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Two-dimensional plasmonic polarons in n-doped monolayer MoS2
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We report experimental and theoretical evidence of strong electron-plasmon interaction in n-doped single-
layer MoS2. Angle-resolved photoemission spectroscopy measurements reveal the emergence of distinctive
signatures of polaronic coupling in the electron spectral function. Calculations based on many-body perturbation
theory illustrate that electronic coupling to two-dimensional carrier plasmons provides an exhaustive explanation
of the experimental spectral features and their energies. These results constitute compelling evidence of the
formation of plasmon-induced polaronic quasiparticles, suggesting that highly doped transition-metal dichalco-
genides may provide a new platform to explore strong-coupling phenomena between electrons and plasmons in
two dimensions.
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I. INTRODUCTION

The interplay of charge confinement, reduced dielec-
tric screening, and strong light-matter coupling in few-layer
semiconducting transition-metal dichalcogenides (TMDCs)
underpins a vast spectrum of emergent many-body effects,
including the formation of excitons [1–4], trions [5], po-
larons [6,7], polaritons [8–12], and superconductivity [13]. At
variance with three-dimensional solids, TMDCs further allow
for unprecedented opportunities to tailor these phenomena
via cavity embedding [14], circular dichroism [15,16], gat-
ing [13], nanostructuring [12,17], substrate engineering [18],
and doping [6].

Highly tunable carrier densities are particularly desirable
for the study of many-body interactions in TMDCs, as they
may enable control of plasmons (collective excitation of the
electron density) and polarons (electrons dressed by a phonon
cloud) [19,20]. Polarons typically arise in semiconductors
and insulators as a result of strong coupling to longitudinal-
optical (LO) vibrational modes [19–22]. Polarons may lead to
charge trapping [21,23] and to a renormalization of the band
effective masses [22]. The relevance of such phenomena for
the optoelectronic properties of solids, alongside the recent
discovery of polarons in the photoemission spectrum of doped
oxides [19,20] and two-dimensional (2D) materials [6,24], has
reignited theoretical and experimental research on polaronic
quasiparticles [7,21–23,25–28].

In close analogy to phonon-induced polarons, the forma-
tion of polaronic quasiparticles may also be stimulated by
the coupling to extrinsic plasmons in highly doped semi-

conductors [25], leading to distinctive satellite features in
angle-resolved photoemission spectroscopy (ARPES). The
experimental observation of plasmonic polarons in three-
dimensional solids is hindered by rather low electron-plasmon
coupling strengths (λ � 0.5 [25]) and by the difficulty to
achieve degenerate doping concentrations (a prerequisite for
the excitation of plasmons) while simultaneously retaining
crystallinity of the sample. Single-layer TMDCs circumvent
this problem since highly tunable carrier densities can be
realized. In particular, some of us recently demonstrated that
the carrier population in the conduction band of monolayer
MoS2 and WS2 can be tailored by stimulating the formation
of chalcogen vacancies via repeated annealing cycles [29].
Additionally, we show here that the 2D confinement of plas-
mons and charge carriers provides suitable conditions for
the establishment of a strong-coupling regime, leading to the
emergence of plasmonic-polaron quasiparticles.

In this paper, we report the observation of plasmon-induced
polarons in n-doped monolayer MoS2. ARPES measure-
ments of the conduction band reveal distinctive fingerprints of
bosonic satellites due to electron-boson coupling. The satellite
energy, ranging between 130 and 200 meV, is much larger
than the characteristic phonon energies (h̄ω < 60 meV) and
depends pronouncedly on the carrier density. These character-
istics are incompatible with a coupling mechanism due to LO
phonons. By explicitly accounting for the effects of electronic
coupling to 2D plasmons in a first-principles many-body
framework, our calculations of the spectral function identify
electron-plasmon interactions as the origin of the polaronic
spectral features observed in experiments. These findings
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FIG. 1. (a) Optical micrograph of the monolayer MoS2 samples on a sapphire substrate. (b) Experimental ARPES spectral function of
n-doped monolayer MoS2 on a sapphire substrate along the �-K path in the Brillouin zone. The DFT band structure for a freestanding MoS2

monolayer is superimposed (red lines), where a scissor shift of 0.3 eV has been applied to the conduction band. The doping-induced population
of the conduction band is reflected by the weak spectral intensity at K . (c) Spectral function of monolayer MoS2 calculated using a 7 × 7 × 1
supercell with one S vacancy. The DFT band structure of pristine monolayer MoS2 is superimposed as a black line.

provide compelling evidence of the emergence of 2D plas-
monic polarons in n-doped monolayer MoS2, and they
demonstrate the establishment of a strong-coupling regime
resulting from the confinement of carriers and plasmons in
two dimensions.

II. EXPERIMENT

A. Sample preparation and experimental setup

MoS2 monolayer films with azimuthal disorder were
grown by chemical-vapor deposition (CVD) on a sapphire
substrate [30]. Top mechanical clamping of the sample en-
abled electrical contact of the monolayer to ground. Sample
charging during ARPES measurements was avoided upon
doping of the monolayer as described thereafter. Degenerate
n doping was achieved by repeated in situ vacuum annealing
cycles (with final annealing for 12 h at 850 K), which is
known to effectively n dope a MoS2 monolayer [31]. The
low dimensionality of the system promotes the observation in
the ARPES spectra of well-resolved electronic band disper-
sion along the high-symmetry directions �-K and �-M [32].
The optical micrograph reported in Fig. 1(a) indicates that
the samples consist primarily of monolayer films with small
multilayer seeds represented by the bright spots. The esti-
mate doping concentrations n1 = 2.8 × 1013 cm−2, n2 = 4 ×
1013 cm−2, and n3 = 5 × 1013 cm−2 (referred to simply as n1,
n2, and n3 in the following) result from the formation of sulfur
vacancies either by direct desorption of sulfur atoms or by
desorption of substitutional oxygen present at sulfur-vacancy
sites, naturally present in CVD-grown samples [33,34]. The
Fermi-level position (corresponding to 0 eV binding energy)
and the instrumental broadening were determined by fitting
the Fermi edge of a gold polycrystal using a broadened Fermi-
Dirac function. The photoemission measurements on n1 and
n2 were performed at room temperature in an analysis cham-
ber (base pressure of 2 × 10−10 mbar) equipped with a Specs
Phoibos 100 hemispherical electron analyzer and using the
He I radiation provided by monochromated helium discharge
lamp (consisting of a HIS-13 lamp mounted on a VUV5046
UV monochromator). The overall energy resolution for n1

and n2 amounted to 117 meV (65 meV instrumental energy

resolution) as determined from the Fermi edge of a poly-
crystalline gold sample, and the angular resolution was about
±2◦. The ARPES measurements on n3 were performed at
230 K using a DA30-L hemispherical analyzer with an angu-
lar resolution of ∼0.3◦ and an overall resolution of 100 meV
(65 meV instrumental energy resolution). The energy distri-
bution curves reported in Fig. 3 below were measured every
2◦ by rotating the manipulator about the polar axis.

B. ARPES measurements of n-doped MoS2

Figure 1(b) illustrates ARPES measurements of the mono-
layer MoS2 valence band along the �-Q-K high-symmetry
line in the Brillouin zone for the doping concentration n1.
The presence of n-type carriers leads to the partial filling of
the conduction-band bottom, as revealed by the finite spectral
intensity measured at 2 eV in the vicinity of the K point.
To verify that the vacancy concentration required to achieve
population of the conduction band does not affect significantly
the band dispersion of MoS2, we performed band-structure
calculations by explicitly accounting for the presence of sulfur
vacancies. In particular, we computed the density functional
theory (DFT) band structure for a 7 × 7 × 1MoS2 supercell,
from which a sulfur atom had been removed. This corresponds
to a carrier density of 4.6 × 1013 cm−2, and it is therefore
representative of the largest impurity concentrations (n2 and
n3) considered in this study. In order to compare it with the
band structure of MoS2 in the absence of vacancies, we sub-
sequently unfolded the supercell band structure back to the
first Brillouin zone of the pristine system using the unfolding
techniques of Refs. [35,36] (see Appendix A). The spectral
function of monolayer MoS2 in the presence of sulfur va-
cancies obtained from this procedure is reported in Fig. 1(c),
and it exhibits the emergence of nondispersive defect states
slightly above the valence bands and about 0.6 eV below
the conduction-band bottom. The comparison with the band
structure of pristine MoS2, superimposed as a black line in
Fig. 1(c), suggests that, except for the emergence of in-gap
defect states, band-structure renormalization effects due to the
formation of sulfur vacancies are virtually negligible for the
vacancy concentrations considered here.
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FIG. 2. (a) ARPES measurements of the conduction-band bot-
tom of single-crystal monolayer MoS2 and (b) curvature of the
ARPES intensity. Crystal momentum is relative to the K high-
symmetry point. Red dots indicate the quasiparticle peak position as
determined from fitting the spectral function at selected momentum.
Parabolic bands with effective mass values m∗ = 0.5me and 0.9me

are included for comparison.

C. Measurements of the electron effective mass

In Fig. 2, we report ARPES measurements of the
conduction-band bottom of single-crystal monolayer MoS2

[Fig. 2(a)] and its curvature [Fig. 2(b)]. The red dots indicate
the maximum ARPES intensity averaged in a momentum
range of �k = 0.003 Å−1. Fitting a parabola to the disper-
sion, we obtain m∗ = 0.9me. This value has been employed in
all calculations of the electron-plasmon interaction reported
below, and it is in good agreement with former experimental
estimates [6,37]. Density functional theory calculations of the
electron effective mass yield values ranging between 0.4me

and 0.5me [38–41]. The effective mass obtained from our
DFT calculations by fitting the conduction-band bottom is
m∗ = 0.49me, which is in good agreement with former DFT
calculations. To rationalize the underestimation of DFT effec-
tive masses with respect to the experimental ones, we note
that many-body effects due to electron-electron and electron-
phonon interactions, which are known to strongly influence
the effective mass, are not accounted for in the Kohn-Sham
band structure as obtained from DFT. In particular, the
electron-phonon interaction alone is expected to increase the
bare DFT effective mass m∗

DFT to m∗
ep according to [42]

m∗
ep = m∗

DFT[1 + λ], (1)

where λ is the electron-phonon coupling strength (also known
as the “effective-mass renormalization parameter”). Recent
helium-atom scattering experiments [43] estimated λ � 0.5
for bulk MoS2. Based on this value, one would expect a
renormalization of the DFT effective m∗

DFT = 0.49me to
m∗

ep = 0.73me. Similarly, a quasiparticle description of band
structure based on the GW approximation may also lead to
an increase of the electron effective mass by up to 20%–30%
with respect to DFT [44,45].

D. ARPES evidence of polaronic satellites

Figures 3(a) and 3(b) report ARPES spectral functions of
monolayer MoS2 for crystal momenta in the vicinity of the

FIG. 3. (a) Spectral signatures of plasmonic polarons in the
ARPES spectral function of n-doped monolayer MoS2 for carrier
densities (a) n1 = 2.8 × 1013 and (b) n2 = 4 × 1013 cm−2. Labels
indicate the photoelectron crystal momentum relative to the K point
(�k = k − kK) along K-� in units of Å−1, and satellite features
are indicated by arrows. Energies are relative to the Fermi level.
ARPES measurements (dots) and first-principles calculations (red)
of the spectral function at K for (c) n1 and (d) n2. Vertical dashed
lines mark the positions of the first and second satellite peaks in the
calculated spectra. The fit (dark blue) of the experimental spectra and
its spectral decomposition as Gaussian line shapes (shaded curves)
are guides to the eye.

high-symmetry point K for doping concentrations n1 and n2,
respectively. The on-curve labels indicate the photoelectron
crystal momentum �k = k − kK, relative to the K point in
units of Å−1. Energies are referenced to the Fermi level that is
located 39 and 56 meV above the conduction-band minimum
(CBM), respectively. At K and neighboring crystal momenta,
the spectral functions are characterized by a quasiparticle peak
close to the Fermi level. The peak position corresponds to
the binding energy of quasi electrons around the CBM. At
binding energies larger than those of quasiparticle excitations,
the spectral function for carrier concentration n1 (n2) exhibits
a shoulderlike structure redshifted by 130 meV (170 meV)
from the quasiparticle peak and extending up to 0.6 eV below
the Fermi level. These spectral features, indicated by arrows
in Figs. 3(a) and 3(b), are visible exclusively in the vicinity
of the K point and become more pronounced at higher carrier
densities. These points suggest that the origin of these spectral
features may not be attributed to in-gap defect states [illus-
trated in Fig. 1(c)], which are inherently nondispersive owing
to their localized character.

A more detailed view of these spectral signatures is given
in Figs. 3(c) and 3(d), which report the spectral functions
for n1 and n2 [corresponding to the thick lines in Figs. 3(a)
and 3(b)]. For n2, the spectral function exhibits a satellite
structure at 170 meV and a less pronounced secondary struc-
ture at 330 meV below the quasiparticle peak. To better
resolve the underlying spectral features that give rise to the
satellite, in Fig. 4 we apply the prescription of Ref. [46] and
deconvolute the experimental spectra by a Gaussian function
to reduce the spectral broadening due to finite resolution and
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FIG. 4. Comparison between the calculated spectral function
(theory) and the deconvoluted experimental spectrum (exp. dec.) for
(a) n1 = 2.8 × 1013 and (b) n2 = 4 × 1013 cm−2. To approximately
remove the finite broadening due to finite-resolution effects, the
experimental data have been deconvoluted with a Gaussian function
with full width at half maximum of 137 and 198 meV, respectively,
following the prescription of Ref. [46].

lifetime effects. These spectral features closely resemble the
characteristic spectral fingerprints of electron-boson interac-
tion in photoemission spectroscopy. Specifically, (i) they have
nonvanishing intensity within the gap and therefore may not
be attributed to the emission of a photoelectron, and (ii) they
are roughly spaced from the quasiparticle peak by multiples of
h̄� = 130, 170, and 200 meV for n1, n2, and n3, respectively,
as illustrated by the spectral-function decomposition in terms
of Gaussian line shapes shown in Figs. 3(c) and 3(d). These
points suggest that carriers in the conduction band may be
subject to polaronic coupling to bosonic excitations, such as
polar phonons or 2D carrier plasmons, and that the first and
second satellites may stem from the excitation of one and two
bosons with an effective energy h̄� alongside the creation of
a photohole.

The comparison between the boson energy h̄� and the
energy of optical phonons in monolayer MoS2, which ranges
between 30 and 60 meV [47], allows us to promptly exclude
the Fröhlich interaction between electrons and LO phonons
as a possible coupling mechanism responsible for the satellite
formation. Recent experimental and theoretical investigations
of bulk MoS2 [6,7] have, indeed, revealed the emergence of
Holstein polarons in ARPES. However, their spectral signa-
tures occur at 30–40 meV below the Fermi level, energies
that are too small to possibly explain the polaronic spectral
features of Fig. 3. In analogy to polarons in oxides [27], strong
coupling between electrons and plasmons may also trigger
the formation of plasmon-induced polaronic quasiparticles
(plasmonic polarons) in n-doped semiconductors and insula-

FIG. 5. (a) Conduction band of monolayer MoS2 obtained from
density-functional theory (blue) and dispersion of a 2D homoge-
neous electron gas with effective mass m∗

DFT = 0.49 (red). The
dashed horizontal lines mark the position of the Fermi level εF for the
carrier concentration n2. Energies are referenced to the conduction-
band minimum. (b) Loss function and plasmon dispersion of n-doped
MoS2 for the carrier concentration n2. The vertical dashed line marks
the critical momentum cutoff qc corresponding to the onset of Lan-
dau damping for 2D plasmons. The solid line illustrates the plasmon
dispersion.

tors [25,26]. Plasmonic polarons result from the simultaneous
excitation of a plasmon and a hole, and they manifest them-
selves in ARPES under the form of photoemission satellites.
To inspect whether a bosonic coupling mechanism induced
by carrier plasmons may account for these phenomena,
we proceed to investigate electron-plasmon interactions in
doped MoS2.

III. THEORY

A. Dispersion and density of states of 2D plasmons

For concentrations of n-type carriers larger than 1 ×
1013 cm−2, MoS2 undergoes a metal-insulator transition [48],
characterized by the onset of metallic transport properties [49]
and by the partial filling of the K valley in the conduc-
tion band. The conduction-band dispersion of monolayer
MoS2 as obtained from density functional theory calcula-
tions is reported in Fig. 5(a). The Fermi energy of the doped
system depends linearly on the carrier concentration n via
the expression εF = π h̄2n/m∗Nv − ECBM, with Nv = 2 be-
ing the K-valley degeneracy and ECBM being the energy of
the CBM. For the experimentally determined Fermi ener-
gies εF = 39, 56, and 70 meV, this expression allows one
to determine carrier concentrations n1, n2, and n3, respec-
tively. For n2, the Fermi energy is marked by the horizontal
dashed line in Fig. 5(a). Upon interaction with light, extrinsic
carriers in the conduction band can be collectively excited,
leading to well-defined 2D carrier plasmon resonances. The
energy-momentum dispersion relation of 2D plasmons in
MoS2 is here approximated by the loss function L(ω) =
Im [ε(q, ω)]−1 of a 2D homogeneous electron gas [50,51].
All calculations have been conducted using the experimental
effective mass m∗

exp = 0.9me determined above. The influ-
ence of m∗ on the calculations and on electron-plasmon
interaction is discussed in Appendix B. We further explic-
itly account for the extrinsic dielectric environment induced
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FIG. 6. (a) First-principles calculations of the angle-resolved spectral function of MoS2 at K for a carrier concentration n3 = 5 ×
1013 cm−2. (b) Influence of finite energy and momentum resolutions on the angle-resolved spectral function. (c) ARPES measurements.

by the semi-infinite sapphire (Al2O3) substrate by introduc-
ing the dielectric constant εS

∞ = (1 + εAl2O3∞ )/2 = 6.3, with
εAl2O3∞ � 11.6 being the high-frequency dielectric constant of
bulk sapphire [52].

The loss function, illustrated in Fig. 5(b) for the car-
rier concentration n2, exhibits pronounced plasmon peaks,
with plasmon energies h̄ωpl(q) ranging from 0 to 0.24 eV.
Only plasmons with momenta |q| < qc can be excited, where
qc � 0.15 Å−1 [marked by a dashed vertical line in Fig. 5(b)]
is the critical momentum for the onset of Landau damping,
namely, the decay of plasmons upon excitation of electron-
hole pairs. The plasmon dispersion obtained from the loss
function compares well with the analytical result for homo-
geneous 2D metals ω

pl
q = F (q)

√
2πnq/m∗εS∞ [53], illustrated

in Fig. 5(b) as a solid line. Here, F (q) = (1 + q/2κ )[(1 +
q/2κ )−1 + q3Nv/(4πnκ )]

1
2 and κ = 2m∗/εS

∞.
In systems characterized by electronic coupling to weakly

dispersive bosonic modes (e.g., optical phonons and three-
dimensional plasmons) the energy of polaronic satellites can
be directly related to the boson energy. Therefore, at first sight
it might seem surprising that the coupling to 2D plasmons
could give rise to a satellite peak with well-defined energy
since the 2D plasmon dispersion continuously spans the en-
ergy range between 0 and 240 meV [Fig. 5(b)]. To clarify this
aspect, we show in the following that the satellite energy is
related to the average energy of 2D plasmons in the Brillouin
zone. This finding leads us to the interpretation of the mea-
sured ARPES satellite as a result of the collective coupling to
all 2D plasmons in the system, rather than to a single bosonic
excitation. To estimate the average energy of 2D plasmons,
we consider the density of states of plasmonic excitations:

J (ω) = �BZ
−1

∫
�BZ

dqδ
(
ω − ωpl

q

) = κω3θ (ωc − ω), (2)

where κ = (m∗εS
∞)2(π�BZn2)−1 and ωc = ω

pl
qc is the plas-

mon energy at the critical momentum qc. This result may
be promptly verified by analytical integration of Eq. (2),
as illustrated in Appendix D. For n1, n2, and n3, the den-
sity of states J (ω) is illustrated in Fig. 10. From Eq. (2),

we can estimate the average plasmon energy as h̄ω =
h̄
∫

J (ω)ωdω[
∫

J (ω)dω]−1 = 4h̄ωc/5 and the standard devi-
ation σ = h̄(ω2 − ω2)1/2 � 0.45h̄ωc. For n2, the value h̄ωc �
0.24 eV yields h̄ω = 190 meV, which agrees well with the
effective boson energy h̄� = 170 meV derived from the satel-
lite energy. Similarly, the spread of the plasmon energies in
the Brillouin zone is quantified by 2σ = 80 meV, which is in
good agreement with the half-width at half maximum of the
satellite peak �w = 90 meV, which we extract from Gaussian
decomposition of the experimental spectra. This analysis sug-
gests that the observation of a well-defined satellite in ARPES
is compatible with a bosonic coupling mechanism induced by
2D carrier plasmons. In particular, the satellite energy can be
related to the average energy h̄ω of 2D plasmons, whereas the
satellite linewidth reflects the spread of plasmon energies as
quantified by the standard deviation σ .

B. First-principles description of 2D plasmonic
polarons in ARPES

To quantitatively demonstrate the influence of the electron-
plasmon interaction on ARPES measurements, we conducted
first-principles calculations of the spectral function based on
the cumulant expansion approach [54–57], the state of the art
for spectral-function calculations of coupled electron-boson
systems [58–60]. The cumulant spectral function can be ex-
pressed as [22]

A(k, ω) =
∑

n

eAS
nk (ω)∗AQP

nk (ω), (3)

where ∗ denotes convolution over frequency and AQP
nk (ω) =

2π−1Im [h̄ω − εnk − �nk(εnk )]−1 is the quasiparticle contri-
bution to the spectral function. εnk is the single-particle
energy, and � is the electron self-energy due to the electron-
plasmon interaction [61]. The electron-plasmon self-energy
accounts explicitly for the coupling to 2D plasmons via the
coupling matrix elements introduced in Appendix C. Dynam-
ical correlations due to the electron-plasmon interaction are
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FIG. 7. (a) Dependence on the carrier density of the measured
(dots) and calculated satellite energy (shaded area). The satel-
lite energies are relative to the quasiparticle peak. (b) Calculated
electron-plasmon spectral functions of MoS2 at the K high-symmetry
point for several carrier concentrations (in cm−2). Energies are rela-
tive to the Fermi level, and the blue lines are a guide to the eye.

accounted for by the satellite function AS
nk:

AS(ω) = β(ω) −β(ε/h̄) −(ω − ε/h̄)(∂β/∂ω)|ε/h̄

(h̄ω − ε)2
, (4)

with β(ω) = 1
π

Im Σ (ε/h̄ − ω)θ (μ/h̄ − ω), and the depen-
dence on n and k has been omitted [62].

The cumulant spectral function of n-doped MoS2 is il-
lustrated in Figs. 3(c)–3(d) as a red line for n1 and n2,
respectively. The experimental background signal has been
added to theoretical data to facilitate the comparison. The
calculated spectral function exhibits two distinct satellite res-
onances at energies in excellent agreement with the ARPES
spectral features. The Taylor expansion of Eq. (3) up to second
order in AS promptly reveals the physical origin of these spec-
tral features: besides the quasiparticle peak, arising from AQP

alone, the second term in the expansion stems from the convo-
lution AS ∗ AQP, and its intensity may be attributed to the rate
of photoemission processes resulting from the coupled exci-
tation of a photohole and a plasmon. Similarly, subsequent
arguments in the Taylor expansion can be related to multi-
ple plasmon excitations. This allows us to relate subsequent
satellites to photoemission processes resulting from the simul-
taneous excitation of a photohole and emission of plasmons.
The quantitative agreement between experiment and theory is
further illustrated in Fig. 6, where the full calculated and mea-
sured angle-resolved spectral functions are compared for the
carrier concentration n3 = 5 × 1013 cm−2. Finite experimen-
tal resolution for energy (momentum) is explicitly accounted
for in Fig. 6(b) by convolution with a Gaussian function with
full width at half maximum of 100 meV (0.03 Å−1). The
calculated satellite structure is sharper than the measurements
since our calculations do not explicitly account for finite
lifetime effects in the plasmon dispersion arising from the
plasmon-phonon scattering. Scattering between plasmons and
phonons can, indeed, lower the plasmon lifetime, introducing
additional broadening of the plasmon satellite [51].

Finally, in Fig. 7(a) we compare the dependence of the
satellite energy on the carrier concentration, as obtained from
experiments and theory. The dashed and solid lines denote the
energy of the first and second substructures of the satellite
peak, respectively, extracted from the electron-plasmon spec-

tral functions illustrated in Fig. 7(b). Remarkably, the increase
of the satellite energy with carrier concentration is in excellent
agreement with the calculated trend, further corroborating the
plasmonic origin of the photoemission satellites.

IV. CONCLUSIONS

In conclusion, we reported the observation of 2D plas-
monic polarons in n-doped monolayer MoS2 at degenerate
doping concentrations. The emergence of distinctive signa-
tures of polaronic satellites in ARPES experiments provides
compelling evidence of the strong coupling between 2D car-
rier plasmons and extrinsic carriers, and it is corroborated
by first-principles calculations of the electron-plasmon in-
teraction. This finding indicates that, at sufficiently large
doping concentrations, the quantum confinement of holes and
plasmons in a 2D semiconductor triggers the onset of a strong-
coupling regime, whereby electron-plasmon coupling results
in the formation of 2D plasmonic polarons.
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APPENDIX A: BAND-STRUCTURE CALCULATIONS
WITH SULFUR VACANCIES

The band structure of monolayer MoS2 in the presence
of a sulfur vacancy in a 7 × 7 × 1 supercell [correspond-
ing to a carrier density n = 4.6 × 1013 cm−2 and illustrated
in Fig. 1(c)] has been obtained from the evaluation of the
electron spectral function using the zone unfolding tech-
nique [35,64], as implemented for plane waves in Ref. [36].
The procedure is based on the calculation of the electron spec-
tral function in the Lehmann representation, which reflects the
momentum-resolved density of states. It is given by

Ak(ε) =
∑
mK

PmK,k δ[ε − εmK]. (A1)

Here, the summation runs over the bands m and wave vectors
K defining the Kohn-Sham state |ψv

mK〉 with energy εmK, cal-
culated in the 7 × 7 × 1 MoS2 supercell with one S vacancy.
The quantity PmK,k represents the spectral weight, defined by

PmK,k =
∑

n

∣∣〈ψv
mK

∣∣ψnk
〉∣∣2

, (A2)

which corresponds to the transition probability between |ψv
mK〉

and |ψnk〉, evaluated in the unit cell of pristine monolayer
MoS2. Following the procedure of Ref. [36], we evaluate
PmK,k using only the plane wave expansion of the states in
the supercell containing the vacancy. We select a set of 158 K
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FIG. 8. Dispersion of 2D plasmons for a carrier concentration n = 4 × 1013 cm−2 with effective masses (a) m∗ = 0.9me, (b) m∗ = 0.7me,
and (c) m∗ = 0.5me.

points that are mapped onto equally spaced k points along
the �-K-M-� path in the Brillouin zone of the unit cell.
The one-by-one mapping is performed via a reciprocal lattice
vector of the structure with the vacancy. For each K point
we calculate PmK,k and εmK and eventually obtain the spectral
function Ak(ε) along the full path, as shown in Fig. 1(c).

APPENDIX B: DEPENDENCE OF THE
ELECTRON-PLASMON INTERACTION

ON THE EFFECTIVE MASS

All calculations reported in this paper have been con-
ducted using the experimental effective mass m∗ = 0.9me. In
the following, we discuss the influence of this parameter on
the plasmon dispersion and on the spectral signatures of the
electron-plasmon interaction.

In Figs. 8(a)–8(c), we report the dispersion of 2D plasmons
calculated using m∗ = 0.9me, m∗ = 0.7me, and m∗ = 0.5me,
respectively, for a carrier concentration n = 4 × 1013 cm−2.
The dispersion of 2D plasmons becomes more pronounced
for smaller values of the effective mass. This behavior can
be easily understood from the dependence of the plasmon
energy h̄ωq on (m∗)−1/2 which follows from the plasmon
dispersion relation h̄ωq = √

2πnq/ε∞m∗. A smaller m∗ fur-

ther entails a more dispersive band and thus a lower value
of the critical momentum qc at which 2D plasmons become
degenerate with the energy of electron-hole pairs. Corre-
spondingly, the plasmon dispersion covers virtually the same
energy range for both values of the effective mass. Based on
these considerations, one may expect the energy of the plas-
mon satellites to be only marginally affected by changes in the
effective mass.

To explore this aspect on quantitative grounds, we re-
port in Figs. 9(a)–9(c) the electron spectral function due to
the electron-plasmon interaction evaluated for m∗ = 0.5me,
0.7me, and 0.9me, respectively. A smaller value of the elec-
tron effective mass results in a lowering of the satellite peak
intensity. The origin of this behavior can be attributed to the
lower plasmonic density of states which, in turn, underpins a
reduced electron-plasmon coupling strength. Remarkably, the
satellite energy is only marginally affected, and it remains in
good agreement with the energy range covered by the satellite
spectral features observed in ARPES measurements.

In summary, these results indicate that while a change in
the effective mass may influence the intensity of 2D plasmon
satellites, it does not significantly influence the energy range
covered by the satellite, and therefore, it does not affect the
validity of our findings.

FIG. 9. Calculated spectral function of monolayer MoS2 due to the electron-plasmon interaction for a carrier concentration n = 5 ×
1013 cm−2 and for several values of the electron-effective mass parameter: (a) m∗ = 0.5me, (b) 0.7me, and (c) 0.9me.

205152-7



FABIO CARUSO et al. PHYSICAL REVIEW B 103, 205152 (2021)

APPENDIX C: ELECTRON-PLASMON COUPLING
FROM FIRST PRINCIPLES

In the following, we discuss how formalism of electron-
plasmon coupling [65,66] can be adapted to investigate
electron-plasmon interactions in a doped 2D semiconductor.
The coupling matrix elements are given by

ge−pl
mn (k, q) =

(
4π

�BZ

) 1
2
[
∂ε(q, ω)

∂ω

]− 1
2

ω
pl
q

1

|q|MG=0(k, q).

(C1)
�BZ is the volume of the Brillouin zone, ε is the electronic di-
electric function, ωpl

q is the plasmon energy, and the dipole ma-
trix elements are given by MG(k, q) = 〈ψmk+q|ei(q+G)·r|ψnk〉.
ψnk are the Kohn-Sham single-particle orbitals, and Hartree
atomic units are used. In order to evaluate Eq. (C1) for n-
doped MoS2, we note the derivative of the dielectric function,
which can be expressed as [26][

∂ε

∂ω

∣∣∣∣
ω

pl
q

]−1

= −ω
pl
q

2
[εD(q, 0)−1 − εU(q, 0)−1]. (C2)

Here, εU is the static dielectric function of the undoped
system, whereas εD is the static dielectric function in
the presence of doping-induced free carriers. Owing to
the parabolic dispersion of the conduction-band bottom,
the energy/momentum dispersion of extrinsic n-type carriers
in MoS2 can be approximated by that of a 2D homogeneous
electron gas (2DEG). Correspondingly, the dielectric function
of a doped 2D semiconductor can be approximately expressed
as

εD(q, ω = 0) = 1 − v(q)[χU(q) + χ2DEG(q)]

= εU
∞ + ε2DEG(q) − 1, (C3)

where χ denotes the static polarizability, which for a 2DEG
can be evaluated analytically [53]. εU

∞ is the high-frequency
dielectric constant, and ε2DEG(q) = 1 − v(q)χ2DEG(q). By
combining Eqs. (C1)–(C3), one can express the electron-
plasmon coupling matrix elements of a 2D doped semicon-
ductor as

ge−pl
mn (k, q) =

(
8π

ω
pl
q �BZ

) 1
2

×
[

1

εU∞
− 1

εU∞ + ε2DEG(q) − 1

]− 1
2 MG=0(k, q)

|q| .

(C4)

These coupling matrix elements are employed in the calcula-
tion of the self-energy due to the electron-plasmon interaction

FIG. 10. Density of states for two-dimensional plasmons evalu-
ated from Eq. (D3) for the three carrier concentrations adopted in this
work.

based on the ordinary formalism of the electron-boson inter-
action [26,42,66,67].

APPENDIX D: DENSITY OF STATES
OF TWO-DIMENSIONAL PLASMONS

We defined the density of states of 2D plasmons
as

J (ω) = �BZ
−1

∫
�BZ

dqδ
(
ω − ωpl

q

)
. (D1)

Here, ω
pl
q is the plasmon frequency, �BZ is the area of the

2D Brillouin zone, and the integral extends over �BZ. Be-
low, we consider the leading order in q of the plasmon
energy in the long-wavelength limit (q → 0), namely, ω

pl
q �√

2πnq/m∗εS∞. For isotropic systems, the 2D momentum in-
tegral can be expressed as

J (ω) = �BZ
−1

∫ qc

0
dq 2πq δ(ω − α

√
q), (D2)

where the integral extends up to the critical momentum qc

that marks the onset of Landau damping and we defined
α = √

2πn/m∗εS∞. Finally, through a straightforward change
in variable and making use of the property of the Dirac δ

function δ(ax) = |a|−1δ(x), we obtain

J (ω) = �BZ
−1

∫ √
qc

0
dx

4πx3

α
δ(x − ω/α) = κω3θ (ω − ωc).

(D3)

For n1, n2, and n3, the density of states is illustrated in Fig. 10.
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