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Noncentrosymmetric topological Dirac semimetals in three dimensions
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Topological Dirac semimetals are a class of semimetals that host symmetry-protected Dirac points near the
Fermi level, which arise due to a band inversion of the conduction and valence bands. In this work, we study
the less explored class of noncentrosymmetric topological Dirac semimetals in three dimensions. We identify
the noncentrosymmetric crystallographic point groups required to stabilize fourfold degenerate band crossings
and derive model Hamiltonians for all distinct types of band inversions allowed by symmetry. Using these
model Hamiltonians, which emphasize the physical nature of the allowed couplings, we establish the generic
electronic phase diagram noncentrosymmetric Dirac semimetals and show that it generically includes phases
with coexistent Weyl point nodes or Weyl line nodes. In particular, for one specific type of band inversion
in sixfold symmetric systems we show that Weyl line nodes are always present. Based on first-principles
calculations, we predict that BiPd2O4 is a noncentrosymmetric Dirac semimetal under 20 Gpa pressure and
hosts topological type II Dirac points on the fourfold rotation axis. Furthermore, we propose that the hexagonal
polar alloy LiZnSbxBi1−x realizes a Dirac semimetal with coexistent Weyl points. Interestingly, the emergence
and location of the Weyl points is highly tunable and can be controlled by the alloy concentration x. More
generally, our results not only establish band-inverted noncentrosymmetric systems as a broad and versatile
class of topological semimetals, but also provide a framework for studying the quantum nonlinear Hall effect
and nonlinear optical properties in the Dirac semimetals.
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I. INTRODUCTION

Symmetry and topology are two important concepts from
mathematics which have found increasingly many important
applications in condensed matter physics in recent years [1,2].
Both crystalline and time-reversal symmetries not only de-
termine macroscopic properties of solids but also powerfully
affect the topological electronic properties of matter. The
interplay between (crystalline) symmetry and the topology
of electronic structure in solids leads to a variety of new
topological states, which include most notably topological
insulators [1,3,4], topological crystalline insulators [5,6], and
topological semimetals [2,7–10]. Topological semimetals are
gapless systems hosting topologically protected band cross-
ings near the Fermi level, which can be categorized based on
codimension (e.g., point nodes, line nodes) and degeneracy
of the crossing (e.g., twofold, fourfold, etc.). This categoriza-
tion gives rise to different families of topological semimetals
such as Dirac semimetals [11,12], Weyl semimetals [13–16],
double Dirac semimetals [17], nodal line semimetals [18–21],
nodal surface semimetals [22,23], and multifold fermion
semimetals [24,25].
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Dirac semimetals are defined by the presence of sta-
ble fourfold degenerate Dirac fermions in the momentum
space and are an important member of the class of topo-
logical semimetals. Two types of Dirac semimetals can
be distinguished: symmetry-enforced Dirac semimetals and
topological Dirac semimetals [26]. This distinction relies on
the symmetry protection mechanism. Whereas symmetry-
enforced Dirac semimetals arise as a result of nonsymmorphic
symmetry-mandated degeneracies at high symmetry points
on the boundary of Brillouin zone (BZ), and are therefore
pinned, topological Dirac semimetals arise as a result of a
band inversion. In the band-inverted regime, rotation crystal
symmetry can protect the inversion-induced crossings on the
rotation axis, which are not pinned to a particular point on the
rotation axis.

Young et al. were the first to show that nonsymmorphic
symmetries can protect the Dirac points at the boundary of the
BZ and proposed β-cristobalite SiO2 as a possible material
candidate [11]. Unfortunately, β-cristobalite SiO2 is weakly
metastable in nature. Recently, however, a number of non-
symmorphic symmetry protected Dirac semimetals have been
predicted in distorted spinels BiZnSiO4, BiCaSiO4, BiAlInO4,
and BiMgSiO4 and molybdenum monochalcogenide com-
pounds AI(MoXVI)3 (AI = Na, K, Rb, In, Tl; XVI = S, Se,
Te) [27], but to date the experimental realization and veri-
fication of symmetry-enforced Dirac semimetals remain an
open problem. In contrast, realizations of topological Dirac
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semimetals have been demonstrated in photoemission experi-
ments, such as in Na3Bi [28] and Cd2As3 [29]—by now two
well-known Dirac semimetal materials. These experimental
discoveries followed theoretical predictions based on first-
principles calculations [12,30], highlighting the importance
of first-principles electronic structure methods for topological
materials search strategies.

The initial proposals for Dirac semimetals in three dimen-
sions generated great excitement and inspired a collective
effort to characterize their properties and find more material
realizations of Dirac semimetals. In the case of systems with
inversion symmetry this effort was facilitated by a general
symmetry classification of centrosymmetric Dirac semimetals
[26], which has led to the prediction of a large number of
Dirac semimetals with inversion symmetry, including BaAgBi
[31], SrPd3O4 [32], and MgTa2N3 [33]. Compared to the
centrosymmetric variants, Dirac semimetals without inversion
symmetry have been much less studied and theoretical predic-
tions of material candidates are comparatively rare [34–37].
Furthermore, a detailed understanding of the phase diagram
of noncentrosymmetric Dirac semimetals, obtained from a
derivation and analysis of effective model Hamiltonians, is
still lacking, even though the absence of inversion symmetry
is expected to give rise to a richer phase diagram.

In this work, we systematically study the possible realiza-
tions of noncentrosymmetric topological Dirac semimetals in
three-dimensional crystals. Based on a point group symmetry
analysis, we derive low-energy k · p-type model Hamiltoni-
ans for all distinct band-inversion-induced Dirac semimetals
without inversion symmetry, using a formulation which
emphasizes the physical nature of the allowed couplings.
Based on the obtained model Hamiltonians, we determine
the generic electronic phase diagram of noncentrosymmetric
band-inverted topological semimetals. We show that two types
of Dirac points can exist: (1) conventional fourfold degenerate
point nodal band crossings with linear dispersion away from
the crossing and (2) Dirac points at which Weyl nodal lines
terminate. In particular, for some types of band inversions
Weyl line nodes always exist. We furthermore show that the
generic phase diagram includes a phase with coexistent Dirac
and Weyl fermions.

We carry out first-principles calculations to predict two
material candidates. In particular, we predict that a non-
centrosymmetric topological Dirac semimetal is realized
in BiPd2O4 under 20 Gpa pressure, which has C4v point
group symmetry and hosts type II noncentrosymmetric Dirac
fermions. In addition, we propose that the alloy LiZnSbxBi1−x

realizes a highly tunable topologically semimetallic phase
with coexistent Dirac and Weyl points. The existence and the
location of the Weyl points can be controlled by the alloy
concentration of LiZnSbxBi1−x, providing a tuning parameter
directly accessible in experiment.

II. TOPOLOGICAL DIRAC SEMIMETALS WITHOUT
INVERSION SYMMETRY

A. General symmetry analysis

We begin by reviewing the general symmetry requirements
a (strongly) spin-orbit coupled material must satisfy in order

FIG. 1. Schematic band structures of (a) centrosymmetric Dirac
semimetals, (b) Weyl semimetals, and (c) noncentrosymmetric Dirac
semimetals. Red and blue represent different energy bands.

to realize a noncentrosymmetric topological Dirac semimetal.
Since we exclusively focus on band inversions at � in this
work, the relevant symmetry group is just the crystal point
group. For a material to potentially realize a noncentrosym-
metric Dirac semimetal, its point group must satisfy two main
criteria: first, by assumption, it cannot contain the inversion
and, second, the point group must contain a rotation axis. The
presence of a rotation axis is important, since discrete crys-
tal rotation symmetry can protect band degeneracies on the
rotation axis in momentum space, provided the bands which
cross have different rotation eigenvalues [26,34,38]. For such
degeneracies to realize Dirac points (i.e., fourfold degenerate
band crossings), it is further necessary that the double group
of symmetries which leave the rotation axis invariant admits
two-dimensional representations. A Dirac point then occurs
when two bands characterized by different two-dimensional
representations cross on the rotation axis. By an exhaustive
search of all noncentrosymmetric point groups, we find that
only the groups C4v and C6v satisfy these criteria, and we will
therefore focus on these two groups in all that follows.

The basic difference between Dirac points in non-
centrosymmetric systems and other types of topological
semimetallic band crossings, such as centrosymmetric Dirac
points and Weyl points, is schematically illustrated in Fig. 1.
As shown in Fig. 1(c), in the case of noncentrosymmet-
ric Dirac points the energy bands are split when moving
away from the fourfold band crossing, except, however, along
the rotation axis, where a manifest twofold degeneracy is
protected by point group symmetry. In contrast, in centrosym-
metric systems with time-reversal symmetry all bands are
manifestly twofold Kramers degenerate, giving rise to Dirac
points shown in Fig. 1(a).

It is worth noting that, since the point groups C4v and
C6v can be thought of as noncentrosymmetric descendants
of D4h and D6h, respectively, the breaking of inversion sym-
metry in centrosymmetric Dirac semimetals such as Cd3As2

and Na3Bi does not necessarily split the Dirac points into
twofold degenerate Weyl points shown in Fig. 1(b). If either
C4v or C6v symmetry is preserved, the fourfold Dirac points
remain symmetry-protected, but are now of the kind shown in
Fig. 1(c).

B. Model Hamiltonians

Based on these general symmetry arguments, our next step
is to derive model Hamiltonians for each distinct type of
band inversion. In systems with either C4v or C6v point group
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symmetry, the energy bands at � can be labeled by their
angular momentum quantum numbers jz, which are in one-to-
one correspondence with representations of the double point
group. Due to the discrete nature of crystal rotation symmetry,
the set of distinct angular momentum quantum numbers is
finite and given by jz = ± 1

2 ,± 3
2 (fourfold rotation symmetry)

and jz = ± 1
2 ,± 3

2 ,± 5
2 (sixfold rotation symmetry). To con-

struct a minimal model for a band inversion-induced Dirac
semimetal, we consider two bands, a conduction band and a
valence band, which must have different angular momentum
quantum numbers (i.e., are of different symmetry type). To
describe the electronic states of the two bands, we introduce
two sets of electron operators for the conduction (ck) and
valence band ( fk) as

ck =
(

ck↑
ck↓

)
, fk =

(
fk↑
fk↓

)
, (1)

where ↑,↓ refers to the spin degree of freedom of each band.
Note that the rotation eigenvalues of the spin states |↑〉 and |↓〉
depend on the symmetry type of each band and, in particular,
will be different for the two bands. It is useful to collect the
conduction and valence band degrees of freedom in the four-
component spinor �k defined as

�k =
(

ck
fk

)
. (2)

Note that since we consider a vacuum defined by a filled
valence band and an empty conduction band, fk creates holes
in the valence band and can be viewed as a creation operator
with respect to the vacuum. In this sense, the band inver-
sion model bears a formal resemblance to the problem of
superconductivity.

With this resemblance in mind, we write the Hamiltonian
H for the two bands as H = ∑

k �
†
kHk�k, where Hk has the

block structure

Hk =
(

hc
k �k

�
†
k hv

k

)
. (3)

Here hc,v
k is the Hamiltonian describing the valence (v) and

conduction (c) bands, and �k captures the coupling between
the bands. Each of these are matrices in spin space, and the
construction of a model Hamiltonian proceeds by determining
the form of the matrices hc,v

k and �k for a given type of the
conduction and valence bands.

Let g be a point group symmetry and Ug its matrix rep-
resentation in the Hilbert space of the two bands. Then the
matrix Ug takes the form

Ug =
(

Vg

Wg

)
, (4)

where Vg and Wg are the matrix representations in the conduc-
tion and valence bands, respectively, i.e., the conduction and
valence band states transform under g as

g : c†
k → c†

gkVg, g : f †
k → f †

gkWg. (5)

The matrix representations Vg and Wg depend on the symmetry
quantum numbers of the ↑,↓-states within each band (i.e.,
the symmetry type of the band). Table I collects the matrix
representations of the generators of C4v and C6v for the distinct

TABLE I. Tabulated list of the matrix representations of the point
group generators for given angular momentum jz. The generators of
Cnv are Cnz and Mx , with n = 4, 6.

Band type C4z C6z Mx

jz = 1
2 e−iπσz/4 e−iπσz/6 ∓iσx

jz = 3
2 e−i3πσz/4 e−i3πσz/6 ±iσx

jz = 5
2 −e−iπσz/4 e−i5πσz/6 ∓iσx

angular momentum quantum numbers. Given Ug, invariance
of the Hamiltonian under g is expressed as

UgHkU †
g = Hgk. (6)

For the valence and conduction bands this leads to the require-
ment

Vghc
kV †

g = hc
gk, Wghv

kW †
g = hv

gk, (7)

and for the coupling matrix �k this implies

Vg�kW †
g = �gk. (8)

To examine the constraints implied by these equations it
is useful to expand hc,v

k and �k in the Pauli matrices. For the
conduction and valence bands we can expand hc,v

k as

hc,v
k = ±εk + bc,v

k · σ, (9)

where the scalar function εk and the vector functions bc,v
k are

real. Time-reversal symmetry 	 further requires that εk is an
even function of k and that bc,v

k are odd. Here +εk (−εk)
corresponds to the conduction (valence) band, and for εk we
can take, up to quadratic order,

εk = ε0 + k2
x + k2

y

2mx
+ k2

z

2mz
, (10)

where mx and mz are effective masses in the basal plane and
z direction, respectively. With this form of hc,v

k , the energy
separation of the bands is 2ε0 and ε0 < 0 defines the band
inverted regime. Note that in practice the conduction and
valence bands can and will have different effective masses,
but this difference is unimportant for our analysis. The lack
of inversion symmetry allows for the second term in (9),
parametrized by bc,v

k ; since bc,v
k is an odd function of k,

inversion symmetry would force it to vanish. Physically it cor-
responds to Rashba-type spin-orbit splitting of the conduction
and valence bands. Irrespective of band symmetry type, mirror
symmetry Mx:x → −x imposes the general constraint

bx
k = bx

Mxk, −by,z
k = by,z

Mxk. (11)

Combined with invariance under rotations this constraint im-
plies bz

k = 0.
Next, consider the coupling matrix �k. We expand �k as

�k = δk + dk · σ, (12)

where the scalar function δk and the vector function dk are in
general complex. Invariance under time reversal 	 implies the
condition

δ∗
k = δ−k, −d∗

k = d−k, (13)
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for the (generally complex) functions δk and dk. Furthermore,
mirror symmetry Mx imposes the constraints

±δk = δMxk, ±dx
k = dx

Mxk, ∓dy,z
k = dy,z

Mxk, (14)

where the sign ± is determined by the absence or presence of
a relative phase eiπ in the matrix representations of the two
bands (see Table I).

To determine the constraints from rotation symmetry im-
posed on hc,v

k and �k, we note that momentum k transforms
as

Cnz : k± → e±i2π/nk±, (15)

Mx : k± → −k∓, (16)

where k± = kx ± iky and n = 4, 6 describes either a fourfold
or sixfold crystal rotation. Momentum kz is left invariant by
either symmetry.

Based on these general considerations, we are now in a
position to obtain the most general form of the Hamiltonian
allowed by symmetry, for each type of band inversion. For
each allowed coupling in the Hamiltonian, we retain only the
lowest order contribution.

C. Two examples of distinct band inversions

We apply the general formalism of the previous section
to two particular cases, which will serve to illustrate all sig-
nificant and relevant features of noncentrosymmetric Dirac
semimetals. First, we consider a band inversion of jz = ± 1

2
and jz = ± 3

2 states, which we choose as the conduction and
valence band, respectively. These states correspond to the rep-
resentations �6 and �7 of C4v , or �7 and �9 of C6v . The form
of hc

k does not depend on the degree of rotation symmetry,
fourfold or sixfold, and is given by (see Appendix A)

hc
k = εk + λc(kxσy − kyσx ). (17)

The second term proportional to λc is a Rashba spin-orbit
coupling which linearly splits the Kramers pairs away from
k = 0. This “intraband” spin-orbit coupling is associated with
a characteristic momentum mzλc or, alternatively, the energy
scale mzλ

2
c , which may be compared to ε0.

The valence band Hamiltonian for the jz = ± 3
2 states does

depend on the degree of rotation symmetry. In the case of
fourfold rotational symmetry, which we will consider as an
example here, hv

k is given by

hv
k = −εk + λv (kxσy + kyσx ). (18)

The form of hv
k in the case of sixfold rotations is discussed in

Appendix A.
We find that the coupling matrix �k takes the form

�k =
(

αk+ βk2
− + β ′k2

+
−βk2

+ − β ′k2
− αk−

)
, (19)

where α, β, β ′ can be functions of kz. In particular, we find
that to lowest order in kz, these coefficients are given by

α = iα1 + α2kz, β = β1 + iβ2kz, (20)

where α1,2 and β1,2 are real; β ′ has the same form as β. Here
we have assumed a relative sign difference in the represen-
tation of mirror symmetry. The form of �k in (19) applies

to both fourfold and sixfold rotational symmetry, except that
β ′ ≡ 0 for C6v symmetry. In the next section, we will examine
the full Hamiltonian in detail and establish its phase diagram.

As a second example, we consider a band inversion of jz =
± 1

2 and jz = ± 5
2 states, which can occur only in materials

with sixfold rotation symmetry. For this type of band inver-
sion, the conduction and valence band Hamiltonians, hc

k and
hv

k, take the same form as Eqs. (17) and (18), respectively. Due
to the different rotation eigenvalues of the valence band states,
however, the form of the coupling matrix �k is different and
is given by

�k =
(

αk2
+ βk3

− + β ′k3
+

−βk3
+ − β ′k3

− αk2
−

)
. (21)

The coefficients α, β, β ′ now take the form

α = α1 + iα2kz, β = iβ1 + β2kz, (22)

where α1,2 and β1,2 are real, as before, and β ′ has the same
form as β. Note that here we have assumed the same mirror
representation for the two bands.

In the remainder of this section, and in Sec. III, we will use
the model Hamiltonians for these two types of band inversions
to establish the generic properties of noncentrosymmetric
Dirac semimetals.

D. Mirror planes

As a first step in our analysis, we consider the mirror
planes, where the Hamiltonian commutes with the mirror
symmetry operator. As an example, consider the kx = 0 mirror
plane, where k = (ky, kz ). Since the Hamiltonian commutes
with Mx it can be block-diagonalized by expressing it in terms
of eigenstates of Mx, resulting in two diagonal blocks labeled
by the mirror eigenvalues ±i. The Hamiltonian H±i

k for each
block can be expanded as

H±i
k = χ±

k + n±
k · τ, (23)

where τ = (τx, τy, τz ) is a set of Pauli matrices. The product
of time-reversal symmetry and the twofold rotation 	C2z an-
ticommutes with Mx, i.e., {Mx,	C2z} = 0, and imposes the
constraint

(H±i )∗kykz
= H±i

ky,−kz
, (24)

which implies that ny,± is an odd function of kz. In particular,
it implies that on the ky axis, where kz = 0 (and, of course,
kx = 0), we must have ny,± = 0. This is an important property
which will be exploited in Secs. III B and III C when we
address gap closing transitions.

It is straightforward to obtain H±i
k for the two types of band

inversions considered in Sec. II C. For the first type, between
jz = ± 1

2 and jz = ± 3
2 states, we find

χ±
k = ±λ1ky, nz,±

k = εk ± λ2ky, (25)

where λ1,2 = (λc ± λv )/2. For the components nx,y
k we find

nx,±
k = −α1ky ∓ (β1 + β ′

1)k2
y , (26)

ny,±
k = −α2kzky ± (β2 + β ′

2)kzk
2
y . (27)
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Observe that ny,±
k is indeed an odd function of kz, as required.

Within each mirror sector the two branches of the energy
spectrum are easily obtained as

E±
ks = χ±

k + s|n±
k |, (28)

where s = ±1. For ky → 0 the + (−) solution can be identi-
fied with the conduction (valence) band, whereas for large ky

this is reversed.
For the second type of band inversion, between jz = ± 1

2

and jz = ± 5
2 bands, and with �k given by Eq. (21), we find

χ±
k = ±λ2ky, nz,±

k = εk ± λ1ky, (29)

as well as

nx,±
k = −α1k2

y ± (β1 − β ′
1)k3

y , (30)

ny,±
k = α2kzk

2
y ± (β2 − β ′

2)kzk
3
y . (31)

The energy spectrum is obtained as before and given by
Eq. (28).

We conclude this section by stressing that here we have
considered only one particular mirror plane (kx = 0) as an
example. This mirror plane belongs to set of two (in the case
of C4v) or three (in the case of C6v) equivalent mirror planes,
which correspond to conjugate mirror symmetries. As a result,
the energy spectrum must be identical on all equivalent mirror
planes. Importantly, there is second set of mirror planes, not
related to the first by similarity transformation, for which a
similar analysis can be performed. In the case of C6v , the
ky = 0 plane belongs to the second set and the Hamiltonian is
block diagonal in a basis of My eigenstates. Since the Hamilto-
nian is not conjugate to the Hamiltonian on the kx = 0 plane,
its spectrum is generally not identical. This will be of con-
sequence when, in the next section, we consider the creation
and annihilation of Weyl points, which are created on one set
of mirror planes and annihilated on the other. Furthermore,
we will show that Weyl lines nodes can occur on either one
of the two sets of mirror planes, but not simultaneously. Weyl
lines nodes—if present—can be realized on only one of the
two sets.

III. PHASE DIAGRAM OF NONCENTROSYMMETRIC
DIRAC SEMIMETALS

Based on the obtained model Hamiltonians, we now exam-
ine the general phase diagram of noncentrosymmetric Dirac
semimetals. In particular, our goal is to establish the distinct
topological semimetallic phases which can generically occur
for a particular type of band inversion. To achieve this, we first
focus on the region close to the Dirac points and examine the
dispersion in the vicinity of the Dirac band crossings. This
allows us to determine how the qualitative structure of the
Dirac points changes as a function of model parameters, and
how this gives rise to different types of Dirac point crossings
in noncentrosymmetric systems. We then focus on the vertical
mirror planes and study how distinct semimetallic phases arise
in the phase diagram, separated by gap closing transitions.

A. Description of the Dirac points

By construction, the model Hamiltonians derived in the
previous section describe a set of two fourfold degenerate
band crossings on the rotation axis. These crossings occur
at kz = ±K0, with K0 = √

2mz|ε0|, and realize Dirac points.
Since our goal is to determine the precise nature of the
noncentrosymmetric Dirac points, we expand the dispersion
at the Dirac points in momentum q = k ∓ K0, where K0 =
(0, 0, K0). For concreteness, we will focus on the Dirac point
at +K0; the results for −K0 are straightforward and similar.

Stable Dirac points are defined as a symmetry-protected
degeneracy of two Weyl points of opposite chirality (i.e.,
handedness). To expose this structure in the present context,
it is useful to consider the inversion symmetric limit of the
model Hamiltonian. Two possible limits exist, one where the
two bands have equal parity and one where the bands have
opposite parity. As we show in more detail in Appendix D,
starting from either case it is possible to bring the Hamiltonian
describing the electronic states near K0, denoted Hq, into the
form

Hq =
(

A−
q Bq

B†
q A+

q

)
. (32)

Here A±
q describes a (twofold degenerate) Weyl node with

positive (+) and negative (−) chirality, and Bq describes a
coupling between the two Weyl nodes, which is allowed due to
the lack of inversion symmetry. We now examine the form of
A±

q and Bq for the two representative types of band inversions
discussed above in Sec. II C.

Consider first the case of a band inversion of jz = ± 1
2 and

jz = ± 3
2 states, as defined via Eqs. (17)–(19). In this case the

two Weyl nodes are described by

A±
q = qiA

±
i jτ j, (33)

with matrices A± given by

A± =
⎛
⎝ α̃2 −α1 0

±α1 ±α̃2 0
0 0 vz

⎞
⎠, (34)

and velocities vz and α̃2 defined as vz ≡ K0/mz and α̃2 ≡
α2K0. As required, Eq. (33) has indeed the general form of
a linear crossing of energy bands, and the matrices A± encode
the Weyl node chirality through the sign of their determinant,
i.e., Det A± = ±vz(α2

1 + α̃2
2 ). Two results follow from this:

first, from Eq. (34) we see that, apart from the velocity vz,
the matrices A± depend only on the couplings between the
bands captured by the off-diagonal block �k; they do not
depend on the intraband spin-orbit couplings described by
hc,v

k . Second, the nature of the Weyl points does not change
as a function of parameters; it never vanishes and does not
change sign.

In contrast, Bq is given by

Bq = −iλ1qx − λ2qy − (iλ2qx + λ1qy)τz, (35)

and depends only on the Rashba-type intraband spin-orbit
couplings. Recall that λ1,2 = (λc ± λv )/2. The structure of
the Dirac point may change as a function of the coupling
described by Bq, and we thus need to examine the effect of
Bq. The possible effect of Bq is to cause energy level crossings
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FIG. 2. Schematic representation of the creation of Weyl line
nodes and Weyl point nodes. (a), (b) The ky-kz plane, with the Dirac
points at ±K0 on the kz indicated by bold red dots. As discussed in
Sec. III A and shown in (a), inversion symmetry breaking can give
rise to Weyl line nodes which connect to the Dirac points, realizing
a qualitatively different type of Dirac point. (b), (c) Gap closing
transitions on the ky axis, which can give rise to Weyl line nodes
(b) or Weyl point nodes (c), depending on the mirror eigenvalues of
the bands (see Secs. III B and III C).

away from the Dirac point, and as a result, we can restrict
the analysis to the mirror planes. Energy level crossings can
occur only on the mirror planes, provided the energy levels
have different mirror eigenvalues. Such band crossings, if they
occur, occur on a line in momentum space and give rise to
topological Weyl line nodes. This is shown schematically in
Fig. 2(a), where the bold blue lines indicate lines of degen-
eracy. Since these line nodes connect to the Dirac points, the
nature of the Dirac point qualitatively changes [34].

Taking the yz mirror plane as an example, we set qx = 0
and transform to the mirror eigenbasis. By definition, this
yields a Hamiltonian exactly equal to the Hamiltonian ob-
tained by expanding Eqs. (25)–(27) to linear order in (qy, qz ).
By setting the energies corresponding to different mirror
eigenvalues equal, we obtain a condition for the existence of
line nodes, which is given by

λ2
1 − λ2

2 − α2
1 − α̃2

2 > 0. (36)

This condition leads to the important conclusion that line
nodes exist for sufficiently large λ1 = (λc + λ2)/2, which
is directly related to the strength of the spin-orbit splitting
of the conduction and valence bands. As a result, for this
type of band inversion two kinds of Dirac points can oc-
cur: (1) conventional Dirac points with linearly dispersing
(nondegenerate) bands away from the fourfold crossing at
±K0 and (2) unconventional Dirac points at which symmetry-
protected line nodes terminate, as shown in Fig. 2(a). Our
analysis shows that this distinction is determined by the rela-
tive strength of intraband spin-orbit coupling and the coupling
between the bands.

Two remarks are in order. First, since we start from an
expansion close to the Dirac point [see Eq. (32)], it is im-
portant to note that the analysis presented here applies only
close to the Dirac points. The fate of the line nodes away
from the Dirac point cannot be determined [as is indicated
by dashed blue lines in Fig. 2(a)], but will be addressed in
Sec. III C. Second, we note that the line nodes occur on all
symmetry-equivalent mirror planes, i.e., mirror planes related
by rotation. As mentioned in Sec. II D, there are two sets of
such symmetry-equivalent mirror planes and by performing

the analysis leading to (36) for both sets, we find that line
nodes can occur on either set of mirror planes, depending on
parameters, but not simultaneously; the existence of Weyl line
nodes on the two sets of inequivalent mirror planes is mutually
exclusive.

Next, consider the second type of band inversion discussed
in the previous section, involving jz = ± 1

2 and jz = ± 5
2 states

and thus requiring sixfold rotation symmetry. We find that the
nature of the Dirac points in this case is rather different. The
key difference is manifest in the form of A±

q , which are given
by

A±
q = vzqzτz + ᾱq2

∓τ+ + ᾱ∗q2
±τ−. (37)

Here we have again focused on the Dirac point at +K0, and
further defined τ± = (τx ± iτy)/2, as well as ᾱ = α1 + iα2K0.
Importantly, in this case A±

q describe a Weyl node with
quadratic dispersion in (qx, qy) and Berry monopole charge
C = ±2 [38]. The form of Bq is the same as in Eq. (35),
which in particular implies that Bq introduces terms linearly
dependent on (qx, qy). Since the latter are more important for
small q, we may ignore all quadratic terms and retain only
the linear contributions to Hq. It is then straightforward to
demonstrate that line nodes terminating at the Dirac points
always exist on one of the two sets of inequivalent mirror
planes. In particular, the condition for line nodes on the yz and
symmetry-related mirror planes is |λ2| > |λ1|, whereas on the
xz and symmetry-related planes it is |λ1| > |λ2|; one of these
conditions is always satisfied.

We summarize our analysis in the vicinity of the Dirac
points by concluding that the way in which the nature of
topological Dirac points is affected by inversion symmetry
breaking crucially depends on the type of band inversion. In
particular, Dirac points which may be viewed as composed of
two C = ±2 Weyl points necessarily appear in combination
with Weyl line nodes. Weyl line nodes may also occur for
Dirac points with purely linear dispersion, but in that case the
presence of line nodes is a threshold phenomenon: it depends
on the strength of the intraband spin-orbit splitting.

B. Gap closings on the mirror planes: Weyl point nodes

The next step in our analysis of the generic phase diagram
is to study the occurrence of gap closings on the mirror planes.
Since on the mirror plane all states can be labeled by the
mirror eigenvalues, two types of gap closings are possible:
between two (nondegenerate) bands with (1) equal mirror
eigenvalues or (2) opposite mirror eigenvalues [39–42]. In
case (1), a gap closing is known to give rise to the nu-
cleation of two Weyl points, as schematically illustrated in
Fig. 2(c), whereas case (2) leads to the creation of stable
Weyl line nodes, shown in Fig. 2(b). Here we systematically
investigate both possibilities within the context of the model
Hamiltonians.

We first consider case (1) and defer case (2) to Sec. III C.
Two planes in momentum space are important for the creation
of Weyl points: the mirror plane and the kz = 0 plane. On the
kz = 0 plane the combined 	C2z symmetry ensures the local
stability of Weyl points [43,44] and as a result, nucleation of
Weyl points can occur only on the intersection of these two
planes, as is clear from Eq. (24) [42]. Let us focus on one
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of such intersections, the ky axis. Since ny,± = 0 on the ky

axis, a gap closing will generically occur for some ky0 by
changing one parameter of the Hamiltonian. More formally,
we may view the mirror-diagonal Hamiltonian H±i(ky, m) as
a function of some gap closing parameter m, such that at
m = m0 the gap closes at ky0. The gap closing condition is
then expressed as

nx(ky, m) = nz(ky, m) = 0, (38)

with solutions (ky0, m0).
In the case of a band inversion of jz = ± 1

2 and jz = ± 3
2

states described by �k in Eq. (19), the gap closing condition
takes the specific form

0 = ε0 + k2
y

2mx
± λ2ky, (39)

0 = −α1ky ∓ (β1 + β ′
1)k2

y . (40)

Note first that this set of equations can have only solutions due
to the breaking of inversion symmetry, since lack of inversion
symmetry allows both α1 and β

(′)
1 to be nonzero. Since we

have ε0 < 0, Eq. (39) always has two solutions for ky, and by
designating one of the parameters of Eq. (40) the gap closing
parameter and changing it continuously, (40) can be satisfied
at one of the zeros of (39). Alternatively, the Rashba spin-
orbit coupling strength λ2 may be viewed as the gap closing
parameter. From Eqs. (39) and (40) we can further conclude
that if a gap closing occurs at ky0 in the +i mirror sector, then
a simultaneous gap closing occurs at −ky0 in the −i mirror
sector. This follows from the invariance of the equations under
simultaneously changing ky → −ky and + → −. As a result,
when the starting point is a fully gapped kz = 0 plane, two
pairs of Weyl points are created on the mirror plane at the
gap closing transition. As the gap closing parameter is further
changed, the Weyl points belonging to each pair move in op-
posite directions perpendicular to the mirror plane, as shown
schematically in Fig. 2(c). A similar gap closing analysis may
be performed for a band inversion of jz = ± 1

2 and jz = ± 5
2

states based on the mirror plane Hamiltonian (29)–(31).
The resulting phase, which exhibits not only Dirac points

on the rotation axis but also Weyl points on the kz = 0 plane,
defines a type of topological semimetal with coexistent Dirac
and Weyl fermions, which was first proposed in Ref. [45]. As
a function of Hamiltonian parameters, pairs of Weyl points
can be created on one set of mirror planes related by rota-
tion symmetry (see Sec. II D) and may exchange partners by
annihilating pairwise on the other (and inequivalent) set of
mirror planes. This defines a topological transition within the
two-dimensional kz = 0 plane [39,45,46], leading to a change
of the corresponding Z2 index [47].

To study the creation and annihilation of Weyl points in
the kz = 0 plane in more detail, we go beyond the gap closing
analysis on the mirror-invariant line and solve for the full
spectrum on the kz = 0 plane. Since the existence of Weyl
points does not rely on the Rashba spin-orbit band splitting,
we make the simplifying assumption λv = λc = 0. As shown
in Appendix E, the Hamiltonian is straightforwardly diago-
nalized and in the case of �k given by Eq. (19), we find the

FIG. 3. Presence of Weyl points in a crystal with C4v point group
symmetry and a band inversion of jz = ± 1

2 and jz = ± 3
2 states.

(a) The phase diagram of creation and annihilation of Weyl points
in kz = 0 as described by the plots of 1 + sin 2η cos 4θk = |α1|/rkc

and circle k = kc. (b) Three-dimensional band structures of Dirac
points with the band dispersions along kx and ky directions. (c) Three-
dimensional band structures on the kz = 0 plane. (d) The colormap
of energy difference with logarithmic scale between the conduction
and valence bands on the kz = 0 plane.

energies

E2
k = ε2

k + (√
k4r2(1 + sin 2η cos 4θk ) ± α1k

)2
, (41)

where we have defined r2 ≡ β2
1 + β ′2

1 and tan η ≡ β ′
1/β1 as a

parametrization of the coupling constants β1, β
′
1. We have fur-

ther defined k2 ≡ k2
x + k2

y and θk ≡ arctan(ky/kx ). (Note that
k is restricted to the kz = 0 plane.) The spectrum defined by
Eq. (41) features Weyl points whenever Ek = 0 has solutions,
which can occur for only two of the four spectral branches
and must occur on the circle defined by kc = √

2|ε0|mx. The
angle θ c

k at which the crossing occurs is given by the solution
of the equation 1 + sin 2η cos 4θk = |α1|/rkc, from which we
conclude that Weyl points exist when the two conditions
|α1|/rkc < 1 + | sin 2η| and |α1|/rkc > 1 − | sin 2η| are sat-
isfied. Note that the sign of sin 2η depends on the relative sign
of β1 and β ′

1: for β1β
′
1 > 0 (β1β

′
1 < 0) one has sin 2η > 0

(sin 2η < 0). This determines on which set of mirror planes
the Weyl points are created and annihilated as parameters are
changed.

The creation and annihilation of Weyl points on the kz = 0
plane of a fourfold rotation symmetric system is shown in
Fig. 3, based on the energy solutions of (41). In particular,
Fig. 3(a) illustrates the range of values of |α1|/r for which
the Weyl points are realized in the kz = 0 plane. The Weyl
points are located where the orange curve crosses the black
circle with radius k/kc = 1. The yellow and blue curves cor-
respond to the critical values |α1|/r = kc(1 + | sin 2η|) and
|α1|/r = kc(1 − | sin 2η|), respectively, at which creation and
annihilation occurs. Figure 3(d) shows the energy difference
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FIG. 4. Phase diagram of Weyl points and electronic structures
of crystals in C6v with �7 and �8 bands from the k · p model. (a) The
phase diagram of creation and annihilation of Weyl points in kz = 0
as described by the plots of 1 + sin 2η cos 6θk = |α1|/rkc and the
circle k = kc. (b) The band dispersions along kz directions. (c) Three-
dimensional band structures on the kz = 0. (d) The colormap of
energy difference with logarithmic scale between the conduction and
valence band on the kz = 0 plane.

between the conduction and valence bands on a logarithmic
scale, clearly revealing the existence of pairs of Weyl points.
Furthermore, Fig. 3(d) shows that the linear dispersion away
from the Weyl points is very anisotropic. We indeed expect a
much smaller velocity in the direction tangential to the circle
k/kc = 1 as compared to the perpendicular direction.

A similar analysis of Weyl points can be performed for a
band inversion described by Eq. (21), in which case we find
the energies

E2
k = ε2

k + [
√

k6r2(1 + sin 2η cos 6θk ) ± α1k2]2. (42)

These solutions have a similar structure but exhibit a six-
fold crystalline anisotropy, instead of fourfold, due to the
sixfold rotation symmetry of Hk defined by Eq. (21). In
particular, Weyl points occur whenever the equation 1 +
sin 2η cos 6θk = |α1|/rkc has solutions, with kc = √

2|ε0|mx

as before. An illustration of the emergence of Weyl points in a
sixfold symmetric system is shown in Fig. 4. Sixfold rotation
symmetry gives rise to six pairs of Weyl points, as shown in
Fig. 4(d).

Note that the coexistence of Dirac and Weyl points is pos-
sibly realized in the crystals with C4v and C6v point groups. It
can be analytically solved in Eq. (41) or (42). We have proved
that the Weyl points appear in the kz = 0 plane whenever
Ek = 0 has solutions. Actually, Ek = 0 of Eq. (41) or (42) has
another solution in case of k = 0 and εk = 0 (kx = ky = 0,
kz = ±√

2ε0mz). This corresponds to the position of Dirac
points at the kz axis. The Dirac and Weyl points from effective
Hamiltonian with C4v and C6v point groups are presented in

Figs. 3 and 4. Besides, the material realization of the coexis-
tence of Dirac and Weyl point will be discussed in Sec. IV C.

C. Gap closings on the mirror planes: Weyl line nodes

We now turn to the emergence of Weyl line nodes on
the mirror planes. As mentioned, Weyl line nodes are real-
ized when bands with opposite mirror eigenvalue cross, thus
preventing a coupling between the bands. In Sec. II D, we
block diagonalized the Hamiltonian on the mirror planes using
the mirror eigenstates, and this form of the Hamiltonian, in
particular the mirror-resolved energy spectrum of Eq. (28),
forms the basis of our analysis. Since lines nodes are defined
as crossings of bands with opposite mirror eigenvalue, they
are solutions to the equation

0 = E+
k,+ − E−

k,− = E−
k,+ − E+

k,−, (43)

where k is understood to be restricted to the mirror plane.
In the present class of models, Weyl line nodes can be

created in two different ways as a function of parameters.
First, as discussed in detail in Sec. III A, line nodes can emerge
in the vicinity of the Dirac points; see also Fig. 2(a). Second,
line nodes can emerge after a gap closing on the intersection
of the (vertical) mirror plane and the kz = 0 plane [42], which
is schematically illustrated in Fig. 2(b). As our analysis in
Sec. III A has shown, the Weyl line nodes which connect to the
Dirac points can occur only for nonzero and sufficiently large
intraband spin-orbit coupling λ1 and λ2. This is true for Weyl
line nodes in general: the existence of line nodes on the mirror
plane requires nonzero λ1, λ2. To see this in a more general
setting, consider the block diagonal Hamiltonians obtained
in Sec. II D, which correspond to the ky-kz mirror planes.
Setting kz = 0 and λ1 = λ2 = 0, it is straightforward to show
that Eq. (43) does not have solutions. Hence, our first key
result is that Weyl line nodes originate from strong intraband
Rashba-type spin-orbit coupling.

As stressed in Sec. II D, systems with point group symme-
try C4v or C6v have two inequivalent sets of mirror planes. Due
to this inequivalence, the question arises whether the presence
of line nodes on one set is correlated with line nodes on the
other set. We find that this is indeed the case: Weyl line nodes
can occur on only one of the two inequivalent sets of mirror
planes. On which set they occur—if they occur—depends on
whether the ratio |λ1|/|λ2| is smaller or larger than one. This is
due to the fact that the role of λ1 and λ2 is reversed on the two
sets of mirror planes, which is straightforwardly established.

We demonstrate these results by showing the solutions of
Eq. (43) for different values of λ1, λ2 in Fig. 5. Consider
first Figs. 5(a) and 5(b), which are obtained for an inversion
of jz = ± 1

2 and jz = ± 3
2 bands in a C4v symmetric system.

Figure 5(a) shows the solutions on the kx = 0 mirror plane,
whereas Fig. 5(b) shows the solutions kx + ky = 0 mirror
plane, for different values of λ1/v, keeping λ2/v = 0.4 fixed.
Here v = k0/mx with the unit of momentum defined as k0 =√|ε0|mx. As demonstrated by Figs. 5(a) and 5(b), Weyl line
nodes occur only on the kx = 0 (kx + ky = 0) mirror plane
for λ1 > λ2 (λ1 < λ2). Note further that for the chosen set
of parameters (see Figure caption) there are no line nodes
connecting to the Dirac points. This is markedly different in
Figs. 5(c) and 5(d), which show the solutions of Eq. (43) for
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FIG. 5. Emergence of Weyl nodes on the mirror planes. (a), (b)
Line nodes of a fourfold rotation symmetric model for a band inver-
sion between jz = ± 1

2 and jz = ± 3
2 bands; (c), (d) the lines nodes

of model for a band inversion between jz = ± 1
2 and jz = ± 5

2 bands.
The two columns, panels (a)–(c) and (b)–(d), show results for the two
inequivalent sets of mirror planes, which are schematically indicated
by bold lines in the bottom corner insets. Different curves correspond
to different values of λ1 or λ2, both measured in units v = k0/m,
with m ≡ mx = mz and unit of momentum k0 = √|ε0|m. Results of
(a) and (b) are obtained by solving Eq. (43) using the Hamilto-
nians defined via (20) with parameters α1/v = 0.26, mα2 = 0.28,
mβ1 = 0.12, mβ ′

1 = 0.08, mk0β2 = 0.06, mk0β
′
2 = 0.10; and results

of (c) and (d) are obtained using (22) (c)–(d) with the same parame-
ters (albeit different units). We have set λ2/v = 0.4 and λ1/v = 0.4
in (a) and (b) and (c) and (d), respectively.

a band inversion of jz = ± 1
2 and jz = ± 5

2 bands. (Recall that
this requires sixfold rotation symmetry.) As is evident, line
nodes connecting to the Dirac points are present for all values
of λ2/v on one of the two sets of mirror planes, consistent with
our analysis of Sec. III A. Note, however, that the line nodes
exist only on one set of mirror planes, depending on whether
λ2/v is larger or smaller than λ1/v = 0.4.

IV. MATERIAL REALIZATIONS

In this final section, we propose material realizations of
noncentrosymmetric Dirac semimetals. In particular, we pro-
pose two materials, Bi2PdO4 and the LiZnSbxBi1−x alloy,
which have fourfold and a sixfold rotation axis, respectively.

A. Computational details of first-principles calculations

To predict real materials hosting noncentrosymmetric
topological Dirac semimetals, we carried out the structural
optimization and electronic structure calculations within the
framework of density functional theory [48,49], using the
Vienna ab initio simulation package [50] based on the projec-
tor augmented wave method [51]. The exchange-correlation
interaction was treated within the generalized gradient ap-
proximation parametrized by Perdew, Burke, and Ernzerhof
(PBE) [52]. The energy cutoff of 500 eV was set in all

FIG. 6. (a) Crystal structure of Bi2PdO4. The purple, gray, and
red balls denote Bi, Pd, and O atoms, respectively. (b) The Brillouin
zone with high symmetry points of BiPd2O4. (c) The band structure
of Bi2PdO4 along high symmetry lines. (d) The band dispersions near
the Dirac point D along the kx and ky directions. The insert figure is
the zoom-in view of band dispersion near the Dirac point.

the calculations and the spin-orbit coupling interactions are
considered in the calculations of electronic structures. For
the structural optimization, the lattice parameters and all the
atoms are relaxed until the Hellmann-Feynman forces on all
atoms are less than 0.005 eV/Å. A k-point mesh was used for
Brillouin zone integration, and we used 7 × 7 × 7 and 15 ×
15 × 9 Monkhorst-Pack grids for Bi2PdO4 and LiZnSbxBi1−x,
respectively. We calculated dynamic properties of Bi2PdO4 by
the finite displacement method [53], as implemented in the
PHONOPY code [54]. In order to check the bands inversion in
Bi2PdO4 and LiZnBi, we also carry out the band structure
calculations by nonlocal HeydScuseria-Ernzerhof (HSE06)
hybrid functional method [55].

B. Noncentrosymmetric Dirac semimetal Bi2PdO4

The crystal structure of Bi2PdO4 is shown in Fig. 6(a).
It crystallizes in a tetragonal crystal structure with space
group I4cm (C10

4v ) and shows isolated coplanar oxygen poly-
hedra around Pd2+. In experiment, the single crystal Bi2PdO4

has been synthesized by a mixture of the oxides PdO and
Bi2O3 at high temperature [56]. Note that the Bi2PdO4 has
a centrosymmetric allotrope with space group P4/ncc, which
is a semiconductor according to first-principles calculations
[57]. The calculated phonon dispersion of noncentrosymmet-
ric Bi2PdO4, presented in Appendix F, shows no imaginary
frequency and thus implies that noncentrosymmetric Bi2PdO4

is dynamically stable.
Figure 6(c) shows the PBE band structure of Bi2PdO4

in the presence of spin-orbit interaction. The band inversion
between conduction and valence bands occur near the � point,
giving rise to electron pockets along the �-Z line and hole
pockets along the �-X and �-M lines. These features indicate
that Bi2PdO4 is a semimetal. Due to the noncentrosymmetric
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structure and the spin-orbit interaction in Bi2PdO4, the energy
bands are nondegenerate except for the time-reversal invariant
points and lines of high symmetry. In particular, the bands
along the �-Z line, which is the C4z-invariant axis with little
group C4v , remain doubly degenerate. The conduction and
valence bands which are inverted at � have symmetry char-
acter �6 and �7, which corresponds to jz = ± 1

2 and jz = ± 3
2

states, respectively. The �7 have predominantly Bi-p charac-
ter, whereas the �6 are predominantly made up of Pd-d states.
As a result of this band inversion, the band crossing on the
�-Z line is protected by symmetry, and this crossing realizes
a noncentrosymmetric Dirac point of the kind discussed in
Secs. II and III. Note, however, that in this case, the Dirac
point is of type II [43,58,59]. Figure 6(d) presents the band
dispersions near Dirac points along the kx and ky directions.
Each band is singly degenerate, which is consistent with dis-
cussion of Sec. II. Moreover, the Dirac cone is overtilted along
the �-A direction and shows the electronic and hole pockets
coexist near Dirac point, which are indeed the characteristic
features of the type II Dirac fermions. As we have known,
the PBE functional underestimate the band gap of semicon-
ductor and overestimate the band inversion gap of topological
materials. Then we have performed the HSE06 calculation to
check the band structure of Bi2PdO4. It turns out that Bi2PdO4

is an indirect semiconductor with a band gap of 0.58 eV. To
realize the band inversion in Bi2PdO4, we study the pressure
effect on the electronic structures and find that the Bi2PdO4

is a type II noncentrosymmetric Dirac semimetal under 20
Gpa pressure. The HSE06 band structures of Bi2PdO4 under
different pressures are presented in Appendix G.

C. Tunable Dirac and Weyl fermions in LiZnSbxBi1−x alloy

Both LiZnBi and LiZnSb crystallize in the ABC hexagonal
polar space group P63mc. The crystal structure of LiZnBi(Sb),
known as the stuffed wurtzite lattice, is shown in Fig. 7. The
Zn and Bi (Sb) atoms form the wurtzite structure, and the Li
atoms occupy the interstitial sites of the wurtzite lattice. Both
LiZnBi and LiZnSb have been experimentally synthesized
[60,61]. LiZnBi has been identified as a Dirac semimetal by
first-principles calculations in previous work [35] and is thus
predicted to realize a noncentrosymmetric Dirac semimetal
with C6v point group.

Moreover, a number of other hexagonal ABC crystals
have been predicted to realize Dirac semimetals, including a
SrHgPb family [45], CaAgBi [36], and LiGaGe [62]. Inter-
estingly, the SrHgPb family of materials have been proposed
to host coexisting Dirac and Weyl points, the latter of which
are tunable by the HgPb buckling [45]. The regulation of
HgPb buckling is however difficult to control in experiment.
By contrast, a feasible route to controlling the existence
and properties of coexisting Dirac and Weyl points is al-
loy engineering, as has been pointed by previous theoretical
predictions [63,64] and demonstrated in experiments [65,66].
Here we propose alloy engineering of LiZnBi and LiZnSb.

In contrast to LiZnBi, LiZnSb is a semiconductor with the
band gap of 0.42 eV. The band structure and Wannier charge
center (WCC) of LiZnSb are presented in Appendix H, show-
ing that LiZnSb is a topologically trivial semiconductor. So
one should expect that the electronic structures and topologi-

FIG. 7. (a) Crystal structure of hexagonal polar LiZnSbxBi1−x

alloy. The green, gray, and purple balls denote Li, Zn, and Sb or Bi
atoms. (b) The band structure of LiZnSb0.5Bi0.5 alloy. (c) The energy
difference between conduction and valence bands in the kz = 0 plane
of LiZnSb0.5Bi0.5 alloy. Here the colormap shows logarithmic scale
of energy difference log(Ecb − Evb). The surface states of (d) top
and (e) bottom surfaces of LiZnSbxBi1−x alloy. The red and blue
dots indicate the projected Weyl points on the surfaces. (f) The
positions of Weyl points in the kz = 0 plane with respect to the alloy
concentration x in LiZnSbxBi1−x . The color values denote the alloy
concentration x.

cal transition are tunable by changing the alloy concentration
in LiZnSbxBi1−x. To confirm this idea, we calculate the
electronic structures of LiZnSbxBi1−x alloy using the virtual
crystal approximation method [67]. The effective Hamiltonian
of LiZnSb and LiZnBi are obtained using Maximum Local-
ized Wannier Function as implemented in Wannier90 package
[68]. Then the effective Hamiltonian of LiZnSbxBi1−x alloy
is linearly interpolated between LiZnSb and LiZnBi ones.
The band structure of LiZnSb0.5Bi0.5 is calculated and shown
in Fig. 7(b). It turns out the LiZnSb0.5Bi0.5 is a noncen-
trosymmetric topological Dirac semimetal. The conduction
and valence bands remain inverted and the Dirac points along
the �-X line are symmetry-protected by the C6v points group.
Compared with the pristine undoped Dirac semimetal LiZnBi,
the energy level of Dirac points in LiZnSb0.5Bi0.5 is exactly
tuned closer to the Fermi level. This is a great advantage in
the experiment to measure the transport properties of noncen-
trosymmetric topological Dirac semimetals.

More interestingly, we found that the Weyl points also
appear in the LiZnSb0.5Bi0.5 alloy. To prove the existence of
Weyl points, the energy difference between conduction and
valence bands in the kz are calculated and shown in Fig. 7(c).
It turns out that there are six pairs of Weyl points in the kz

plane. These 12 Weyl points are related by C6v and time-
reversal symmetries. The positions of one independent pair of
Weyl points are identified as (±0.018, 0.085, 0) in fractional
coordinates. To further confirm the Weyl semimetal phase of
LiZnSb0.5Bi0.5 alloy, the topological Fermi arc surface states
of the top and bottom surfaces are calculated and presented in
Figs. 7(d) and 7(e). Since the topological properties of LiZnSb
and LiZnBi show significant difference, one may continually
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change the alloy concentration in the LiZnSb1−xBix to explore
its topological properties by first-principles calculations or in
the experiments. By calculating the electronic structures of
LiZnSb1−xBix with the continuous change of x value from
0 to 1, we find that the Dirac points appear when the value
is larger than 0.38 and the Weyl points are generated on the
�-M line when the x value equals 0.41. The trace of Weyl
points with alloy concentration x value is shown in Fig. 7(d).
One can see that each pair of Weyl points move from �-M line
to �-K line with the increase of the value of x and annihilate
at the �-K line. So the topological phases of Dirac and Weyl
points coexsit when the value of x is between 0.41 and 0.65.
The first-principles calculations are consistent with our k · p
model as discussed in Sec. II C.

V. DISCUSSION AND CONCLUSION

In this paper, we have developed a general study of
topological Dirac semimetals in noncentrosymmetric crys-
tals geared towards material realizations and prediction. We
have identified the crystallographic point group symmetry
requirements for stable fourfold degenerate band crossings
on the rotation axis induced by a band inversion at �, and
have identified all distinct types of band inversions based
on the band angular momentum quantum numbers. For each
type, we derived model Hamiltonians describing the inverted
bands, using a formulation which makes the physical nature
of the allowed couplings transparent, and thus allows for a
systematic study of the distinct semimetallic phases which can
generically occur as a function of model parameters.

We have established the generic phase diagram of noncen-
trosymmetric topological Dirac semimetals by studying the
model Hamiltonians in two different ways: close to the Dirac
point band crossings and on the mirror planes. Our analysis
shows that, depending on the strength of intraband spin-orbit
coupling allowed by inversion symmetry breaking, the Dirac
points can change character and become attached to Weyl line
nodes on the mirror planes. Weyl line nodes are generically
present in the phase diagram of noncentrosymmetric Dirac
semimetals, enabled by intraband spin-orbit coupling. For one
type of band inversion, we have shown that Weyl line nodes
connecting to the Dirac points always occur. We further deter-
mine that Weyl point nodes coexisting with the Dirac points
are generically present in the phase diagram. The presence of
Weyl points depends on the precise strength of the coupling
between the inverted bands.

Two material candidates, Bi2PdO4 under 20 Gpa pressure
and the LiZnSbxBi1−x alloy, are proposed as realizations of
noncentrosymmetric Dirac semimetals. Using first-principles
materials prediction, we find that Bi2PdO4 with point group
C4v hosts the type II Dirac fermions on the C4z rotational axis,
and further find that the alloy LiZnSbxBi1−x with point group
C6v can realize doping-tunable Weyl points on the kz = 0
plane of momentum space.

We conclude by noting that model Hamiltonians derived
in this work provide a fruitful basis for further study of non-
centrosymmetric Dirac semimetals, in particular with regard
to properties related to inversion symmetry breaking. For in-
stance, very recently a large nonlinear optical response [69,70]
and quantum nonlinear Hall effect [71,72] have been predicted

for Weyl semimetals which preserve time-reversal symmetry
but break inversion symmetry. It will be very interesting to
explore similar properties and effects in noncentrosymmetric
topological Dirac semimetals, and our analysis provides a
natural framework for doing so. In this regard, it is worth
mentioning that our derivation of k · p-type model Hamilto-
nians can be directly and straightforwardly extended to obtain
full lattice models (i.e., tight-binding models) for the relevant
low-energy bands.
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APPENDIX A: SINGLE-BAND HAMILTONIAN hk

In this Appendix we describe the derivation of the single-
band Hamiltonians hk given the symmetry type of the band
(i.e., the value of jz). In fact, we need only to find bk.

First, consider a band of jz = ± 1
2 states. Rotational sym-

metry (either fourfold C4z or sixfold C6z) mandates the form

bx
k − iby

k = λk−. (A1)

From (11) it follows that bx
k + iby

k = −λk+, but since also
bx

k + iby
k = λ∗k+, one must have λ∗ = −λ, i.e., λ is purely

imaginary. We thus find that

bk · σ = λ̄(kxσy − kyσx ), (A2)

with λ̄ real.
In the case of jz = ± 3

2 states rotational symmetry matters.
In particular, C4z symmetry mandates the form

bx
k − iby

k = λk+, (A3)

whereas C6z symmetry mandates the form

bx
k − iby

k = λ1k3
− + λ2k3

+. (A4)

As before, mirror symmetry requires that λ∗ = −λ, and
further that λ∗

1,2 = −λ1,2. In the case of fourfold rotation sym-
metry we simply have bk · σ = λ̄(kxσy + kyσx ), with λ̄ real.
Instead, in the case of sixfold symmetry we have

bk · σ = −iλ̄(k3
+ − k3

−)σx − λ̄′(k3
+ + k3

−)σy, (A5)

with λ̄, λ̄′ real. As a result, the breaking of inversion symmetry
does not lead to a linear splitting of Kramers pairs away from
time-reversal invariant momenta.
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Finally, consider a band of jz = ± 5
2 states, where only the

case of C6x symmetry is relevant. For sixfold rotations we have

bx
k − iby

k = λk+, (A6)

and from (11) we again find that λ∗ = −λ.

APPENDIX B: BAND INVERSION OF jz = ± 1
2 AND

jz = ± 3
2 BANDS

We consider a band inversion of jz = ± 1
2 and jz = ± 3

2
bands and determine the form of �k. Rotation symmetry
(either fourfold or sixfold) mandates the general form

�k =
(

γ1k+ γ3k2
− + γ ′

3k2
+

γ4k2
+ + γ ′

4k2
− γ2k−

)
(B1)

with coefficients γi = γi(kz ) which may still be functions of
kz. Note that in the case of sixfold C6z symmetry we must have
γ ′

3 = γ ′
4 = 0. Connecting this with the expansion of (12) we

find that δk and dz
k are given by

δk = 1
2 (γ1k+ + γ2k−), dz

k = 1
2 (γ1k+ − γ2k−). (B2)

Time-reversal invariance, as given by Eq. (13), leads to the
condition

γ ∗
2 (kz ) = −γ1(−kz ). (B3)

Invariance under mirror symmetry Mx implies

γ2(kz ) = γ1(kz ), (B4)

and combining these two conditions we obtain the constraint

γ ∗
1 (kz ) = −γ1(−kz ). (B5)

We conclude that when expanding γ1(kz ) in kz, the even terms
have purely imaginary coefficients, whereas the odd terms are
purely real.

For the off-diagonal terms of �k we have

dx
k − idy

k = γ3k2
− + γ ′

3k2
+. (B6)

Time-reversal symmetry enforces the constraint

−(
dx

k + idy
k

)∗ = dx
−k − idy

−k, (B7)

which leads to the condition

γ ∗
4 (kz ) = −γ3(−kz ), γ ′

4
∗(kz ) = −γ ′

3(−kz ). (B8)

Mirror symmetry implies the conditions

γ4 = −γ3, γ ′
4 = −γ ′

3, (B9)

and these may be combined with the time-reversal condition
to obtain

γ ∗
3 (kz ) = γ3(−kz ), (B10)

and the same relation for γ ′
3. Hence, the even terms in kz

have purely real coefficients, whereas the odd terms are purely
imaginary.

APPENDIX C: BAND INVERSION OF jz = ± 1
2 AND

jz = ± 5
2 BANDS

Consider next a band inversion of jz = ± 1
2 and jz = ± 5

2 .
In this case, we need only to consider sixfold rotationally

symmetric systems, since jz = ± 5
2 doublets fall in the same

symmetry class as ± 3
2 states in C4 systems (i.e., they have the

same representation). Sixfold rotation symmetry mandates the
general form

�k =
(

γ1k2
+ γ3k3

− + γ ′
3k3

+
γ4k3

+ + γ ′
4k3

− γ2k2
−

)
, (C1)

where the coefficients γi = γi(kz ) are again functions of kz. In
terms of the expansion of (12) we find that δk and dz

k are given
by

δk = 1
2 (γ1k2

+ + γ2k2
−), dz

k = 1
2 (γ1k2

+ − γ2k2
−). (C2)

Time-reversal invariance, as expressed in Eq. (13), leads to the
condition

γ ∗
2 (kz ) = γ1(−kz ). (C3)

Invariance under mirror symmetry Mx implies the condition

γ2(kz ) = γ1(kz ), (C4)

and combining these two conditions we obtain the single
condition

γ ∗
1 (kz ) = γ1(−kz ). (C5)

We conclude that when expanding γ1(kz ) in kz, the even terms
have purely real coefficients, whereas the odd terms are purely
imaginary.

For the off-diagonal terms of �k we have

dx
k − idy

k = γ3k3
− + γ ′

3k3
+. (C6)

From time-reversal symmetry we find

γ ∗
4 (kz ) = γ3(−kz ), γ ′

4
∗(kz ) = γ ′

3(−kz ). (C7)

Mirror symmetry implies the conditions

γ4 = −γ3, γ ′
4 = −γ ′

3, (C8)

and these may be combined with the time-reversal condition
to obtain

γ ∗
3 (kz ) = −γ3(−kz ), (C9)

and the same relation for γ ′
3. Hence, the even terms in kz

have purely imaginary coefficients, whereas the odd terms are
purely real.

APPENDIX D: INVERSION SYMMETRIC LIMITS

In principle, the inversion symmetric limit of our model
Hamiltonians is ambiguous, since the relative parity of the
two bands is ill-defined. By treating the two possible cases
separately, here will show that the two different ways of taking
the inversion symmetric limit can be considered equivalent.

1. Band inversion of jz = ± 1
2 and jz = ± 3

2 bands

First, consider the band inversion of jz = ± 1
2 and jz = ± 3

2
bands, for which the coupling matrix �k is given by Eq. (19).
If we assume that, in the inversion symmetric limit, the two
bands have equal parity, then the Hamiltonian H±

q near the
two Dirac points at ±K0 is given by

H±
q = ±(vqzτz + α̃2qxτx − α̃2qyτyσz ), (D1)
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where τz = ±1 labels the conduction and valence bands, and
α̃2 = α2K0. The velocity v is defined as v = K0/mz. To isolate
the two Weyl points contained in this Dirac point, we seek
a chiral operator � which commutes with τz, τx, and τyσz,
and satisfies �2 = 1. The operator with the desired properties
is given by � = −σz. Writing the full noncentrosymmetric
Hamiltonian near each Dirac point ±K0 in a basis of chiral
eigenstates of � brings the Hamiltonian into the form of
Eq. (32), with A±

q = qiA
±
i jτ j . (Note that here, in the case of

A±
q , ± refers to the chirality of the Weyl points forming a

Dirac point.) At the Dirac point located at +K0, A±
q is given

by Eq. (34), where as at +K0 one has

A± =
⎛
⎝−α̃2 −α1 0

±α1 ∓α̃2 0
0 0 −v

⎞
⎠. (D2)

Now consider the other possible inversion symmetric limit,
in which the two bands have opposite parity. In that case, the
inversion symmetric Hamiltonian at ±K0 is given by

H±
q = ±vqzτz − α1qxτy − α1qyτxσz. (D3)

The chiral operator � can be taken as before, � = −σz, and
this leads to the same expressions for A±

q and Bq. We thus
conclude that, in this sense, the two inversion symmetric limits
are equivalent.

2. Band inversion of jz = ± 1
2 and jz = ± 5

2 bands

In the case of the second type of band inversion, between
jz = ± 1

2 and jz = ± 5
2 bands, taking the inversion symmetric

limit(s) introduces an additional subtlety. Consider first the
case of equal parity bands. In this case, the Hamiltonian near
the two Dirac points at ±K0 is

H±
q = ±vqzτz + α1

(
q2

x − q2
y

)
τx − 2α1qxqyτyσz. (D4)

At +K0 the chiral operator can again be chosen as � = −σz,
and this leads to the matrices A±

q (at +K0) given by

A±
q = vqzτz + α1(q2

∓τ+ + q2
±τ−). (D5)

Here we have introduced τ± = (τx ± iτy)/2 and q± = qx ±
iqy. Importantly, the matrices A±

q describe a topological band
crossing with monopole charge C = ±2, which is a result of
the quadratic dispersion in the plane. This should be con-
trasted with the case of linear dispersion.

In the converse case, when the parity eigenvalues are op-
posite, the Hamiltonian near ±K0 takes the form

H±
q = ±[

vqzτz − α̃2
(
q2

x − q2
y

)
τy − 2α̃2qxqyτxσz

]
, (D6)

with α̃2 = α2K0. The chirality operator is taken as � = −σz,
as before, and we find the matrices A±

q as

A±
q = vqzτz + α̃2i(q2

∓τ+ − q2
±τ−). (D7)

Starting from either of these two limits one may activate
the inversion symmetry-breaking terms and arrive at the full
form of A±

q given by

A±
q = vqzτz + ᾱq2

∓τ+ + ᾱ∗q2
±τ−, (D8)

with ᾱ = α1 + iα2K0.

APPENDIX E: DIAGONALIZATION OF Hk

Taking the Hamiltonian of Eq. (3) and setting λv = λc = 0
one obtains

Hk =
(

εk �k

�
†
k −εk

)
, (E1)

which can be straightforwardly diagonalized by using well-
known properties of nonunitary pairing states. For the matrix
product �k�

†
k we find

�k�
†
k = |δk|2 + |dk|2 + (δ∗

kdk + δkd∗
k + idk × d∗

k ) · σ

(E2)

and leads to an equation for the energies Ek given by

E2
k = ε2

k + |δk|2 + |dk|2 ± Fk (E3)

with Fk defined as

Fk = [
(δ∗

k )2d2
k + δ2

k(d∗
k )2 + 2|δk|2|dk|2 − ∣∣d2

k

∣∣2 + |dk|4
]1/2

.

(E4)

In the present context, these solutions can be further sim-
plified when kz = 0. In this case we find that δk and the
components of dk are either purely real or purely imaginary.
In particular, either δk, dz

k are purely real and dx
k, dy

k are purely,
or vice versa. In either case Fk reduces to

Fk = 2
√(|δk|2 + ∣∣dz

k

∣∣2)(∣∣dx
k

∣∣2 + ∣∣dy
k

∣∣2)
, (E5)

which may be used to rewrite E2
k as

E2
k = ε2

k + (√∣∣δk
∣∣2 + ∣∣dz

k

∣∣2 ±
√∣∣dx

k

∣∣2 + ∣∣dy
k

∣∣2)2
. (E6)

By substituting the appropriate expressions for δk and dk we
obtain Eqs. (41) and (42).

APPENDIX F: PHONON DISPERSION OF Bi2PdO4

To illustrate the dynamic properties of Bi2PdO4, the
phonon dispersion was calculated using the finite difference
method with a 2 × 2 × 2 supercell and shown in Fig. 8. No
imaginary frequency is observed in the dispersion. It turns out
that Bi2PdO4 is dynamic stable.

FIG. 8. The phonon dispersion of Bi2PdO4.
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FIG. 9. HSE06 band structures of Bi2PdO4 with the pressures of
(a) 0 Gpa, (b) 5 Gpa, (c) 10 Gpa, and (d) 20 Gpa.

APPENDIX G: HSE06 BAND STRUCTURES OF Bi2PdO4

UNDER PRESSURE

In order to study the electronic structures of Bi2PdO4

under different pressures, the band structures with the
pressures of 0 Gpa, 5 Gpa, 10 Gpa, and 20 Gpa
were calculated by the HSE06 method and presented
in Fig. 9. We found that Bi2PdO4 is a semiconduc-
tor and become a semimetal when the pressure is
larger than 5 Gpa. However, there is no band inversion
at the � point in Bi2PdO4 when the pressure is 5 Gpa.
This is due to that Bi2PdO4 is an indirect semiconductor.
When the pressure is continually increased to larger than
10 Gpa, one will observe the � point is close to the band
inversion between conduction and valence bands. In the case
of 20 Gpa pressure, Bi2PdO4 is a type II noncentrosymmetric
Dirac semimetal.

FIG. 10. The band structures of (a) LiZnSb and (b) LiZnBi along
high symmetry lines. The WCC of (c) LiZnSb and (d) LiZnBi in the
kz = 0 plane.

APPENDIX H: BAND STRUCTURES AND WCC
OF LiZnSb AND LiZnBi

To explore the electronic structures and topological prop-
erties of LiZnSb and LiZnBi, the band structures were
calculated with PBE and HSE06 methods and shown in
Figs. 10(a) and 10(b). The band gaps of LiZnBi are 0.41 eV
and 0.87 eV with PBE and HSE06 methods, respectively. The
HSE06 band structure of LiZnBi confirms the band inversion
with 0.37 eV at the � point. Since the LiZnSb and LiZnBi
crystallize with C6v point group which breaks the inversion
symmetry. The parity method [73] does not work here. We
employ the Wilson loops method [74,75] to calculate the Wan-
nier Charger center on kz = 0 plane of LiZnSb and LiZnBi
and present in Figs. 10(c) and 10(d). It turns out that Z2

invariants on kz = 0 plane of LiZnSb and LiZnBi are 0 and
1, respectively.
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