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Generating function for tensor network diagrammatic summation
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The understanding of complex quantum many-body systems has been vastly boosted by tensor network (TN)
methods. Among others, excitation spectrum and long-range interacting systems can be studied using TNs,
where one however confronts the intricate summation over an extensive number of tensor diagrams. Here, we
introduce a set of generating functions, which encode the diagrammatic summations as leading-order series
expansion coefficients. Combined with automatic differentiation, the generating function allows us to solve the
problem of TN diagrammatic summation. We illustrate this scheme by computing variational excited states and
the dynamical structure factor of a quantum spin chain, and further investigating entanglement properties of
excited states. Extensions to infinite-size systems and higher dimension are outlined.
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I. INTRODUCTION

The study of quantum many-body systems using tensor
networks (TNs) has witnessed great success in the last three
decades [1–3]. Originally, TN methods were developed to ef-
ficiently capture ground-state properties of many-body lattice
models with short-range interaction [4–7]. Later on, numerous
progress has been made in various directions, including de-
termining low-energy excited states [8], exploring dynamical
and finite temperature properties [9], and finding valuable
applications in long-range interacting systems [10,11]. These
developments not only deepen our theoretical understanding
of many-body systems [12] but also bridge TN methods to
real experiments [13].

New developments also bring challenges, however. Both
quasiparticle excited states [5,14–16] and global observables
contain contributions with a sizable number of tensor dia-
grams, due to the fact that quasiparticle or local operators of
global observables can be on an arbitrary patch of the lattice.
Except in a few cases where efficient summation techniques
have been proposed [17–20], most notably, the matrix product
operator (MPO) representation of global observables [19],
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extensive and costly tensor diagram manipulation seems to
be unavoidable and becomes the bottleneck in modern TN
applications. Thus an efficient and universal approach for TN
diagrammatic summation is highly called for.

Another domain where diagrammatic summations fre-
quently appear is the perturbation theory of interacting
quantum fields [21,22]. There, for correlation functions con-
taining summations of Feynman diagrams, one can introduce
a source field and formally represent correlation functions
as derivatives of the perturbed partition function, known as
the generating functional method [21]. Given the close rela-
tion between the trio of TN methods, many-body systems,
and quantum field theory (QFT), and the pictorial similarity
of the tensor diagram and Feynman diagram, it is tempt-
ing to look for a generating function formalism in TNs,
where certain derivatives can compactly represent the sum-
mations of TNs. This is plausible, as partition functions of
classical statistical models are known to be representable
as TNs [23].

In this paper, inspired by the generating functional method
in QFT, we propose a set of generating functions for TNs,
which encode TN diagrammatic summations as leading-order
expansion coefficients. It then requires taking derivatives of
the generating functions, which can be accomplished with au-
tomatic differentiation (AD) [24–26]. To illustrate the scheme,
we investigate the low-lying spectrum of a quantum spin chain
with periodic uniform matrix product state (MPS) and the
excitation ansatz [14], and subsequently study entanglement
properties of excited states which, to our knowledge, were
rarely studied due to the overwhelmingly large number of
tensor diagrams involved.
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II. PERIODIC UNIFORM MPS AND EXCITATIONS

Let us consider a translationally invariant quantum spin
chain with N sites. For simplicity, we assume that the ground
state is unique and can be approximated by a periodic uniform
MPS with the form:

|Ψ(A) = A A A . . . A A

s1 s2 s3 . . . sN−1 sN

,
(1)

where the same rank-3 tensor A with dimension d × D × D
is repeated on every site, and the left boundary is contracted
with the right boundary. Here, si = 1, . . . , d represents the
basis of d-dimensional local Hilbert space, while D is the
virtual bond dimension, controlling the accuracy of the MPS
ansatz. We further denote the one-site translation operator as
T̂ with T̂ |s1, s2, . . . , sN 〉 = |sN , s1, . . . , sN−1〉, which satisfies
T̂ N = 1. By construction, |�(A)〉 is translationally invariant
with momentum k = 0, i.e., T̂ |�(A)〉 = |�(A)〉. For a given
model, the ground-state tensor A can be optimized using the
conjugate gradient method, with gradient obtained from AD
of the computation graph for energy [26,27].

With ground-state tensor at hand, excited states can be
constructed using the single mode approximation [28], which
correspond to one-particle excitation and work well for a
broad range of models [29–31]. In full generality, one can
perturb the ground state by replacing one site tensor A with
a new tensor B which is yet to be determined, and then build
up a Bloch state using the translation operator [5,14], taking
the form:

|Φk(B) =
N−1

j=0

e−ikj T̂ j
B A . . . A

s1 s2 . . . sN

, (2)

where tensor B contains variational parameters for the
excited state. |�k (B)〉 then is an eigenstate of the trans-
lation operator with eigenvalue eik , where momentum k =
2πm/N , m = 0, 1, . . . , N − 1. Due to momentum superpo-
sition, a summation of N different tensor diagrams appears
in Eq. (2), which will be our main focus. Since |�k (B)〉
depends on tensor B linearly, variationally optimizing B
boils down to a generalized eigenvalue problem: HμνBν =
ENμνBν , where E is the generalized eigenvalue and H (N)
is the effective Hamiltonian (norm) matrix in the varia-
tional space, with Hμν = ∂2

∂B
μ
∂Bν

〈�k (B)|Ĥ |�k (B)〉, Nμν =
∂2

∂B
μ
∂Bν

〈�k (B)|�k (B)〉. Here, B is the complex conjugate of B,
whose component after vectorization is denoted as Bν . Since
momentum is a good quantum number, we have suppressed
the dependence of H, N, E , and B on momentum k. Solv-
ing the generalized eigenvalue equation in each momentum
sector, one recovers the low-energy spectrum [32].

To construct H and N, one needs to sum over N different
tensor diagrams for each, with MPO representation of the
Hamiltonian Ĥ . These extensive tensor diagram summations
are the main obstacles of computing the excitation ansatz,
rendering manipulating excited states unfavorable. Below we
introduce our formalism based on simple yet powerful gen-
erating functions with the following strategy: To compute H
or N, we will first construct a suitable generating function

and then use AD to compute the derivative [26], which will
reproduce H or N and is much simpler than directly sum-
ming all diagrams. In this way, we will get rid of all the
tensor diagram summations, making it possible to investigate
detailed properties of excited states. Note that, unlike gener-
ating functionals in QFT, whose closed-form expressions are
rare, the TN generating functions and their derivatives can be
computed numerically exact with AD. We find that, depending
on the origins of diagrammatic summation, the generating
functions can be divided into two classes, one for TN state and
the other for TN operators, which we introduce separately.

III. GENERATING FUNCTION FOR STATE

As shown in Eq. (2), the extensive tensor diagrams only
differ by the location of tensor B and a position-dependent
phase factor. It is insightful to make the following observation:
For a given tensor B, the excitation ansatz equation (2) can be

expressed as |�k (B)〉 = ∂
∂λ

|G�(λ)〉|λ=0, with

|GΦ(λ) = . . .

s1 s2 s3 . . . sN−1 sN

,
(3)

where the tensor on the jth site in |G�(λ)〉 is given by Aj (λ) =
A + λe−ik( j−1)B, λ ∈ R, represented by blue squares. Here,
to simplify the notation, we have suppressed the dependence
of |G�(λ)〉 on tensor A, B and momentum k, keeping only λ

dependence explicitly. Expanding |G�(λ)〉 into a power series
of λ, we find that the ground (excited) state |�(A)〉 (|�k (B)〉)
is contained in the zeroth-order (first-order) term, both of
which lie in the tangent space of the MPS manifold, while
higher-order terms are outside of the tangent space due to
nonlinearity in tensor B [33]. Thus we can eliminate the tensor
diagram summation in |�k (B)〉 by computing the first-order
derivative of |G�(λ)〉. Interestingly, Eq. (3) bears a similarity
with the generating functional in QFT, where the parameter λ

plays the role of source field in the latter. Note that, although
|�(A)〉 and |�k (B)〉 are translationally invariant, the generat-
ing function |G�(λ)〉 is in general not invariant under one-site
translation, except at momentum k = 0.

With |G�(λ)〉, the norm square of the excited
state can be expressed as |||�〉||2 ≡ 〈�k (B)|�k (B)〉 =

∂2

∂λ′∂λ
〈G�(λ′)|G�(λ)〉|λ′=λ=0. Using translation invariance of

|�k (B)〉, we can lower the order of the derivative with the
following generating function for the excited-state norm:

G||Φ||(λ) =
. . .

B A A A A

, (4)

with which the norm square can be obtained as |||�〉||2 =
N ∂

∂λ
G||�||(λ)|λ=0. Here, the local tensor on site j of the ket

layer is Aj (λ), the same as appearing in Eq. (3).
Before proceeding further, let us discuss how to use gener-

ating functions in practice. Taking Eq. (4) as an example, we
first compute G||�||(λ = 0) by contracting the network in a
conventional manner with computational complexity O(D5),
followed by a backpropagation using AD, with which the
first-order derivative at λ = 0 is obtained automatically, hence
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the norm square [26]. Since the computational complexity of
AD grows with the order of the derivative, it is advisable to
utilize a generating function with which a low-order derivative
suffices.

With Eq. (4), it is straightforward to find the generating
function for the norm matrix N:

GN(λ, B) =
. . .

A A . . . A A

, (5)

where we simply omit tensor B in the bra layer of G||�||(λ).
From Eq. (5), the norm matrix N can be obtained as N =
N ∂

∂B GN(λ, B)|λ=1,B=0. Unlike the scalar G||�||(λ) where the
derivative is taken with respect to λ at λ = 0, GN(λ, B) is
a vector, and the derivative is taken with respect to B at
λ = 1, B = 0, which can also be computed with AD [34].

IV. GENERATING FUNCTION FOR OPERATOR

Another type of TN diagrammatic summation originates
from global observables. For example, when computing the
structure factor, one needs to take into account correlations of
the local operator at all distances. Moreover, when applying
TN methods to long-range interacting models which appear
naturally in Rydberg quantum gas and quantum chemistry
systems, efficient and faithful encoding of the long-range in-
teraction is one of the main issues [35]. Although approaches
based on the MPO and projected entangled-pair operator
(PEPO) have been proposed, the bond dimension can be quite
large, making them less appealing [36–39]. Here, we provide
generating functions for global observables, without involving
the MPO whenever possible.

Let us first consider the spin structure factor. Here, the
summations arise from the Fourier transform of the on-
site spin operator Ŝα

j (index α is in operator space): Ŝα
k =

1√
N

∑N
j=1 e−ik j Ŝα

j . A generating function can be introduced as
follows:

ĜSα(λ) = . . .

s1 s2 s3 sN−1 sN. . .

,
(6)

which is a tensor product of on-site operators, with Ŝα
j (λ) =

I + λe−ik j Ŝα
j , λ ∈ R, acting on the jth site. One can then

find Ŝα
k = 1√

N
d

dλ
ĜSα (λ)|λ=0. Taking two layers of Eq. (6) with

independent parameters λ, λ′, followed by a second-order
derivative with respect to λ and λ′, one arrives at the static
structure factor. Higher-order moments of the local operator
can be similarly obtained. Note that, with translation symme-
try, one can combine ĜSα (λ) and the local spin operator to
reduce the order of the derivative.

Interestingly, by removing the λ dependence in the first
operator and replacing the phase factor in the others with
the corresponding distance-dependent coefficient, Eq. (6) can
be used to efficiently encode long-range power-law decaying
interactions. Moreover, this approach can be easily gener-
alized to higher dimension, where the PEPO technique for
long-range interactions is imperfect [37]. A simple counting

suggests that the number of terms for expectation value of
long-range interaction is N2, while with generating function
equation (6), it is only of order N , where each term differs
by the position of the first operator. Exploiting translation
symmetry, the latter case can be further reduced to a single
term. Without translation symmetry, a combination of Eq. (6)
and the MPO technique is possible, which may lower the bond
dimension of the MPO.

While Eq. (6) relies on the fact that Ŝα is an on-site op-
erator, the scheme can be generalized to the case where the
local operator has support on more than one site, e.g., the
local Hamiltonian operator. Similar to Trotter gates, we in-
troduce the following generating function for the Hamiltonian
operator under periodic boundary condition Ĥ = ∑N

j=1 ĥ j, j+1

(assuming that N is even and nearest-neighbor interaction):

ĜH(λ) =
. . .

s1 s2 s3 sN−1 sN

. . .
, (7)

where the operator acting on the ( j, j + 1) bond is given
by ĥ j, j+1(λ) = I + λĥ j, j+1, λ ∈ R, represented by a red
rectangle. It is then straightforward to verify Ĥ =
d

dλ
ĜH (λ)|λ=0. For the effective Hamiltonian in the generalized

eigenvalue equation, one could take the generating function
for norm matrix equation (5) and insert a MPO representation
of the Hamiltonian, or the generating function equation (7)
with an additional derivative. The latter could be advantageous
if the MPO has a relatively large bond dimension [40].
Removing the boundary term, ĜH (λ) can also be applied
for systems with an open boundary. Furthermore, taking
two layers of ĜH (λ), one can efficiently compute the energy
variance.

A close comparison between generating functions for TN
state, operator, and partition function in QFT suggests that,
for excited state, it is constructed by introducing a source
field to the ground-state tensor, while for operators, the
identity operator is taken as the reference. This formalism
also reminds us of Lie algebra, whose generators can be
obtained by expanding group elements around the identity.
In that case, the generating function has an exponential form.
Indeed, generating functions for moments and cumulants have
been introduced in Ref. [41], which took exponential forms
with possible Trotter error and a finite difference method
was then employed. In contrast, our approach does not have
Trotter error, or finite difference error, and the generating
functions for the state and operator can be unified in a
simple way.

V. NUMERICAL RESULTS

A. Variational excited states and dynamical structure factor

We now present the numerical results using generating
functions. The model we use for a benchmark is the spin-1
Heisenberg chain with Hamiltonian Ĥ = J

∑N
j=1 S j · S j+1,

where S j = (Ŝx
j , Ŝy

j , Ŝz
j ) are spin-1 operators on site j and

J = 1 is taken as the energy unit. We use the periodic

205155-3



TU, WU, SCHUCH, KAWASHIMA, AND CHEN PHYSICAL REVIEW B 103, 205155 (2021)

FIG. 1. Spectral properties of the spin-1 Heisenberg chain.
(a) shows a comparison of the D = 24 variational MPS calculation
with ED for system size N = 16. Further comparison of DSF at
k = 3π/4, 7π/8, π is shown in (b)–(d). In (e), we show the low-
energy spectrum with size N = 60, obtained with D = 30 MPS,
where color represents the energy variance. Based on the spectrum
in (e), DSF is computed and shown in (f) with a clear peak around
(k, ω) = (π, 0.4).

uniform MPS to approximate the ground state and compute
the low-energy spectrum with the excitation ansatz, where
generating functions introduced above are used. For small
system size (N = 16), we compare the variational energy
spectrum with that obtained from exact diagonalization (ED).
As shown in Fig. 1(a), with bond dimension D = 24, the vari-
ational result agrees remarkably well with ED, with maximal
relative deviation 6 × 10−4 for high energy levels, and the
level degeneracy is also recovered to a high precision. More-
over, although the low-energy excitations around k = 0 are
two-magnon continuum [42,43], it is nevertheless reproduced
well by the one-particle excitation ansatz.

With excited states available, dynamical properties of
the system can be investigated in a straightforward
manner by constraining the total Hilbert space to subspace
spanned by variational ground and excited states [44]. One
of the key observables is the dynamical spin structure fac-
tor (DSF), which reveals properties of quasiparticles and is
accessible in neutron scattering experiments. The DSF is
defined as Sα (k, ω) = ∑

n |Mα
k |2δ(ω − Ek

n + E0), with Mα
k =

|〈�k (Bn)|Ŝα
k |�(A)〉| and E0 (Ek

n ) being the energy of ground
state |�(A)〉 (nth excited state |�k (Bn)〉 with momentum k).
The delta function is replaced by a normalized Gaussian with
broadening width σ = 0.05, and we further take Ŝz as the
operator in the DSF. The DSF can be efficiently computed
with generating function equations (3) and (6), and the results
for k = 3π/4, 7π/8, π are shown in Figs. 1(b)–1(d) with

system size N = 16. Comparing with ED, the line shapes are
reproduced well by excitation ansatz.

For larger system size (N = 60), we quantify the quality
of the variational result with the energy variance Var(E ) =
〈Ĥ2〉 − 〈Ĥ〉2, computed using generating functions [see
Eqs. (4) and (7)]. Here, the bond dimension is D = 30. As
shown in Fig. 1(e), the energy variance of the variational
ground state and one-magnon excited states remains small
(on the order of 1 × 10−3), considering the large system size,
while the variational multimagnon excitations appear to have
larger energy variances. The Haldane gap can be read off as
� = 0.4105, in agreement with Refs. [29,43]. Further evalu-
ating DSF using excited states [shown in Fig. 1(f)], we find
a strong peak appearing at (k, ω) = (π,�), where the first
excited state is located. This confirms that the elementary ex-
citation is magnon with momentum k = π , in agreement with
the variational spectrum where the first excited state is a triplet
at k = π . Vanishing DSF around k = 0 is also consistent with
excitations being two-magnon continuum in that region [43].

B. Rényi entropy of excited states

Apart from the variational energy spectrum and DSF, the
generating functions also allow us to further study properties
of excited states in great detail. Here, we use them to inves-
tigate entanglement properties of excited states, e.g., Rényi
entropy, which has received considerable interest in recent
studies [45–48]. It is well known that for one-dimensional
gapped systems, the entanglement entropy of the ground state
saturates with increasing subsystem size [49]. However, much
less is known for excited states. Traditionally, computing
Rényi entropy for excited states requires multiple summations
and thus is hard to achieve. Here, we explore this question
using generating functions without any summations.

For a normalized excited state |�〉 with bipartition of the
system L and L, the reduced density matrix (RDM) of sub-
system L (with size l) is given by ρL = TrL|�〉〈�|, and the
Rényi entropy is then defined as S(n) = 1

1−n lnTrLρn
L. Here, we

will focus on the n = 2 case, which can be computed by taking
two copies of |G�(λ)〉 and 〈G�(λ)|, each with an independent
parameter λ. Through AD of a single diagram, a fourth-order
derivative (one for each layer) at the zero point gives directly
the Rényi entropy.

The Rényi entropy with n = 2 for the spin-1 Heisenberg
model is shown in Fig. 2, using excited states in Fig. 1(e).
The saturation of ground-state Rényi entropy with increasing
l is evident in the inset of Fig. 2, as expected. However,
for excited states, we find that generically the Rényi entropy
does not saturate with increasing l . To further quantify the
effect of quasiparticles in excited states, we consider the ratio

between excited- and ground-state traces: F (2) = Trρ2
�

Trρ2
�

[45],
where ρ�(ρ� ) is the RDM of the excited (ground) state with
subsystem size l . Theoretical studies have shown that, under
the assumption of large momentum and energy gap, F (2) takes
a universal form [47]: F (2) = x2 + (1 − x)2, with x ≡ l/N .
Indeed, the k = π/2 result agrees with the theoretical pre-
diction, although our model is neither integrable nor free.
However, clear deviation is also observed for other momenta,
which could be ascribed to the small energy gap or momentum
and deserves further study.
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FIG. 2. Rényi entropy of excited states for the spin-1 Heisenberg
model. In the main panel, different symbols represent the quantity
F (2) of the first excited state at various k with subsystem size x ≡
l/N . The red line shows the theoretical prediction. Typical Rényi
entropy with subsystem size is shown in the inset.

VI. DISCUSSION

Above we have shown that the generating functions can
be used to compute the one-particle excitation spectrum of
a quantum spin chain with finite length. The results are en-
couraging, as the low-energy content is fully captured by
MPS excitations, finding direct applications to investigate
edge properties of two-dimensional (2D) systems [3]. The
generating functions can also be adapted for tangent-space
based excitation ansatz without translation symmetry [50].
There are several directions for further extension. To go be-
yond the one-particle case, one option would be modifying
the ground-state tensor A with A + ∑

i λiBi, similar to in-
troducing several source fields in the partition function of
QFT. For infinite-size systems, one can combine generating
functions with fixed-point methods, which will enable com-
puting the excitation spectrum of 2D systems with projected

entangled-pair states, including anyonic excitations in topo-
logical phases of matter [3].

VII. CONCLUSION AND OUTLOOK

In this paper, we have introduced a set of generating
functions for both TN states and TN operators, thereby
eliminating extensive diagrammatic summations in modern
applications of TN methods. Using generating functions, we
have shown that the excitation spectrum of a quantum spin
chain can be computed efficiently and accurately with the
periodic uniform MPS, and the procedure is formally the same
as ground-state search using TNs. Moreover, the generating
functions allow us to investigate the dynamical structure fac-
tor of the system and the entanglement property of excited
states in a convenient way, the latter of which is beyond the
capability of traditional methods. We envision the generating
functions introduced here will be powerful in the next gener-
ation of tensor network algorithms and applications.

Note added. Recently, we became aware of an independent
work by Ponsioen and Corboz [51].
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