that arise as second-order
effects [see the discussion after Eq. (12)].

In an arbitrary plane (kl0), WF dispersion in TaAs-like
WSMs is described by the two pairs of Weyl velocities: v(1,2)

z
in the [001] direction and v(001)(eq) and v(001)(C4eq) perpen-
dicular to it. Therefore, the embodied WP is four-component
in (kl0) and the velocity contrast induced by the giant inequal-
ity of v(2)

z and v(1)
z is lowered at a given angle θ in comparison

to the (110) plane, so that �v(kl0)(θ ) < �v(110)(θ ). With de-
viation from the (110) plane, acoustic plasmon propagate in a
narrower range of directions near [001] (and [001̄]) character-
ized by smaller critical angle θ

(kl0)
crit < θ

(110)
crit . We expect s(eq)
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in (kl0) to become even more anisotropic with respect to [001]
and the s(eq) plot shown in Fig. 5 to squeeze in the vertical
direction. Thus, the collective mode spectrum of TaAs-like
WSMs is gapless due to formation of weakly damped acoustic
plasmon with strongly anisotropic dispersion.

In the case of HgTe family WSMs [22,23] of D2d point
group, eight Weyl nodes of the single group W1 lie exactly
in planes (100) and (010). The directions of principal axes
of v̂ have not been studied numerically yet. Symmetry con-
siderations dictate that one of them should be practically
perpendicular to the vertical plane to which the particular
Weyl node belongs. For the sake of simplicity, we assume
that the principal axes of v̂ coincide with the cubic axes; see
Fig. 4(b). WF plasma is exactly two-component (except for
the (110) set of planes and [001] direction) and is formed by
the quasiparticles resident in the vicinity of the Weyl nodes
linked by the mirror symmetry operations M(110) and M(11̄0).
However, the velocity anisotropy is not strong enough [22,23]
for this homogeneous plasma to support the acoustic plasmon
even in the most favorable directions [100] and [010], where
�v reaches its maximum. Therefore, the collective plasma
mode spectrum of HgTe family WSMs is gapped, being dom-
inated solely by the optical plasmon mode, corresponding to
the in-phase density oscillations in the plasma components.
We point out that at arbitrary orientation of the principal
axes of v̂ homogeneous plasma of the HgTe family WSMs
become multicomponent and less favorable for the formation
of acoustic modes by the same reason as discussed for TaAs
(kl0) planes, and the predicted plasmon structure remains
unchanged.

In the heterogeneous WP with δμ ≈ 1, ωopt stays well
below the edge of the interband single-particle continuum
given by ω = 2μ1, where μ1 is the smaller of Fermi ener-
gies. In this domain, �ε j (ω, 0) = −ω2

j/ω
2 and the optical

plasmon frequency is given by the conventional expression
ωopt =

√
ω2

1 + ω2
2, where ω j ∼ 3

√
n j is the plasmon frequency

of the isolated WP components. As the heterogeneity δμ in-
creases, ωopt approaches 2μ1 and the singularity in Reε(ω, 0)
(at ω = 2μ1) inherent to the degenerate plasma with linear
dispersion [39] affects the optical plasmon energy [10]. At
T = 0, it prevents ωopt from entering the single-particle con-
tinuum domain, while at finite temperature the singularity is
smeared and the optical plasmon vanishes when 2μ1 ≈ T .

C. Full RPA energy-loss function and short-wavelength
plasmon dispersion

Full RPA energy-loss function calculations confirm the
plasmon structure of type-I WSMs predicted in the previous
section. In particular, in the case of heterogeneous plasma of
TaAs with the composition shown in Fig. 2, the loss function
Im[−ε−1(ω, q)] demonstrates two distinct peaks correspond-
ing to optical and acoustic collective modes [Fig. 6(a)]. In
the homogeneous case, there exists a single optical plasmon
peak [Fig. 6(b)]. Consequently, acoustic plasmon dispersion
in WSMs should be directly measurable via the energy-loss
spectroscopy experiments.

Plasmon dispersion in the short wavelength domain is
generally determined by the full RPA dielectric function [7].
According to Fig. 6(a), acoustic plasmon stays well defined

FIG. 6. Full RPA energy-loss function for the cases of (a) het-
erogeneous WP in TaAs supporting the acoustic plasmon mode and
(b) homogeneous plasma of HgTe-like WSM (see Fig. 2). Here
〈μ〉 = (μ1 + μ2)/2 and 〈v〉 = (v1 + v2)/2.

in this region, its dispersion acquires small nonlinearity, and
the optical and acoustic modes tend to merge with WF’s
dispersion lines ω = v2,1(eq)q, respectively.

In the limit v2/v1 � 1, dispersion and damping of acous-
tic and optical modes can be studied analytically. When
the frequency ω approaches the dispersion line vF q, the
dielectric response of the degenerate gas with linear disper-
sion is determined by the singularity in Re ε(ω, q), being
logarithmic in WSMs [7] and square-root in graphene [40].
Since ωac(q) ≈ v1(eq)q � v2(eq)q,

�ε1(ω, q) = η1α1

6π

(
6k2

F1

q2
− 1

)
ln

∣∣∣∣1 − ω

v1q

∣∣∣∣, (16)

�ε2(ω, q) = q2
T 2

q2
+ iπ

ω

2v2q

q2
T 2

q2
, (17)

and the corresponding acoustic plasmon dispersion and damp-
ing

ωac(q) = v1q

[
1 + exp

(
−2

δq2
T

1 − q2/6k2
F1

)]
, (18)

γac

ωac
= 6π

δq2
T

δv

1

1 − q2/6k2
F1

exp

(
−2

δq2
T

1 − q2/6k2
F1

)
. (19)

Due to the pronounced logarithmic singularity, ωac(q) has
an endpoint at |q| = √

6kF1 (eq). The nonlinear correction to
ωac(q) and the damping are small, independent of the magni-
tude of δqT . The similar singularity-induced endpoint emerges
in the optical plasmon dispersion. It was previously obtained
from numerical calculations in one-component WP within full
RPA approximation [7,10].

III. RELAXATION OF INITIAL PERTURBATION IN
TWO-COMPONENT WP

To demonstrate experimental feasibility of acoustic plas-
mons in WSMs, we consider the relaxation of initial
perturbation in isotropic two-component WP. This problem
underlies the direct observation of plasma oscillations in
time-resolved measurements of voltage between injector and
detector contacts placed on a sample [41,42]. Following the
method described in Ref. [43], we study the self-consistent re-
sponse to the weak initial plane-wave-like perturbation of the
fast component within the set of linearized collisionless (since
the effective dimensionless interaction strength is small α̃ j =
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FIG. 7. Relaxation dynamics [(a), (d)] of the self-consistent po-
tential δVq(t ) (20), relaxation spectrum K̃2(ω, q) [(b), (e)] after (21),
and full RPA loss function [(c), (f)] at 〈v〉q = 0.4〈μ〉 in hetero-
geneous [Fig. 6(a)] and homogeneous [Fig. 6(b)] WP respectively.
Vertical dashed black lines correspond to the boundaries ω = v1,2q
of intraband and interband single-particle excitations.

e2/h̄v jκbκ0 � 1) Boltzman equations for both components
(see Appendix A). The time evolution of the dimensionless
self-consistent potential δVq(t ) per one perturbed WF is given
by the Fourier transform of the dimensionless RPA relaxation
propagator [36,44] of the fast component K̃2(ω, q)

δVq(t ) =
+∞∫

−∞

dω

2π
e−iωt K̃2(ω, q), (20)

K̃2(ω, q) = 1

ε(ω, q)

�̃2(0, q) − �̃2(ω, q)

iω
. (21)

Here �̃2(ω, q) is the dimensionless quasiclassical noninter-
acting polarizability (A8) and ε(ω, q) is given by Eqs. (2)
and (3). The distant stages of the relaxation process are de-
termined by the poles of the relaxation propagator (21) given
by ε(ω, q) = 0 and the asymptotic behavior of δVq(t ) has the
form [43]

δVq(t ) ∼
∑

l

e−i ωl (q)t e−γl t , (22)

where l denotes the plasmon dispersion branch.
To investigate the number and damping of the complex

zeros of the full dielectric function given by Eqs. (2) and (3),
we calculate the relaxation dynamics of δVq(t ) by performing
the one-dimensional numerical integration in (20) over real
frequencies. In agreement with the collective mode structure
described in Sec. II A, the relaxation spectrum K̃2(ω, q) of
TaAs [Fig. 7(b)] is dominated by two signatures correspond-

ing to acoustic and optical plasmon peaks in the full RPA
energy-loss function [Fig. 7(c)]. As a result, high-frequency
oscillations of δVq(t ) relevant to optical plasmon (which has
entered the Landau damping region at the considered wave
vector) are affected by the distinct low-frequency modula-
tion at ωac(q) with shorter lifetime, demonstrating the direct
experimental accessibility of acoustic plasmons in TaAs-like
WSMs. According to Figs. 7(d) and 7(e), relaxation of initial
perturbation in homogeneous WP in governed by the only
present optical mode [Fig. 7(f)], as expected. Since optical
plasmon is undamped in this case (Fig. 6), we have introduced
an artificial collisional damping Im ε = 10−2 to regularize the
frequency integration in (20).

IV. DISCUSSION AND CONCLUSIONS

In real TaAs-family WSMs, Weyl nodes of the same group
with opposite chiralities are located close to each other with
respect to the size of the first Brillouin zone. The typical
value of this internode distance in TaAs is |Q| ≈ 0.05π

a [17],
where a is the lattice constant. Therefore, internode transi-
tions may give significant contribution to the total dielectric
function and thus affect the plasmon dispersion as happens
with the emergence of additional harmonics in the Friedel
oscillation pattern [7]. In Appendix B, we show that such
chirality-flip transitions lead to additional (and rather small)
renormalization of the background dielectric constant pro-
vided k(n)

F (eQn
) � |Qn|. Thus, the revealed collective mode

structure remains qualitatively unchanged.
We believe that our results will stimulate further research

on the acoustic plasmon-mediated phenomena in WSMs. In
particular, TaAs-family WSMs may demonstrate the similar
unconventional superconductivity as twisted bilayer graphene
[45], sharing the purely electronic mechanism of pairing [46]
mediated by acoustic plasmons [47–50]. In this case, the
absence of the isotope effect will serve as a hallmark of it
[51]. The emergence of acoustic plasmons in WSMs introduce
other mechanisms of plasmon instability in materials with
linear quasiparticle dispersion. Due to the lack of Galilean
invariance and singularities in Re ε(ω, q) at quasiparticle
dispersion line ω = vq, negative Landau damping in one-
component Dirac plasma is prohibited [52] in collisionless
regime and the emission of plasmons is feasible only when
the hydrodynamic transport takes place [53]. In heteroge-
neous two-component Weyl-Dirac plasma, the possibility of
Čherenkov radiation of acoustic plasmons [54] is determined
only by the relation between the drift velocity of the fast
component and the sound velocity s, being independent of
the particular transport regime. Additionally, the emergence
of acoustic plasmons could qualitatively change the renormal-
ization of the quasiparticle band structure due to the strong
plasmon-WF coupling. In addition to predicted plasmaronic
subband [55] associated with optical plasmons, the composite
quasiparticles consisting of acoustic plasmon and WF—Weyl
soundarons [56]—may arise and mix with each other.
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APPENDIX A: EXPLICIT SOLUTION FOR THE
SELF-CONSISTENT RESPONSE TO THE INITIAL
PERTURBATION IN ISOTROPIC DEGENERATE

TWO-COMPONENT WP

The time evolution of the self-consistent response of the
form

n j (r, p, t ) = n(0)
j (p) + δn j (r, p, t ) (A1)

to the weak initial perturbation

g(r, p) = n2(0, r, p) − n(0)
2 (p) (A2)

is governed by the set of linearized collisionless Boltzman
equations for both components

∂δn j

∂t
+ v j

∂δn j

∂r
+ ∇V

∂n(0)
j

∂p
= 0, (A3)

where j = 1, 2 is the plasma component index, n(0)
j (p) =

θ (p( j)
F − p) is the equilibrium distribution function,

δn j (r, p, t ) � n(0)
j (p) is the small nonequilibrium correction

to it, and p = h̄k is the momentum of WFs. In this section,
we reintroduce the Planck constant for the sake of clarity.
According to (A3), the spatial Fourier transform of the
self-consistent potential V (r, t ) is given by

Vq(t ) = 1

2π

+∞∫
−∞

e−iωtV (+)
ωq dω, (A4)

V (+)
ωq

Vq
= − η2

i ε(ω, q)

∫
gq(p)

v2q − ω − i0

dp
(2π h̄)3

, (A5)

where Vq = 4πe2

κbq2 is the three-dimensional Coulomb potential.
We consider the initial perturbation to be plane-wave-like
g(r, p) = gq(p)eiqr. Since Eq. (A3) describes the kinetics
of degenerate plasma in the quasiclassical limit v2 p � μ2,
h̄ω � μ2, the dielectric function in (A5) determining the
self-consistent response coincides with the one given by
Eqs. (2) and (3). For the sake of simplicity, we consider the
perturbation to be isotropic in momentum space. Therefore,
integrations over magnitude p = |p| and directions ep of the
WF’s momenta can be carried out separately for an arbitrary
form of gq(p). After we combine (A4) and (A5) at gq(p) =
gq(p), the time evolution of the self-consistent potential in
WP per one of the N2(q) = η2

∫
gq(p) dp

(2π h̄)3 perturbed WFs
is given by

δVq(t ) = Vq(t )

VqN2(q)
=

+∞∫
−∞

dω

2π
e−iωt K̃2(ω, q) (A6)

is determined by the quasiclassical form of the dimensionless
PRA relaxation propagator

K̃2(ω, q) = 1

ε(ω, q)

�̃2(0, q) − �̃2(ω, q)

iω
, (A7)

where the dimensionless noninteracting quasiclassical
polarizability �̃2(ω, q) = �2(ω, q)/D2(μ2) has the
form

�̃2(ω, q) = −
[

1 + ω

2v2q
ln

∣∣∣∣ω − v2q

ω + v2q

∣∣∣∣
]

− iπ
ω

2v2q
θ (v2q − ω)θ (v2q + ω). (A8)

Here D2(μ2) is the density of states of the fast WF at Fermi
level.

APPENDIX B: EFFECT OF THE INTERNODE
CHIRALITY-FLIP TRANSITIONS ON THE DIELECTRIC

FUNCTION OF WSM

Dielectric function of the multinode WSM with the al-
lowance for the chirality-flip transitions between the nearest
Weyl nodes of the same type has the form

�ε(ω, q) =
∑

χ, χ ′ n, i

�ε
(χχ ′ )
n,i (ω, q), (B1)

where χ = ±, χ ′ = ± are chiralities, i denote the symmetry
operations in WSM, and n is the node group index. Non-
diagonal (in χ ) components of �ε

(χχ ′ )
n,i (ω, q) correspond to

chirality-flip transitions, while diagonal ones coincide with
the terms of (12)

�ε
(χχ )
n,i (ω, q) = �εn(ω,

∣∣v−1
n v̂ngiq

∣∣), (B2)

where we have already neglected the tilt velocity-induced
Doppler shift for the same reasons stated in Sec. II B.

Chiral-dependent Hamiltonian relevant to a certain node
W (χ )

n,i is derived from the Hamiltonian of the isolated Weyl
node H = v̂n,ik · σ by substitutions k → k + KW (χ )

n,i
and σ̂ →

χσ̂ , where v̂n,i = v̂ngi is the local Weyl velocity tensor and
KW (χ )

n,i
is the position of the Weyl node in the Brillouin zone.

The neighbor Weyl nodes with opposite chiralities are sep-
arated by the KW (+)

n,i
− KW (−)

n,i
= Qn,i = giQn specific for the

group Wn. Therefore, the components of chirality-dependent
dielectric function are connected to diagonal ones via the
transformation

�ε
(χχ ′ )
n,i (ω, q) = �ε

(χχ )
n,i

(
ω, q + χ − χ ′

2
Qn,i

)
, (B3)

leading to

�ε
(−χχ )
n,i (ω, q) = �ε

(χχ )
n,i (ω, q + χQn,i ), (B4)

and the equivalence of diagonal components �ε
(++)
n,i (ω, q) =

�ε
(−−)
n,i (ω, q) (in equilibrium).
Finally, the total dielectric function is given by the sum of

intranode term coinciding with (12) and the internode one

ε(ω, q) = εintra (ω, q) + εinter (ω, q), (B5)

εintra (ω, q) = 1 +
∑

χ = ±
n, i

�ε
(χχ )
n,i (ω, q), (B6)

εinter (ω, q) =
∑

χ = ±
n, i

�ε
(χχ )
n,i (ω, q + χQn,i ). (B7)
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Since the plasmon dispersion in the short-wavelength domain
is limited by the critical endpoints (see Sec. II C) and we are
interested only in ω/vn,i(eq), |q| � k(n,i)

F (eq), the resolvability
condition k(n,i)

F (eQn,i
) � |Qn,i| of the Weyl nodes leads to

�ε
(χχ )
n,i (ω, q + χQn,i ) ≈ �ε

(χχ )
n,i (0, |Qn,i|), (B8)

which is given predominantly by the interband transitions
(typical intraband excitation energy μn is incomparable with

v(eQn,i
)|Qn,i|). Therefore, the effect of internodal scattering re-

duces to additional quite small renormalization of background
dielectric constant

κbκ0 → κbκ0

[
1 + η1α1

3π
ln

	

Q1
+ η2α2

3π
ln

	

Q2

]
, (B9)

where 	 is the cutoff wave vector of linear dispersion.

[1] H. Weyl, Proc. Natl. Acad. Sci. USA 15, 323 (1929).
[2] N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys.

90, 015001 (2018).
[3] A. Burkov, Annu. Rev. Condens. Matter Phys. 9, 359 (2018).
[4] S. Das Sarma and E. H. Hwang, Phys. Rev. Lett. 102, 206412

(2009).
[5] R. Sachdeva, A. Thakur, G. Vignale, and A. Agarwal, Phys.

Rev. B 91, 205426 (2015).
[6] V. P. Silin, Zh. Exp. Teor. Fiz. 38, 1577 (1960) [Sov. Phys. JETP

11, 1136 (1960)].
[7] M. Lv and S.-C. Zhang, Int. J. Mod. Phys. B 27, 1350177

(2013).
[8] J. Hofmann and S. Das Sarma, Phys. Rev. B 91, 241108(R)

(2015).
[9] A. Thakur, R. Sachdeva, and A. Agarwal, J. Phys.: Condens.

Matter 29, 105701 (2017).
[10] J. Zhou, H.-R. Chang, and D. Xiao, Phys. Rev. B 91, 035114

(2015).
[11] J. C. W. Song and M. S. Rudner, Phys. Rev. B 96, 205443

(2017).
[12] G. M. Andolina, F. M. D. Pellegrino, F. H. L. Koppens, and M.

Polini, Phys. Rev. B 97, 125431 (2018).
[13] F. Adinehvand, Z. Faraei, T. Farajollahpour, and S. A. Jafari,

Phys. Rev. B 100, 195408 (2019).
[14] J. Hofmann and S. Das Sarma, Phys. Rev. B 93, 241402(R)

(2016).
[15] G. Chiarello, J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen,

S. Das Sarma, and A. Politano, Phys. Rev. B 99, 121401(R)
(2019).

[16] S. Lupi and A. Molle, Appl. Mat. Today 20, 100732 (2020).
[17] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P.

Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai,
T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[18] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang,
C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P. P. Shibayev,
M. L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M.
Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng et al., Sci.
Adv. 1, 1501092 (2015).

[19] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M.
Huang, H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil,
F. Chou, P. P. Shibayev, H. Lin, S. Jia et al., Science 349, 613
(2015).

[20] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R.
Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C.
Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B.
Wang, A. Bansil, H.-T. Jeng, T. Neupert et al., Nat. Phys. 11,
748 (2015).

[21] M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, and T.
Miyake, Phys. Rev. Lett. 114, 206401 (2015).

[22] J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D.
Xing, Nat. Commun. 7, 11136 (2016).

[23] J. Ruan, S.-K. Jian, D. Zhang, H. Yao, H. Zhang, S.-C. Zhang,
and D. Xing, Phys. Rev. Lett. 116, 226801 (2016).

[24] C.-C. Lee, S.-Y. Xu, S.-M. Huang, D. S. Sanchez, I. Belopolski,
G. Chang, G. Bian, N. Alidoust, H. Zheng, M. Neupane, B.
Wang, A. Bansil, M. Z. Hasan, and H. Lin, Phys. Rev. B 92,
235104 (2015).

[25] F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. dos Reis,
N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G.
Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H.
Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Nat.
Commun. 7, 11615 (2016).

[26] J. Hu, J. Y. Liu, D. Graf, S. M. A. Radmanesh, D. J. Adams,
A. Chuang, Y. Wang, I. Chiorescu, J. Wei, L. Spinu, and Z. Q.
Mao, Sci. Rep. 6, 18674 (2016).

[27] J. Klotz, S.-C. Wu, C. Shekhar, Y. Sun, M. Schmidt, M. Nicklas,
M. Baenitz, M. Uhlarz, J. Wosnitza, C. Felser, and B. Yan, Phys.
Rev. B 93, 121105(R) (2016).

[28] D. Grassano, O. Pulci, A. M. Conte, and F. Bechstedt, Sci. Rep.
8, 3534 (2018).

[29] K. Sadhukhan, A. Politano, and A. Agarwal, Phys. Rev. Lett.
124, 046803 (2020).

[30] C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, Phys. Rev.
B 95, 041104(R) (2017).

[31] L. E. Golub and E. L. Ivchenko, Phys. Rev. B 98, 075305
(2018).

[32] A. N. Afanasiev, A. A. Greshnov, and D. Svintsov, Phys. Rev.
B 99, 115202 (2019).

[33] In intrinsic WSMs of the HgTe family, the Fermi level is exactly
at the Weyl crossing point.

[34] According to electronic band theory, materials of the TaAs
family are not technically semimetals, since the Fermi level is
never at the Weyl crossing point of W1 and W2 node groups.

[35] D. Pines, Can. J. Phys. 34, 1379 (1956).
[36] G. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid (Cambridge University Press, Cambridge, UK, 2005).
[37] A. A. Abrikosov and S. D. Beneslavskii, J. Low Temp. Phys. 5,

141 (1971).
[38] A. Agarwal, M. Polini, G. Vignale, and M. E. Flatté, Phys. Rev.

B 90, 155409 (2014).
[39] L. A. Falkovsky, Low Temp. Phys. 37, 480 (2011).
[40] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
[41] R. C. Ashoori, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin,

and K. West, Phys. Rev. B 45, 3894 (1992).

205201-8

https://doi.org/10.1073/pnas.15.4.323
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1146/annurev-conmatphys-033117-054129
https://doi.org/10.1103/PhysRevLett.102.206412
https://doi.org/10.1103/PhysRevB.91.205426
http://www.jetp.ac.ru/cgi-bin/dn/e_011_05_1136.pdf
https://doi.org/10.1142/S0217979213501774
https://doi.org/10.1103/PhysRevB.91.241108
https://doi.org/10.1088/1361-648X/aa57bd
https://doi.org/10.1103/PhysRevB.91.035114
https://doi.org/10.1103/PhysRevB.96.205443
https://doi.org/10.1103/PhysRevB.97.125431
https://doi.org/10.1103/PhysRevB.100.195408
https://doi.org/10.1103/PhysRevB.93.241402
https://doi.org/10.1103/PhysRevB.99.121401
https://doi.org/10.1016/j.apmt.2020.100732
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3437
https://doi.org/10.1103/PhysRevLett.114.206401
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevB.92.235104
https://doi.org/10.1038/ncomms11615
https://doi.org/10.1038/srep18674
https://doi.org/10.1103/PhysRevB.93.121105
https://doi.org/10.1038/s41598-018-21465-z
https://doi.org/10.1103/PhysRevLett.124.046803
https://doi.org/10.1103/PhysRevB.95.041104
https://doi.org/10.1103/PhysRevB.98.075305
https://doi.org/10.1103/PhysRevB.99.115202
https://doi.org/10.1139/p56-154
https://doi.org/10.1007/BF00629569
https://doi.org/10.1103/PhysRevB.90.155409
https://doi.org/10.1063/1.3615524
https://doi.org/10.1103/PhysRevB.75.205418
https://doi.org/10.1103/PhysRevB.45.3894


ACOUSTIC PLASMONS IN TYPE-I WEYL SEMIMETALS PHYSICAL REVIEW B 103, 205201 (2021)

[42] N. Kumada, P. Roulleau, B. Roche, M. Hashisaka, H. Hibino,
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