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Presence versus absence of two-dimensional Fermi surface anomalies
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We theoretically consider Fermi surface anomalies manifesting in the temperature-dependent quasiparticle
properties of two-dimensional (2D) interacting electron systems, comparing and contrasting with the cor-
responding three-dimensional (3D) Fermi liquid situation. In particular, employing microscopic many-body
perturbative techniques, we obtain analytically the leading-order and the next-to-leading-order interaction
corrections to the renormalized effective mass for three distinct physical interaction models: electron-phonon,
electron-paramagnon, and electron-electron Coulomb coupling. We find that the 2D renormalized effective mass
does not develop any Fermi surface anomaly due to electron-phonon interaction, manifesting O(T 2) temperature
correction and thus remaining consistent with the Sommerfeld expansion of the noninteracting Fermi function,
in contrast to the corresponding 3D situation where the temperature correction to the renormalized effective mass
has the anomalous T 2 log T behavior. In contrast, both electron-paramagnon and electron-electron interactions
lead to the anomalous O(T ) corrections to the 2D effective mass renormalization in contrast to T 2 log T
behavior in the corresponding 3D interacting systems. We provide detailed analytical results, and comment
on the conditions under which a T 2 log T term could possibly arise in the 2D quasiparticle effective mass
from electron-phonon interactions. We also compare results for the temperature-dependent specific heat in the
interacting 2D and 3D Fermi systems, using the close connection between the effective mass and specific heat.

DOI: 10.1103/PhysRevB.103.205154

I. INTRODUCTION

Fermi liquid theory is an astonishingly successful theory
for interacting fermions asserting the perturbative preserva-
tion of the Fermi surface to all orders in the interaction,
consequently leading to the existence of long-lived quasiparti-
cles in the interacting system with one-to-one correspondence
to the noninteracting particle-hole excitations [1]. At low
temperatures, therefore, interacting fermions are expected to
manifest properties similar to a noninteracting Fermi gas ex-
cept for a renormalization of the system parameters such as
the effective mass, the Lande g-factor, the compressibility,
and so on. In particular, one may expect that the Sommer-
feld expansion remains applicable to the interacting system,
implying that the leading-order thermal correction to various
quasiparticle parameters should go as O(T 2) by virtue of the
existence of the Fermi surface. In particular, the interacting
effective mass and specific heat should go as O(T 0) + O(T 2)
and O(T ) + O(T 3), respectively, following the Sommerfeld
expansion results for the corresponding Fermi gas since
thermal averaging over the Fermi surface should produce
an O(T 2) next-to-the-leading-order thermal correction. This,
however, turns out not to be the case, and typically the next-
to-the leading order temperature corrections to quasiparticle
properties often manifest anomalous behavior not captured in
the Sommerfeld expansion. In the current work, we analyti-
cally study, using finite temperature many-body perturbation
theory, Fermi surface anomalies in two-dimensional (2D)
electron systems.

*These authors contributed equally to this work.

The first theoretical report of an anomalous temperature
dependence was by Eliashberg, who pointed out that the
electron effective mass in an interacting three-dimensional
(3D) electron-phonon metallic system behaves as m∗[1 +
O(T 2 log T )], where m∗ is the renormalized quasiparticle ef-
fective mass due to electron-phonon interaction [2]. The extra
factor of log T is unanticipated in the Sommerfeld expan-
sion and is an interaction-induced Fermi surface anomaly.
Later on, it was realized that very similar Fermi surface
anomalies involving a T 2 log T (T 3 log T ) correction in the
quasiparticle effective mass (specific heat) arise from 3D
electron-paramagnon interactions as well [3,4]. It therefore
appears that such log T anomalous higher-order Fermi surface
corrections arise in the quasiparticle effective mass renormal-
ization due to fermion-boson interactions. This is, however,
not the case as was found out later when similar next-to-
leading-order logarithmic temperature corrections were found
to arise from pure electron-electron interactions also without
involving any explicit bosonic terms in the Hamiltonian [5].
These anomalous temperature corrections are thus intrinsic
properties of the interacting Fermi surface which do not exist
in the corresponding noninteracting Fermi gas and are outside
the Sommerfeld expansion paradigm.

In the current work we focus on 2D Fermi surface anoma-
lies in interacting 2D electron system, comparing with the
corresponding 3D situation. There has been earlier work on
2D Fermi surface anomalies, focusing mostly on the effect
of electron-electron interactions and often within the short-
range interaction models [6–8]. There was an early finding
that the Drude electrical resistivity of a 2D electron system
interacting with random quenched charged impurities devel-
ops a linear-in-T correction instead of the naively expected
O(T 2) thermal correction [9,10]. This served as a warning
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FIG. 1. The diagrammatic contribution of interest to electron
self-energy � (a), (b) and the total Free energy (c). In (a), the
double straight lines stands for the exact propagator of electron, and
the wavy line is the bare phonon propagator. In (b)–(c), the simple
solid line is the bare electron propagator, and the wavy line corre-
sponds to the paramagnon-mediated interaction. We only include the
contribution from the spin-flipping process, and the up and down
arrows indicate the spin direction. Note that the anomalies show
up already in the leading-order diagrams, and making the electron
propagator self-consistent only adds higher-order terms which are
parametrically smaller than the leading-order anomalous results.

that 2D systems may be more singular than 3D systems man-
ifesting nonanalytic O(T ) corrections which are completely
outside the Sommerfeld expansion paradigm which only ob-
tains thermal corrections in powers of T 2 without allowing
any appearance of a linear-in-T term (or any odd powers of
temperature). This linear-in-T interaction correction was later
obtained for electron-electron interaction induced effective
mass renormalization as well, establishing such nonanalytic
linear in temperature corrections to be a generic feature of 2D
Fermi surface anomalies [6,11,12].

In the current work we further extend the story of 2D Fermi
surface anomalies by considering the temperature corrections
to the 2D electronic effective mass and specific heat renormal-
ization arising from electron-phonon, electron-paramagnon,
and electron-electron long-range Coulomb interactions all on
the equal footing of leading-order many body theoretic calcu-
lations in the respective dynamical interactions (see Fig. 1),
comparing our 2D finding with the corresponding 3D loga-
rithmic anomalies. One interesting and unexpected finding is
that the usual model of electron-phonon interaction does not
lead to any Fermi surface anomaly in 2D in sharp contrast
to the corresponding 3D situation with the log T correction
originally discovered by Eliashberg [2].

We provide here a brief summary of our results, with the
theoretical and calculational details given in the subsequent
sections. Our work is completely analytical in nature. In this
work, we discuss the Fermi surface anomalies for electron-
phonon interaction, electron-paramagnon interaction, and
electron-electron Coulomb interaction in two spatial dimen-
sions. The theory is a leading-order many body perturbation

theory (Fig. 1), where the interaction (“wavy line”) is the
dynamical phonon or paramagnon interaction or the dynam-
ically screened Coulomb interaction as the case may be.
For the electron-phonon interaction, we find that although
a nonanalytic T 2 log T behavior naturally occurs in the 3D
renormalized effective mass, the corresponding anomalous
behavior in 2D for both linear and quadratic electron disper-
sion only arises from the higher-order momentum dependence
of the electron-phonon coupling and is therefore a rather
small subleading effect at best. For the electron-paramagnon
interaction, we find that an anomalous linear-in-T term in the
specitic heat CV /T appears in two dimensions for both linear
and quadratic electron dispersion, in contrast to the T 2 log T
term in three dimensions. For the electron-electron Coulomb
interaction, we verify the anomalous T term in the 2D renor-
malized effective mass up to a similar O(T 2) order, in contrast
to the O(T 2 log T ) renormalization of the 3D effective mass.

The remaining of the paper is organized as the follows.
We discuss the 2D/3D Fermi surface anomalies for the
electron-phonon, electron-paramagnon, and electron-electron
Coulomb interactions in Sec. II, Sec. III, and Sec. IV, re-
spectively. We conclude the paper in Sec. V. An Appendix
provides details for some of the relevant integrals used in the
main text.

II. ELECTRON-PHONON SELF-ENERGY

In this section, we derive the finite temperature correction
to effective mass of electrons arising from electron-phonon
interactions. We consider the Debye model for the phonons,
where a phonon’s frequency is linearly proportional to its
momentum and is limited by a cutoff known as the Debye
frequency ωD. This cutoff can be represented in the dispersion
relation with a Heaviside step function �, so that the phonon
dispersion becomes Eph(q) = c|q| �(qD − |q|), where qD is
the Debye momentum. The second quantized Hamiltonian for
this system is then:

H =
∑
k,s

Ekc†
k,sck,s +

∑
q

Eph(q)a†
qaq

+
∑
k,q

g(q)c†
k,sck+q,sϕq, (1)

where ck,s and a†
q are creation operators for electrons and

phonons, respectively, and s = ↑↓ is for the spin index. In
particular, g(q) is the electron-phonon coupling function, and
ϕq is related to the atom displacements as

ϕq = √
Eph(q)(a†

q + a−q)/2 . (2)

In this section, we use an arbitrary dispersion Ek with the
constraint that it must be isotropic, and thus Ek does not
depend on the direction of k. We define kF such that Ek = μ

for |k| = kF , where μ is the chemical potential, and we define
vF as follows:

vF = ∂Ek

∂|k|
∣∣∣∣
|k|=kF

. (3)

Note that kF and vF might be temperature-dependent due
to their possible dependence on μ. At zero temperature
kF is the Fermi momentum and vF is the Fermi velocity.
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Throughout the entire work, we adopt the unit systems in
which h̄ = kB = 1.

In Ref. [13], the electron self-energy was calculated to
one-loop order using a self-consistent approximation for q-
independent g(q). In this section, we discuss a more general
case where g2(q) is a power function of |q|. Figure 1(a)
shows the Feynman diagram for the self-energy within the
self-consistent approximation, resulting in the following ex-
pression of the self-energy:

�(ωi ) =
∑
ω j

∫
dd k

(2π )d

−g2(q)T

iω j − Ek + μ − �(ω j )

× −c2|q|2
−(ωi − ω j )2 + c2|q|2 , (4)

where −iωi = (2i + 1)πT is the fermionic Matsubara fre-
quency. As was done in Ref. [13], we change the variables
of integration to |k| and |q|, and perform the integration over
|k|. To leading order in qD/kF , the only contribution to the
|k| integral is from the pole. The resulting expression is in-
dependent of the exact form of the dispersion Ek aside from
the dependence on vF . Thus our calculation is applicable to

systems with a linear or quadratic dispersion Ek. Then the
self-energy expression simplifies to the following form:

�(n)(ωi) =
∑
ω j

∫ qD

0
d|q| |q|n −4g2T

(2π )2vF
(−iπsgnImω j )

× −c2|q|2
−(ωi − ω j )2 + c2|q|2 . (5)

In Eq. (5), we chose g2(q) = g2|q|n for two dimensions
and g2(q) = 2g2|q|n−1 for three dimensions, where g is the
electron-phonon coupling constant, defining the interaction
strength. We make this choice because the 3D self-energy ex-
pression is equal to the 2D expression with an additional factor
of |q|/2. With this notation, the constant-g(q) self-energy ex-
pressions in Ref. [13] is given by �(0) in two dimsnions and
�(1) in three dimensions. Each value of n defines a slightly
different electron-phonon interaction model, and n = 0 for
two dimensions and n = 1 for three dimensions are the usual
physical electron-acoustic phonon interaction models in met-
als and semiconductors [14].

By evaluating the sum and performing an analytical contin-
uation on ω, Eq. (5) is simplified and the retarded self-energy
�

(n)
R (ω) is obtained as follows:

�
(n)
R (ω) = g2

2π2vF

∫ qD

0
d|q| |q|n(c|q|)

[
−π i coth

c|q|
2T

+ ψ (0)

(
1

2
+ i

c|q| − ω

2πT

)
− ψ (0)

(
1

2
+ i

−c|q| − ω

2πT

)]
, (6)

where ψ (n)(z) is the polygamma function. In most cases the relevant energy scales for ω will be much smaller than the
temperature of the system. Thus it is convenient to expand the result to first order in ω, yielding

�
(n)
R = ωg2

2π2vF

∫ qD

0
d|q| |q|n ic|q|

2πT

[
ψ (1)

(
1

2
− i

c|q|
2πT

)
− ψ (1)

(
1

2
+ i

c|q|
2πT

)]
+ O

(
ω2

T 2

)
. (7)

Evaluating the integral gives the following:

�
(n)
R = ω

g2

2π2vF

(
2πT

c

)n+1
(

(n + 1)!(in+1 + (−i)n+1)ψ (−n−1)

(
1

2

)

−
n+1∑
j=0

(n + 1)!

(n + 1 − j)!

(
ωD

2πT

)n+1− j[
i jψ (− j)

(
1

2
+ iωD

2πT

)
+ (−i) jψ (− j)

(
1

2
− iωD

2πT

)])
. (8)

Note that the system dimensionality (2D or 3D) enters only through the value of n defining the momentum dependence of the
electron-phonon interaction. This result can then be expanded for T � ωD for any value of n providing the low-temperature
regime of interest. We give expansions for the first few values of n to order (T/ωD)4 below:

�
(0)
R = ω

g2

2π2vF

(
ωD

c

)[
−2 + 2π2T 2

3ω2
D

+ 14π4T 4

45ω4
D

]

�
(1)
R = ω

g2

2π2vF

(
ω2

D

c2

)[
−1 + 2π2T 2

3ω2
D

log
T

ωD
+ π2T 2

ω2
D

(
1 + 2

3
log 4π − 8 log A

)
+ 7π4T 4

15ω4
D

]

�
(2)
R = ω

g2

2π2vF

(
ω3

D

c3

)[
−2

3
− 2π2T 2

3ω2
D

+ 14π4T 4

15ω4
D

]

�
(3)
R = ω

g2

2π2vF

(
ω4

D

c4

)[
−1

2
− π2T 2

3ω2
D

+ 14π4T 4

15ω4
D

log
T

ωD
+ π4T 4

ω4
D

(
7

30
+ 16

15
log 2 + 14

15
log π − 112ζ ′(−3)

)]
, (9)
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where A = 1.282 . . . is Glaisher’s constant, and ζ (z) is the
Riemann zeta function. Of particular interest are the log T
terms in Eq. (9), which appear in the expressions for �

(1)
R and

�
(3)
R . We also emphasize that odd powers of T do not enter

the low-temperature expression for the self-energy for any n,
and even powers do show up, consistent with the Sommerfeld
expansion, along with the anomalous log T terms for odd n
only. Next we will show that a logarithmic term appears in the
expansion of �

(n)
R if and only if n is odd, and if so, it will have

a prefactor of T n+1.
To this end, we note that the only terms in the expansion

of Eq. (8) that contain logarithms are the polygamma func-
tions, in particular, their asymptotic expansions. They can be
expanded as series for large arguments such as:

ψ (0)(z) = log z −
∞∑

k=1

Bk

kzk
, (10)

where Bk are the Bernoulli numbers with B1 = +1/2. The
asymptotic expansions of the other polygamma functions can
be obtained up to a constant by integrating this series. In
particular, they produce the following terms with logarithms:

ψ (− j)(z) =
j∑

k=0

(−1)kBk

k!( j − k)!
z j−k log z + (power series in z).

(11)

Let an
m be the coefficient of the T m log T term in the expansion

of �
(n)
R . Then from Eqs. (8) and (11), an

m can be obtained, and
after algebraic simplification it is found to be the following:

an
m = ω

g2

2π2vF

(
π i

c

)n+1

[1 + (−1)n+1]δm,n+1

×
n+1∑
k=0

(
n + 1

k

)
Bk (−2)k . (12)

Thus we find that for �
(n)
R , there will be no log T terms if n is

even. If n is odd, there will be exactly one logarithmic term at
order T n+1 log T . Using the expressions for the self-energy in
Eq. (9), we calculate the temperature-dependent corrections to
the effective mass m∗ according to the standard formula

m∗

m
= 1 − ∂�

(n)
R (ω)

∂ω

∣∣∣∣
ω→0

. (13)

For the usual model of metallic electron-acoustic phonon
interaction (with n = 0 in two dimensions and n = 1 in three
dimensions) where g2(|q|) is independent of |q| in Ref. [13],
we have

m∗
2D(T ) = m

[
1 + g2ωD

cvF

(
1

π2
− T 2

3ω2
D

)]
, (14)

m∗
3D(T ) = m

{
1 + g2ω2

D

c2vF

[
1

4π2
− 1

6

T 2

ω2
D

log
T

ωD

−
(

1

4
+ log 4π

6
− 2 log A

)
T 2

ω2
D

]}
. (15)

We note that in 2D the correction to the effective mass due
to the electron self-energy is of order T 2, whereas in 3D the

correction is of order T 2 log T . It means that the leading-order
correction to the effective mass in 2D coincides with the
Sommerfeld expansion, when the electron-phonon coupling
is independent of the momentum. If g2(|q|) contains a linear-
in-|q| term as g2(|q|) = g2

0 + g2
1|q|, then the 2D self-energy

will include contributions from �
(1)
R proportional to g2

1. As
a result, the total self-energy, as well as the effective mass,
will include a nonanalytic T 2 log T term, owing to the higher-
order momentum dependence of g2(|q|). On the other hand,
if g2(|q|) only contains terms with even powers of |q|, then
the 2D self energy will not possess log T terms, while the
3D self-energy does. We also mention an obvious feature of
Eq. (13) to (15), where the temperature-independent terms
inside the square brackets provide the usual phonon-induced
many-body electron effective mass renormalization at T = 0
[14].

We note that Eliashberg explicitly considered n = 1 for
the 3D electron-phonon interaction, finding the failure of the
Sommerfeld expansion in the next-to-the leading order which
is T 2 log T for the effective mass and hence T 3 log T for the
electronic specific heat in 3D metals [1,2]. The same interac-
tion model for 2D implies n = 0, and hence no Fermi surface
anomalies arising from electron-phonon coupling. Thus, the
existence or not of electron-phonon interaction induced Fermi
surface anomaly is specifically model dependent and as such
not a fundamental effect. It is more of a coincidence in three
dimensions, which does not appear in the standard model of
electron-phonon interaction in two dimensions. It is possible
to generate higher order momentum dependence in g(q) even
for n = 0 in two dimensions by taking into account screening
of the electron-phonon vertex by the electrons themselves,
but such an effect can only introduce logarithmic anomalies
at higher-order terms in the temperature expansion and are
therefore irrelevant, being extremely small in magnitude as
a high-order correction. Also, such a momentum expansion
of any screened electron-phonon coupling explicitly neces-
sitates the electronic Thomas-Fermi screening wave vector
to be much larger than the phonon Debye wave vector, a
condition which most certainly does not apply to 2D systems.
As such, we can safely conclude that phonon-induced Fermi
surface anomaly is absent (present) in two dimensions (thre
dimensions). We comment that since the above calculations
and arguments are independent of the form of the electron
dispersion, the conclusions about the phonon-induced Fermi
surface anomalies apply for both quadratic and linear (or any
other) isotropic electron energy dispersion.

We emphasize that the electron-phonon interaction we con-
sider above is the electrons interacting with bare phonons
through a prescribed electron-phonon interaction, as was orig-
inally considered by Eliashberg in three dimensions finding
that acoustic phonons by themselves, interacting with the
electrons, lead to Fermi surface anomalies in 3D metals. One
may wonder what happens if the electron-phonon interaction
is screened by the electrons themselves, which was not con-
sidered by Eliashberg since in 3D metals one thinks of the bare
acoustic phonons as already arising from electronic screening
of the ionic plasma modes within the standard jellium model
(and thus, any additional screening would be over-counting).
If we use static screening [15], e.g., Thomas-Fermi screening,
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which is appropriate since the typical phonon frequency is
much smaller than the typical electronic plasmon frequency,
then the electron-phonon coupling, g(q), simply becomes a
power series in |q| as the screening function is expanded in
a systematic momentum expansion. This is equivalent to our
power series form for g(q) considered above with g2(q) ∼ |q|n
for two dimensions and g2(q) ∼ |q|n−1 for three dimensions.
On the other hand, dynamical screening of electron-phonon
interaction is nothing other than the insertion of an infinite
series of electron-hole bubbles dressing the phonon propaga-
tor [similar to what we show in Fig. 1(b) for the paramagnon
propagator], in which case, the phonon coupling problem
becomes equivalent to the paramagnon problem (or the pure
electron-electron interaction problem) considered below in
Sec. III (or Sec. IV) of this article. There would still be a
difference between the 2D and the 3D cases in the sense that
Fermi surface anomalies would rise at the zeroth (high) order
in three dimensions (two dimensions) arising from dynamical
screening of phonons, and hence will be much weaker in
two dimensions than in three dimensions as the effect will
be suppressed by powers of ωD/ωp, where ωp is the rele-
vant electronic plasma frequency associated with the infinite
series of electron-hole bubbles. Since ωp 
 ωD usually, the
purely phonon-induced 2D Fermi surface anomalies would
be weaker than the corresponding 3D anomalies. The physics
of electron-hole bubble induced Fermi surface anomalies is
discussed below in Secs. III to IV in great detail.

III. ELECTRON-PARAMAGNON INTERACTION

In this section, we adopt a single-band model with
Hubbard-type interaction U whose Hamiltonian reads

H =
∑
k,s

Ekc†
s,kcs,k + U

∑
q,k,k′

c†
↓,k+qc†

↑,k′c↑,kc↓,k′+q. (16)

We consider a situation where electrons interact with para-
magnons through a contact model interaction as in Eq. (16).
This interaction should be thought of as an effective short-
range electron-paramagnon exchange interaction whose de-
tailed form is not important for our consideration of Fermi
surface anomalies. We set the electron dispersion Ek to be
given by Eq. (17) for linear or quadratic dispersion as indi-
cated.

Ek =
{
vF |k| for linear dispersion,
k2

2m for quadratic dispersion.
(17)

We consider both linear and quadratic dispersions in order to
establish the generality of the results.

To derive the self-energy and the specific heat arising from
the paramagnon interaction, it is convenient to use the path
integral formalism, in which the Hamiltonian Eq. (16) gives
us the following action:

S =
∑

k,s=↑↓
G−1(k)c†

k,sck,s +
∑

q

Uσ−
q σ+

q . (18)

Here k = (ωn, k) with −iωn = (2n + 1)π/β the fermionic
Matsubara frequency, and q = (νm, q) with −iνm = m2π/β

the bosonic Matsubara fraquency, and β = 1/T . G in Eq. (18)

is the bare electron propagator

G(k) = 1

ωn − Ek + μ
, (19)

with the chemical potential μ, and

σ−
q =

∑
k

c†
↓,k+qc↑,k (20)

stands for the paramagnon (spin-flipping) field.

A. Paramagnon contribution to effective mass

In this subsection, we consider the quadratic dispersion
in Eq. (17) and review the paramagnon contribution to the
effective mass in two and three dimensions. To solve for
the effective mass correction, we should first derive the self-
energy of electrons. Although the Hubbard-type interaction in
Eq. (18) has various types of contributions to the electron self-
energy, we focus on the spin-flipping contribution as shown in
Fig. 1(b), which is the transverse-spin-fluctuation contribution
introduced in Ref. [16] for 3D calculations. The underlying
reason for making such a choice is two-fold: (i) we believe that
the main correction due to electron-paramagnon scattering is
included in Fig. 1(b), up to some O(1) factor; (ii) we are con-
cerned only with the scaling behavior of the correction with
respect to T instead of making precise quantitative predictions
which would require an accurate knowledge of U anyway.

Since we consider the paramagnetic phase where the bare
electron Green’s function Eq. (19) is spin-independent, the
self-energy given by Fig. 1(b) should also be spin-independent

�↑ = �↓ ≡ �. (21)

Summing up the diagrams in Fig. 1(b) and picking out the
infinite-order collective effect [16], we arrive at the following
expression of the self-energy:

�(k) = −T
∑

q

G(k − q)D(q), (22)

where D(q) is the renormalized paramagnon propagator
which will be addressed below. [We note as an aside that
Eq. (22) for the electron-paramagnon self-energy is formally
the same as the corresponding expression given in Eq. (5)
for the electron-phonon self-energy with D in Eq. (22) being
replaced by the corresponding phonon propagator in Eq. (5)].
One can analytically continue the self-energy to real fre-
quency and obtain the effective mass correction

�m

m
= −∂ξ Re�R(kξ )|

ξ=μ

= −
∫ ∞

−∞

dν

2T cosh2(ν/2T )

∫
dd q

(2π )d

× δ(ν − vF |q| cos θ − Eq)ReDR(q), (23)

where kξ = (ξ, kξ ), |kξ | = √
2mξ , d is the spatial dimension,

and θ is the azimuthal angle of q.
To use Eq. (23), the key step is to derive the retarded DR(q),

which is the corresponding reducible interaction function and
is given by

DR(q) = U

1 − U�0
R(q)

, (24)
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where �0
R is the noninteracting retarded electron spin-flip

propagator [17]. We note that �0
R is different by nature from

the conventional spin-preserving polarization operator, but as
the electron propagator is spin-independent in the paramag-
netic phase, the two diagrams have the same mathematical
expressions. This allows us to express �0

R by the Lindhard
function. Since the temperature correction to �0

R is of the
order O(T 2) or higher for low q, we can neglect it and use
the zero-temperature Lindhard expression [18] for �0(q) in
the limit ν̄ = ν/(vF kF ) � 1 and q̄ = |q|/kF � 1. For the 3D
case [18], we have

Re�0
R(q)(3D) = ρ0

(
1 − q̄2

12
− ν̄2

q̄2

)
,

Im�0
R(q)(3D) = πν̄ρ0

2q̄
�(q̄ − |ν̄|), (25)

with �(x) being the Heaviside function and ρ0 being the
density of states at the Fermi surface. For the 2D case [19],
we have

Re�0
R(q)(2D) = ρ0,

Im�0
R(q)(2D) = ν̄ρ0�(q̄ − |ν̄|)√

q̄2 − ν̄2
. (26)

We set the cutoff of the momentum transfer to be �kF and
consider the near-ferromagnetic situation (but still on the para-
magnetic side) where α = 1 − κ = 1 − Uρ0 � 1. We can
now calculate the effective mass correction in two and three
dimensions.

1. 3D Case

Let us first consider the d = 3 case. After taking the inte-
gration over the solid angle in Eq. (23), the 3D effective mass
correction becomes

�m

m
= −ρF

4

∫
dν

2T cosh2
(

ν
2T

) ∫ �

|ν̄|
dq̄q̄ReDR(q), (27)

with

ReDR(q) =
U

(
α + q̄2κ

12 + ν̄2κ
q̄2

)
q̄2

(
α + q̄2κ

12 + ν̄2κ
q̄2

)2
q̄2 + (

πν̄κ
2

)2
. (28)

At low temperature T � TF = μ, expanding the result of the
q̄-integration in the limit ν � α � 1, we obtain up to O(ν̄2)∫ �

|ν̄|
dq̄q̄ReDR(q)

= 6

ρ0
log

(
�2κ

12α

)
+ κ2(π2κ + 4α)

4ρ0α3
ν̄2 log |ν̄|. (29)

This gives the effective mass correction as

�m

m
= −3 log

(
�2κ

12α

)

− π2κ2(π2κ + 4α)

24α3

(
T

TF

)2

log

(
T

TF

)
, (30)

coinciding with the T 2 log T anomalous behavior presented in
Ref. [16].

2. 2D Case

Now we turn to the d = 2 case. The integration over solid
angle in Eq. (23) gives

�m

m
= −ρ0

π

∫
dν

2T cosh2
(

ν
2T

) ∫ �

|ν̄|

dq̄q̄ReDR(q)

2
√

q̄2 − ν̄2
, (31)

with

ReDR(q) = Uα(q̄2 − ν̄2)

α2(q̄2 − ν̄2) + (κν̄)2
. (32)

The integration over q̄ up to O(ν̄2) gives∫ �

|ν̄|

dq̄q̄ReDR(q)

2
√

q̄2 − ν̄2
= κ�

2αρ0
− πκ2

4ρ0α2
|ν̄|. (33)

The corresponding effective mass correction is

�m

m
= − κ�

2πα
+ κ2 log 2

2α2

T

TF
. (34)

According to Eqs. (30) and (34), we have T 2 log T term
and T term in the 3D and 2D effective mass as the next to
the leading order temperature correction, respectively, both
of which deviate from the Sommerfeld-like expansion (even
powers of T ) for the noninteracting Fermi gas. On first glance,
it might be counterintuitive that a linear-in-T term arises in
two dimensions because the integration with respect to q̄ in
Eqs. (27) and (31) is even under ν → −ν, which seemingly
leads to even powers of ν after the integration and eventually
to even powers of T in the effective mass correction. However,
the above logic only holds when the q̄-integration gives an
analytic function. In fact, the lower limit of the q̄-integration
is related to the singularity of the electron propagator, which
coincides with the branch point of the paramagnon propa-
gator, resulting in a nonanalytic function that contain terms
beyond the Sommerfeld-like expansion. This is the reason that
such linear-in-T 2D corrections are often called “nonanalytic”
as they cannot arise from any thermal expansion of analytic
functions which are guaranteed to produce even powers of T
in the expansion. Thus, the 2D Fermi surface anomaly arising
from electron-paramagnon interaction is much stronger than
that in three dimensions, being linear in T compared with the
T 2 log T anomaly in three dimensions. This is because the 2D
Lindhard function is “more singular” than the 3D Lindhard
function [9,10].

B. Paramagnon contribution to specific heat

The effective mass corrections in Eqs. (30) and (34) im-
ply that the specific heat CV /T should have T 2 log T and
T corrections for three and two dimensions, respectively. In
this subsection, we first verify this statement for quadratic
dispersion and then show that the same Fermi surface anoma-
lous corrections also occur for linear dispersion, defined by
Eq. (17).

Similarly, we only include the spin-flipping contribution
shown in Fig. 1(b). Instead of the self-energy, we focus on
the free energy whose diagrams are given by connecting the
two ends of Fig. 1(b) by an extra fermion propagator [see
Fig. 1(c)]. Such an operation would change the symmetry
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factor of each diagram in the summation, resulting in the
following expression for the free energy

�� = T
∑

q

log
[
1 − U�0

R(q)
]
, (35)

where �0
R for quadratic dispersion has been shown in

Eqs. (25) and (26). By analytic continuation, the free-energy
shift can be evaluated by

�� =
∑

q

1

π

∫ ∞

−∞

−dν

eβν − 1
Im

{
log

[
1 − U�0

R(q)
]}

, (36)

and the correction to specific heat is just

�CV

T
= −∂2��

∂T 2
. (37)

For compact representations of the results, we in the follow-
ing will focus on �CV /C0

V instead of �CV /T , where C0
V =

2π2T ρ0/3 is the specific heat of the noninteracting electron
gas.

1. 3D Case

In this part, we discuss the d = 3 case, starting with the
quadratic dispersion and then addressing the linear disper-
sion. For quadratic dispersion, we can substitute Eq. (25) into
Eq. (36) and obtain

�� = k3
F

2π3

∫
dν

eβν − 1

∫ �

|ν̄|
dq̄q̄2I (ν̄, q̄), (38)

where the integration limit is obtained from the condition of
nonzero Im �0

R. We use tan−1 x ≈ x − x3/3 to get

I (ν̄, q̄) ≈ κπν̄

2q̄(α + q̄2κ/12)
− κ2π (12α + π2κ )ν̄3

24q̄3α3
. (39)

Straightforward integration gives �� up to O(T 4) as

�� = mkF

2
ln

(
�2κ

12α

)
T 2

+ κ2π2(12α + π2κ )m3

360k3
F

T 4 log

(
T

TF

)
, (40)

resulting in the correction to the specific heat as

�CV

C0
V

= − 3 log

(
�2κ

12α

)

− κ2π2(12α + π2κ )

40α3

(
T

TF

)2

log

(
T

TF

)
. (41)

Compared with Eq. (30), the specific heat correction for
quadratic dispersion also has T 2 log T term up to a O(1)
coefficient change, coinciding with Ref. [16]. Both effective

mass and specific heat thus have the same 3D T 2 log T anoma-
lous temperature dependence as expected since specific heat
should be roughly proportional to the effective mass. For the
linear dispersion, the real and imaginary parts of the polariza-
tion operator have similar forms to the quadratic dispersion
case (see Appendix).

By performing exactly the same steps, we obtain the
expression of the specific heat correction in the 3D linear
dispersion case as

�CV

C0
V

= −9

2
log

(
�2κ

12α

)

− κ2π2(12α + π2κ )

10α3

(
T

TF

)2

log

(
T

TF

)
, (42)

which also contains the nonanalytic T 2 log T term similar to
the 3D quadratic dispersion case.

We mention that the Fermi surface for a 3D linear disper-
sion typically has a nonzero Chern number [20]. As a result,
the Fourier transformation of c†

k in Eq. (16) is not localized
in the real space, and neither is the Hubbard-type interaction
in Eq. (16). Nevertheless, we are still allowed to use Eq. (16)
since the interaction can be viewed as a low-energy channel of
a localized interaction that involves high-energy modes. Ne-
glect of topology in considering low-temperature anomalous
renormalization correction is therefore justified.

2. 2D Case

In this part, we discuss the renormalized specific heat for
the d = 2 case, again starting with the quadratic dispersion
and then addressing the linear dispersion. For quadratic dis-
persion, we can combine Eq. (26) with Eq. (36) to derive

�� = k2
F

4π2

∫
dνν̄2

eβν − 1

∫ X

1
dx tan−1

(
κ

α
√

x − 1

)

= mκ�

12α
T 2 − m2κ2ζ (3)

4πα2k2
F

T 3 + O(T 4), (43)

where x = q̄2/ν̄2 and the integration limit X = �2/ν̄2. Then,
the corresponding specific heat correction is

�CV

C0
V

= − κ�

2πα
+ 9ζ (3)κ2

2π2α2

T

TF
. (44)

Similar to Eq. (34), the nonanalytic liner-in-T term also
appears in the 2D specific heat correction for quadratic dis-
persion, as expected.

In the 2D linear dispersion system, the real and imaginary
parts of the polarization of the operator are exactly the same as
in 2D quadratic dispersion case (see Appendix). As a conse-
quence, the specific heat correction in this case is simply Eq.
(34), which has a nonanalytic T term. Thus, both effective
mass and specific heat have nonanalytic O(T ) corrections in
2D, independent of electron energy dispersion, arising from
paramagnon renormalization in contrast to the 3D situation of
O(T 2 log T ) anomalies.

We note that we consider only bubble diagrams (see Fig. 1)
in our theory because we are taking into account scattering
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between opposite spin electrons as our system is paramag-
netic. For a spin-polarized (or spinless) system [21], one must
consider the ladder diagrams, but all that does is to simply
modify the nonuniversal numerical coefficient in front of the
nonanalytic correction. We also note that we use the usual
Stoner-Hubbard-Mott model assuming the paramagnon cou-
pling strength to be a constant on-site interaction, defined
by U , but considering a more complicated interaction term
does not change the leading-order Fermi surface anomalies
obtained in the current work — such a complicated momen-
tum dependence in the paramagnon coupling only leads to
higher-order corrections which are parametrically smaller.

IV. ELECTRON-ELECTRON COULOMB INTERACTIONS

In this section, we briefly discuss the contribution to the ef-
fective mass from electron-electron Coulomb interactions. In
Ref. [11], the electron self-energy �R(ω, T ) was calculated at
ω = 0 within the random phase approximation, which is exact
in the high density and low-temperature limits T/TF �rs�1,
where rs is the dimensionless Coulomb coupling parameter.
This was used to show that in 2D, the temperature-dependent
correction to effective mass is linear in T , and in 3D it
is of order T 2 log T . The 2D self-energy calculation was
revisited in Ref. [22], where �R(ω, T ) was calculated for
arbitrary relative energy and temperature scales. The corre-
sponding Feynman diagrams for the self-energy are the same
as Fig. 1(a), except that here the double solid black line repre-
sents the bare electron propagator and the wavy line stands for
the dynamically screened Coulomb interaction. Specifically,
the following expression for the one-loop zero-temperature

polarization bubble �0 is used [19]:

�0(q, ω) = − 2i
∫

d2kdε

(2π )3
G0(k, ε)G0(k + q, ε + ω)

= mi

π |q|

(√
2mμ −

(
mω

|q| + |q|
2

+ i0

)2

−
√

2mμ −
(

mω

|q| − |q|
2

+ i0

)2

+ i|q|
)

, (45)

where G0 is the electron Green’s function, and the i0 term
determines how to take the branch cut of the square root. This
expression is for a quadratic electron dispersion, as defined
in Eq. (17). By summing the Dyson series, the dynamically
screened interaction potential VR(q, ω) is obtained:

VR(q, ω) = [V0(q)−1 − �0(q, ω)]−1, (46)

where V0(q) = 2πe2/|q| is the bare Coulomb interaction po-
tential. Then the self-energy is calculated from the Feynman
diagram shown in Fig. 1(a)

�(k, ε) = −T
∑

ω

∫
d2q

(2π )2

VR(q, ω)

ε − ω − Ek−q
. (47)

In Ref. [22], the sum over Matsubara frequencies was eval-
uated via contour integration, which required calculating the
real and imaginary parts separately, and introduced tanh ε/T
terms. In order to evaluate the q integral, the integrand was
expanded to second order in rs, and is also expanded in the
quantity ω/(EF rs). The resulting expression for the real part
of the on-shell self-energy is

Re�R(ε) = ε
rs√
2π

log
2
√

2

rs
− 1

8

T 2

EF
[Li2(−e−ε/T ) − Li2(−eε/T )] + 5T 2ε

48
√

2πrsE2
F

(
π2 + ε2

T 2

)
log

rsEF

T

− 32 − 10γ − 25 log 2

96
√

2π

(
π2 + ε2

T 2

)
T 2ε

rsE2
F

− 5T 3

8
√

2πrsE2
F

[∂3Li3(−e−ε/T ) − ∂3Li3(−eε/T )], (48)

where γ = 0.577 . . . is Euler’s constant, Lis(z) is the polylogarithm function, and EF is the Fermi energy, equal to μ at T = 0.
Using Eq. (13) and the self-energy expression from Ref. [22] [Eq. (48)], we calculate the 2D effective mass to be

m∗
2D(T ) = m

[
1 − rs√

2π
log

2
√

2

rs
+ log 2

4

T

EF
+ 5π

48
√

2rs

T 2

E2
F

log
T

EF rs

+ T 2

E2
F rs

(
π (32 − 10γ − 25 log 2)

96
√

2
+ 5(6ζ ′(2) + π2 log 2)

48
√

2π

)]
. (49)

Thus, there is a linear-in-T correction to the effective mass
in two dimensions which is independent of rs, verifying the
results first obtained in Ref. [11]. This is in contrast to the
corresponding 3D case where electron-electron interactions
lead to an O(T 2 log T ) correction to the interacting effec-
tive mass and specific heat [5,11]. It may be useful to point
out that the Hartree-Fock approximation for the electron
self-energy, where the electron-electron interaction in Fig. 1
is taken as just the bare Coulomb interaction without any

dynamical screening, leads to a singular result for the effective
mass renormalization and the specific heat. In particular, the
Hartree-Fock renormalized 2D and 3D effective mass van-
ishes logarithmically in the leading order as −1/(log T ) as T
goes to zero whereas the corresponding renormalized specific
heat manifests an anomalous T/ log T behavior already in the
leading order. Such a leading-order singular behavior of effec-
tive mass and specific heat is inconsistent with experimental
observations, and it is well-established that the Hartree-Fock
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approximation fails for Coulomb interaction in the calculation
of the renormalized effective mass and specific heat.

We note that one can ask whether electron-plasmon inter-
actions would lead to Fermi surface anomalies similar to what
we find for electron-paramagnon or dynamically screened
electron-phonon interactions since plasmons are also bosons.
The answer is affirmative since the plasmons are the direct
consequence of the dynamical screening of the long-range
electron-electron interactions, and the bubble diagrams con-
sidered in Fig. 1 directly produce the plasmon mode for
Coulomb coupling. Thus our results of Sec. IV may be con-
sidered to be the theory for Fermi surface anomalies arising
from electron-plasmon interactions.

V. CONCLUSION

We theoretically considered renormalization corrections
to the finite-temperature effective mass (and specific heat)
arising from electron-phonon, electron-paramagnon, and
electron-electron interactions in two dimensions, comparing
the results to the corresponding 3D situation. The emphasis is
on finding and understanding anomalous terms in the temper-
ature expansion beyond the Sommerfeld expression of the free
Fermi gas. We find that the standard metallic electron-phonon
interaction does not produce any 2D Fermi surface anomalies,
leading only to the usual O(T 2) and higher even powers of
temperature corrections to the renormalized 2D effective mass
in contrast to the 3D case where the next-to-the-leading-order
temperature correction goes as O(T 2 log T ). We show how
2D O(T 2 log T ) anomalies may arise from electron-phonon
coupling through suitable modifications of the momentum
dependence of the interaction strength, concluding that such
anomalous temperature dependence induced by electron-
phonon interaction is not an intrinsic Fermi surface anomaly,
but is an accidental behavior arising from the details of the
functional form of the electron-phonon coupling. By contrast,
the Fermi surface anomalies induced by electron-paramagnon
and electron-electron interactions are intrinsic as they arise
from the intrinsic behavior of the electron propagators and
do not depend on the electron energy dispersion or fine-
tuned functional forms of the interaction itself. In particular,
this intrinsic anomaly in 2D introduces a nonanalytic O(T )
next-to-the-leading-order correction to the 2D effective mass
and specific heat in sharp contrast to the 3D situation where
the anomaly has a O(T 2 log T ) correction. The linear-in-T
temperature correction is particularly anomalous since Som-
merfeld expansion disallows any odd power of temperature
appearing in the thermal averaging over the Fermi surface.

We note that the absence of Fermi surface anomalies as-
sociated with 2D electron-phonon interactions (unless the
interaction is fine-tuned unphysically) demonstrates that such
anomalous temperature dependence cannot be construed to be
a simple manifestation of the singular effect of any generic
fermion-boson interactions, and really arises from the nonan-
alytic structures in the electronic response functions. A fun-
damental conceptual difference between the electron-phonon
and electron-paramagnon (or electron-electron) anomalies
is that the expansion parameter for the electron-phonon
interaction is T/TD, with TD being the phonon Debye temper-
ature, whereas it is T/TF , with TF being the electron Fermi

temperature, for the electron-paramagnon and electron-
electron interactions. This clearly shows that the phonon-
induced log T term in three dimensions obtained in Ref. [2] is
accidental, and is not really a Fermi surface anomaly. There-
fore, the absence of any phonon-induced 2D anomalous terms
is reasonable and unsurprising.

An important lesson is that the Fermi liquid theory with
its one to one correspondence between the noninteracting
and the interacting system applies only to the leading order,
and the next-to-the-leading-order corrections may manifest
anomalies not allowed in a noninteracting system as a mat-
ter of principle, and such anomalous corrections may very
well differ qualitatively and unexpectedly between two and
three dimensions, as exemplified by the presence/absence
of the O(T 2 log T ) anomaly in three/two dimensions aris-
ing from electron-phonon interactions, and the presence of
nonanalytic O(T ) correction in two dimensions in contrast
to the O(T 2 log T ) correction in three dimensions arising
from electron-paramagnon and electron-electron interactions.
In some sense, the 2D Fermi liquid is more fragile than the 3D
Fermi liquid as reflected in the O(T ) Fermi surface anomalies
induced by paramagnon-electron and electron-electron inter-
actions even if the corresponding electron-phonon interaction
induced anomaly is absent in two dimensions.
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APPENDIX: DETAILS ON �0
R IN EQ. (35)

In this Appendix, we present an approach to quickly derive
the leading terms in �0

R in Eq. (35) in the limit q̄ � 1 and
ν̄ � 1. In particular, we demonstrate the similarity between
the expressions of �0

R for linear and quadratic dispersion.
We first start with the expression in complex frequency z

�0(q, z) =
∫

dnk

(2π )n

�(μ−Ek+q/2) − �(μ−Ek−q/2)

z − Ek+q/2 + Ek−q/2
. (A1)

We use the expansion

�(μ − E − �) − �(μ − E )

≈ −�δ(μ − E ) − �2

2
δ′(μ − E ) − �3

6
δ′′(μ − E ). (A2)

We only collect terms up to q̄2 and (z̄/q̄)2 where z̄ =
z/(vF kF ), thus we can rewrite Eq. (A1) as

�0(q, z) =
[

I1(E ) − ∂I2(E )

∂E
+ ∂2I3(E )

∂E2

]∣∣∣∣
E=μ

, (A3)

where

I1(Ek) = ρ(Ek)

(
1 − z

�n

∫
d�

z − A1(kF )|q| cos θ

)
,

I2(Ek) = ρ(Ek)|q|2
4�n

∫
d�A2(|k|, θ ),

I3(Ek) = ρ(Ek)|q|2
24�n

∫
d�A1(|k|)2 cos2 θ. (A4)
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Here, d� and �n are the solid angle increment and full solid
angle in the n-dimensional space; A1 and A2 are given by
expanding Ek+q − Ek

Ek+q − Ek ≈ A1(|k|) cos θ |q| + A2(|k|, θ )|q|2, (A5)

where A1 = |k|/m and A2 = 1/(2m) for the quadratic dis-
persion case, and A1 = vF and A2 = vF sin2 θ/(2|k|) for the
linear dispersion case.

1. Three-dimensional space

In the 3D space, (1/�3)
∫

d� = (1/2)
∫

d cos θ .

a. Quadratic dispersion

We first perform integration with the θ and obtain

I1(Ek) = ρ(Ek)

[
1 − z̄

2q̄
ln

(
z̄ + q̄

z̄ − q̄

)]
,

I2(Ek) = μρ(Ek)

4
q̄2,

I3(Ek) = μEkρ(Ek)

18
q̄2. (A6)

As a result,

�0(q, z) = ρ0

[
1 − z̄

2q̄
ln

(
z̄ + q̄

z̄ − q̄

)
− q̄2

12

]
. (A7)

By analytic continuation from imaginary to real frequency
z → ν + iδ, we obtain

Re �0
R(q, ν) = ρ0

[
1 − ν̄2

q̄2
− q̄2

12

]
,

Im �0
R(q, ν) = πρ0ν̄

2q̄
�(q̄ − |ν̄|). (A8)

These expressions are identical to the expansion of the exact
Lindhard function obtained from quadratic energy dispersion.

b. Linear dispersion

For the linear dispersion I1 is identical to the quadratic one,
the other two terms are

I2(Ek) = μ2ρ(Ek)

12Ek
q̄2,

I3(Ek) = μ2ρ(Ek)

72
q̄2. (A9)

The imaginary-frequency polarization operator is given by

�0(q, z) = ρ0

[
1 − z̄

2q̄
ln

(
z̄ + q̄

z̄ − q̄

)
− q̄2

18

]
. (A10)

The real and imaginary parts for when z → ν + iδ are

Re �0
R(q, ν) = ρ0

[
1 − ν̄2

q̄2
− q̄2

18

]
,

Im �0
R(q, ν) = πρ0ν̄

2q̄
�(q̄ − |ν̄|). (A11)

The expression for the linear dispersion case is similar to the
quadratic one except for the numerical factor of q̄2 due to the
difference in the dispersion curvature.

2. Two-dimensional space

In the 2D space, (1/�2)
∫

d� = (2π )−1
∫

dθ . For both the
quadratic and linear dispersion cases

I1(Ek) = ρ(Ek)

[
1 − z̄

F (
√

z̄2 − q̄2, z̄)

]
, (A12)

where F (x, y) = | Re x|sgn(Re y) + i| Im x|sgn(Im y). For the
linear dispersion, I2 ∝ ρ(E ) and I3 ∝ Eρ(E ) but ρ(E ) =
const., so the contributions of I2 and I3 are canceled by the
first and second derivatives, respectively [see Eq. (A3)]. For
the linear dispersion, I2 ∝ ρ(E )/E , I3 ∝ ρ(E ) and ρ(E ) ∝ E ,
so the terms I2 and I3 do not contribute either. As a result, for
both cases of dispersion

�0(q, z) = ρ0

[
1 − z̄

F (
√

z̄2 − q̄2, z̄)
+ O(q̄3)

]
. (A13)

By analytic continuation, we obtain the retarded functions

Re �0
R(q, ν) = ρ0,

Im �0
R(q, ν) = ρ0ν̄√

q̄2 − ν̄2
�(q̄ − |ν̄|). (A14)
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