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Superconductivity arises mostly at energy and temperature scales that are much smaller than the typical bare
electronic energies. Since the computational effort of diagrammatic many-body techniques increases with the
number of required Matsubara frequencies and thus with the inverse temperature, phase transitions that occur at
low temperatures are typically hard to address numerically. In this work, we implement a fluctuation exchange
(FLEX) approach to spin fluctuations and superconductivity using the “intermediate representation basis” (IR)
[Shinaoka et al., Phys. Rev. B 96, 035147 (2017)] for Matsubara Green functions. This FLEX + IR approach is
numerically very efficient and enables us to reach temperatures on the order of 10−4 in units of the electronic
bandwidth in multiorbital systems. After benchmarking the method in the doped repulsive Hubbard model on
the square lattice, we study the possibility of spin-fluctuation-mediated superconductivity in the hydrated sodium
cobalt material NaxCoO2 · yH2O reaching the scale of the experimental transition temperature Tc = 4.5 K and
below.
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I. INTRODUCTION

The physics of unconventional superconductivity has
been a longstanding problem in condensed-matter physics.
Over the course of decades, many different systems have
been discovered, such as heavy-fermion compounds [1,2],
cuprates [3,4], iron-based superconductors [5,6], twisted
two-dimensional (2D) materials [7,8], and infinite-layer
nickelate [9].

Finding a microscopic description for these materials is a
difficult task since correlations as well as complexity need
to be accounted for appropriately. The inherent complexity
of real materials arises from the interplay of many internal
degrees of freedom and typically covering multiple energy
scales. For instance, screening of the Coulomb interaction of-
ten involves electronic bands reaching up to 100 eV in energy.
On the other side, superconductivity emerges when thermal
energies are on a scale of 10 meV for Tc cuprate systems
down to a few 10 μeV in several heavy-fermion systems.
Hence, four or even more orders of magnitude of electronic
energies are typically involved in the electronic structure of
superconducting materials. For the theoretical modeling, this
has practical consequences. Distinct energy scales require
large but accurate frequency grid sampling and processing.
This frequently limits the phase space that can be studied by
diagrammatic many-body methods.

One particular material example for this complex interplay
of different degrees of freedom and energy scales is given by
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the water intercalated sodium cobalt oxide, NaxCoO2 · yH2O,
which features superconductivity with transition temperatures
reaching Tc = 4.5 K [10]. This material consists of layered
cobalt oxide planes being separated by sodium ions and wa-
ter molecules. The Co atoms are arranged on a triangular
lattice and hole-doped, rendering it a possible realization of
a resonating-valence-bond state, related to high-temperature
superconductivity [11,12]. However, until now neither an ex-
perimental nor a theoretical consensus has been reached on
the origin of the superconducting pairing.

Theoretically proposed pairing types include a spin triplet
p - or f -wave driven by ferromagnetic fluctuations [13–16],
a spin singlet extended s-wave [17,18], a chiral (d + id )-
wave [19,20], an odd frequency gap [15,21], or conventional
phonon-assisted s-wave pairing [22,23]. For each of them,
experimental results can be found that support or deny their
realization [24], making the analysis quite delicate. This
controversy about the pairing type originates from several
problems. They include a general instability of the NaxCoO2 ·
yH2O compound due to water evaporation with an accompa-
nying large dependence on sample conditions [24]. On the
theoretical side, a multiorbital model is necessary to accu-
rately describe the electronic structure [25], which makes
computational studies very challenging. It might be one of the
reasons why no microscopic studies of the superconducting
instability have been reported on the temperature scale of
Tc ∼ 5 K.

In this work, we implement a fluctuation exchange
(FLEX) approach [14,26–32] using the intermediate rep-
resentation (IR) basis [33–36] and study the possi-
bility of spin-fluctuation-mediated superconductivity in
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NaxCoO2 · yH2O. The IR basis provides a compact represen-
tation of imaginary-time quantities that additionally enables
the usage of sparsely sampled data grids [37]. As a result, the
numerical cost of calculations can be considerably reduced
permitting, e.g., new ab initio approaches [38]. Here, we use
this combined FLEX + IR approach to perform calculations
at very low temperatures. We study the magnetic properties
of NaxCoO2 · yH2O and investigate the possibility of triplet
superconductivity occurring on the scale of the experimental
Tc.

The remainder of this work is structured as follows: In
Sec. II we will briefly review the FLEX approximation and
explain the application of the IR basis. To illustrate the accu-
racy and efficiency of our approach, we first show benchmark
studies on the single-orbital Hubbard model in Sec. III. Sub-
sequently, we use our method to research the possibility of
spin-fluctuation-driven superconductivity in the NaxCoO2 ·
yH2O system at very low temperatures. For this, we study the
Fermi surface, filling, and interaction dependence of the spin
susceptibility and superconducting instability in Sec. IV.

II. METHODS

A. Fluctuation exchange approximation

The FLEX approximation introduced by Bickers et al.
[26,27] is a perturbative diagrammatic approach that treats
spin and charge fluctuations self-consistently. It can be de-
rived from a Luttinger-Ward functional [39] containing an
infinite series of closed bubble and ladder diagrams. As such,
it is a conserving approximation [40,41]. Due to its perturba-
tive nature, FLEX cannot sufficiently capture strong-coupling
physics, but it performs well in the weak-coupling regime. It
is suitable for studying systems with strong spin fluctuations
in Fermi liquids and near quantum critical points.

In this paper, we employ the multiorbital extension of
FLEX [29,42] for which we consider the (antisymmetrized)
local interaction Hamiltonian

Hint = 1

4

∑
i

∑
ξ1ξ2ξ3ξ4

�0
ξ1ξ4,ξ3ξ2

c†
iξ1

c†
iξ2

ciξ3
ciξ4

, (1)

where the operators c†
iξ (ciξ ) create (destroy) an electron at

site i in a state ξ = (l, σ ), which is a combined orbital and
spin index. The bare vertex �0 is expressed as

�0
ξ1ξ4,ξ3ξ2

= − 1
2U S

l1l4,l3l2σσ1σ4 · σσ2σ3

+ 1
2U C

l1l4,l3l2δσ1σ4δσ2σ3 (2)

with the interaction matrices

U S
i j,kl =

⎧⎪⎨
⎪⎩

U
U ′
J
J ′

, U C
i j,kl =

⎧⎪⎨
⎪⎩

U if i = j = k = l,
−U ′ + 2J if i = k �= l = j,
2U ′ − J if i = j �= l = k,

J ′ if i = l �= k = j,

where U and U ′ are the local intra- and interorbital inter-
actions, J is the interorbital exchange interaction or Hund’s
coupling, and J ′ is the pair-hopping between two orbitals. Due
to symmetry, they are related by U = U ′ + J + J ′ and J = J ′.

In FLEX, the self-energy can be calculated from

�lm(k) = T

N

∑
q

∑
l ′,m′

Vll ′,mm′ (q)Gl ′m′ (k − q), (3)

where k = (iωn, k) and q = (iνm, q) denote crystal momen-
tum and Matsubara frequencies ωn = (2n + 1)πT (νm =
2mπT ) for fermions (bosons), T is the temperature, and N is
the number of sites. The interaction consists of contributions
from the spin and charge channel as

V (q) = 3
2U S[χS(q) − 1

2χ0(q)
]
U S + 3

2U S

+ 1
2U C

[
χC(q) − 1

2χ0(q)
]
U C − 1

2U C. (4)

The charge and spin susceptibility entering Eq. (4) are defined
by

χC(q) = χ0(q)

1 + χ0(q)U C
, χS(q) = χ0(q)

1 − χ0(q)U S
, (5)

with the unity operator 1 and the irreducible susceptibility

χ0
ll ′,mm′ (q) = −T

N

∑
k

Glm(k + q)Gm′l ′ (k). (6)

We use Eqs. (3)–(6) to self-consistently solve the Dyson equa-
tion

G(k)−1 = G0(k)−1 − �(k) (7)

with the bare Green function given by

G0(iωn, k) = 1

iωn1 − [H0(k) − μ1]
. (8)

H0(k) is the noninteracting Hamiltonian, and μ denotes the
chemical potential, which needs to be adjusted in every it-
eration to keep the electron density n fixed. The fractions in
Eqs. (5) and (8) are to be understood as inversions.

In the presence of strong magnetic fluctuations, it is pos-
sible to study the superconducting phase transition within
FLEX. For this purpose, we consider the linearized Eliashberg
theory with the gap equation reading

λ�
η

lm(k) = T

N

∑
q

∑
l ′,m′

V η

ll ′,m′m(q)F η

l ′m′ (k − q). (9)

It is diagonal in the spin singlet- and triplet-pairing chan-
nel (η = s, t) with the anomalous Green function F η(k) =
−G(k)�η(k)GT(−k) and respective interactions

V s(q) = 3
2U SχS(q)U S − 1

2U CχC(q)U C + 1
4 (3U S + U C),

V t (q) = − 1
2U SχS(q)U S − 1

2U CχC(q)U C − 1
4 (U S − U C).

(10)

λ and � in the linearized gap equation (9) represent an
eigenvalue and eigenvector of the Bethe-Salpeter equation, re-
spectively [26,43]. We solve this eigenvalue problem by using
the power iteration method. The superconducting transition
temperature is found if the eigenvalue λ reaches unity.

B. Intermediate representation basis

The basic objects of diagrammatic many-body methods
like FLEX are Green functions and derived quantities that
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are computed numerically on finite imaginary-time and Mat-
subara frequency grids. Using conventional uniform grids to
represent Green functions, calculations require grid sizes that
increase linearly with inverse temperature upon cooling the
system. In practice, this prohibits calculations at low temper-
atures, as the required amount of data becomes too large to
be stored or processed. One of several approaches [44–46]
to tackle these problems is to use a compact representation
of Green functions as given by (orthogonal) continuous ba-
sis functions, like Legendre polynomials [47,48], Chebyshev
polynomials [49], or numerical basis functions [50].

The IR basis [33–36] is such an orthogonal numerical basis
in which Green functions can be efficiently and compactly
represented. The basis functions are defined by the singular
value expansion of the kernel that connects Green function
and spectral function [51]:

Kα (τ, ω) = ωδα,B
e−ωτ

1 ± e−βτ
=

∞∑
l=0

Sα
l U α

l (τ )V α
l (ω). (11)

Here, {U α
l (τ )}, {V α

l (ω)} denote the IR basis functions, and
Sα

l are the exponentially decaying singular values. The ex-
pansion is uniquely defined by fermionic or bosonic statistics
α ∈ {F, B} and a dimensionless parameter � = βωmax, where
β is the inverse temperature, and ωmax is a cutoff frequency
that captures the spectral width of the system.

The representation within the IR basis provides a con-
trolled way to store Green functions. This means that the
truncation error δ of the expansion

Gα (x) =
lmax∑
l=0

Gα
l U α

l (x) [x = τ, iωn] (12)

with Nα
IR = lmax + 1 basis functions is controllable. It is deter-

mined from the singular values by δ � Slmax/S0. Due to their
exponential decay, only a small number Nα

IR is necessary to
compactly represent Green function data with high accuracy,
as is shown in Fig. 1. Compared to other basis sets like Legen-
dre or Chebyshev polynomials, the IR basis holds a superior
compactness, especially at low temperatures.

Another advantage of the IR basis is the possibility to
generate sparse imaginary-time and frequency grids with a
size equal to the number of basis functions [37]. This scheme
ideally requires an even (odd) number for fermionic (bosonic)
quantities because of which the lines in Fig. 1 are step func-
tions. The sparse grids offer the benefit of decreased data
storage while performing intermediate steps of solving di-
agrammatic calculations efficiently, like computing Fourier
transformation by simple matrix multiplications [52].

In practical calculations, a desired accuracy δ is chosen,
and � is set such that � � βωmax holds for a fixed ωmax.
Then, the {U α

l } functions are precomputed on imaginary-time
and Matsubara frequency grids. The evaluation of Eq. (11)
is numerically expensive. However, the open-source IRBASIS

software package [35] provides numerical basis functions as
solutions to Eq. (11) that can be quickly accessed and imple-
mented easily. Throughout this paper, we employed � = 104

and δ = 10−8, which corresponds to small basis and grid sizes
of NF

IR = 62 and NB
IR = 57.

FIG. 1. Number of IR basis functions Nα
IR needed to sufficiently

expand (a) fermionic or (b) bosonic Green functions within an error
bound δ. The imaginary-time and Matsubara frequency grid sizes can
be chosen equally large.

III. BENCHMARK: SINGLE-ORBITAL SQUARE
LATTICE HUBBARD MODEL

The Hubbard model is a fundamental model used to
study correlated electron physics, particularly the interplay
of magnetism and unconventional superconductivity. Despite
its simplicity, it captures many essential physics important to
interacting quantum systems. Thus, a multitude of many-body
approaches has been developed to simulate the properties
of the Hubbard model [53,54]. Therefore, it constitutes an
excellent system to benchmark our FLEX + IR approach
to former FLEX and further studies of magnetism and
superconductivity.

In this regard, we consider the repulsive single-orbital Hub-
bard model on a square lattice, which also serves as a relevant
study case for cuprates [4]. Taking into account nearest- and
next-nearest-neighbor hoppings t and t ′, the single-particle
dispersion is given by

εk = 2t[cos(kx ) + cos(ky)] + 4t ′ cos(kx ) cos(ky). (13)

In the following, t is the unit of energy. We set the local inter-
action to an intermediate value of U/t = 4. For an assessment
of the performance of the FLEX + IR method introduced,
here we first compare to an earlier FLEX work of one of
the current authors [28]. To this end, we adapted the N =
642 lattice sites in our calculations and replaced the uniform
2048 Matsubara frequency grid of Ref. [28] with the IR basis
sampling.

The Hubbard model contains different magnetic fluctua-
tions whose relative strength can be controlled by the Fermi
surface shape, i.e., by changing t ′ and the electron filling n.
To contemplate different physical situations, we inspect the
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FIG. 2. Comparison of static spin susceptibility (left column) at
T/t = 0.03 and eigenvalue of the Eliashberg equation as well as
inverse magnetic susceptibility at the leading instability (right col-
umn) as calculated with our FLEX + IR implementation with results
from Ref. [28] (dashed lines). The rows show two different situations
with dominant (a) antiferromagnetism (AF: t ′/t = 0, n = 0.85) and
(b) ferromagnetism (F: t ′/t = 0.5, n = 0.3) for U/t = 4.

possibility of both dominant antiferromagnetism (AF) and fer-
romagnetism (F) by using the parameters t ′/t = 0, n = 0.85
and t ′/t = 0.5, n = 0.3, respectively.

First we examined the spin susceptibility χ s. The results for
the static spin susceptibility χ s(iν0 = 0, q) are shown along
high-symmetry paths in the Brillouin zone in the left column
of Fig. 2. For a direct comparison, we also included the results
of Ref. [28]. Clearly, the agreement between both data sets
is excellent. The dominant structures and magnitude of the
incommensurate antiferromagnetic and the weaker ferromag-
netic fluctuations are reproduced exactly.

The presence of strong magnetic fluctuations can drive
unconventional superconductivity. To study its appearance,
we calculated the superconducting eigenvalue λ. In the case
of dominant AF fluctuations, we consider a singlet-pairing
gap with dx2−y2 ≡ d-symmetry while we choose the degen-
erate triplet p-wave state for dominant F fluctuations. Their
respective eigenvalues are shown in the right column of Fig. 2
together with the inverse of χ s(0, Q) at the wave vector Q of
the leading instability, which signifies magnetic ordering. As
can be seen, the AF fluctuations are strong enough to enable
d-wave superconductivity with a Tc ≈ 0.02t , whereas the p-
wave solution is not realized. This is mainly due to stronger
self-energy renormalization for t ′ > 0 and a smaller prefactor
in the triplet-pairing potential V t (q) in Eq. (10). Once again,
we included data from Ref. [28], which agree very well. This
demonstrates that by employing the IR basis we can reduce
the necessary frequency points by a factor of ∼33 while
achieving the same results under persistent accuracy.

In a second step, we use our FLEX + IR approach to
study the superconducting and magnetic phase diagram of
the square lattice Hubbard model with t ′/t = 0. An addi-

FIG. 3. Phase diagram of the Hubbard model with t ′/t = 0 and
U/t = 4. (a) Comparison of different magnetic (AF) and supercon-
ducting (SC) eigenvalues calculated by the FLEX + IR approach
with results from Ref. [55]. (b) Comparison of calculated phase
boundaries from FLEX + IR to a variety of methods including
DMFT + FLEX [55], TPSC [59], DCA on a 16-site cluster [60], and
DCA+ [61].

tional comparison to numerical methods beyond FLEX will
be made.

To map out the phase diagram, we performed calcu-
lations for different fillings and temperatures. Regions of
strong magnetic and superconducting fluctuations can be
identified by analyzing and extrapolating the corresponding
magnetic (λm = Uχ0

max) and superconducting (λd ) eigenval-
ues. In Fig. 3(a) we show the n − T diagram for two extracted
values of λm and λd to indicate the evolution of the phase
boundaries for λ → 1. Additionally, we included indepen-
dent FLEX results by Kitatani et al. [55] (λm,d = 0.99) to
verify our accuracy. This latter comparison yields excellent
agreement.

The results show that Tc grows monotonically with the
electron filling with some flattening of the curve around a
hole doping of 0.15, as has been reported previously [56].
We cannot, however, make a statement about the underdoped
region near half-filling due to strong AF fluctuations prevent-
ing the FLEX cycle from converging. This can be seen from
λm → 1, which masks the superconducting domain below 0.1
hole-doping. This issue is inherently a part of the theory due
to the diverging denominator of the spin susceptibility. Here,
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(a)

(d) (e)

(b) (c)

FIG. 4. Crystal and electronic structure of the NaxCoO2 · yH2O compound. (a) Vertical layered structure of CoO2 planes (light and dark
gray) with intercalated Na+, H2O, and H3O+. (b) Top view on CoO2 planes showing a triangular sublattice of Co ions with surrounding O ions.
(c) CoO6 octahedron, which is trigonally deformed by the layered structure. (d) Electronic band structure with orbital character projections
indicated by surrounding color patches. Model details are given in the Appendix. Energies are measured with respect to the chemical potential
ξk = εk − μ. (e) Fermi surface corresponding to the band structure of panel (d).

the strong fluctuations result from better nesting conditions on
the Fermi surface with less doping, which becomes even more
profound for larger U .

At this point, we should comment on the designa-
tion of phase boundaries at finite temperatures, since the
Mermin-Wagner theorem [57,58] actually prohibits the for-
mation of (perfect) long-range-ordered phases associated with
spontaneous breaking of continuous symmetries at finite tem-
peratures in two dimensions. The results shown here are best
understood in the context of quasi-two-dimensional systems:
It has been shown that purely two-dimensional systems show
very similar results to quasi-two-dimensional systems with
a weak but finite three-dimensional character as long as the
out-of-plane coherence length is large [28].

In Fig. 3(b) we compare our phase diagram obtained from
FLEX for λm,d = 0.99 with phase diagrams reported in the
literature which have been calculated using DMFT + FLEX
(dynamical mean-field) [55], two-particle self-consistency
(TPSC) [59], the diagrammatic cluster approximation (DCA)
on a 16-site cluster [60], and DCA+ [61]. On a qualitative
level, all approaches under consideration yield maximally
achievable superconducting critical temperatures on the same
order of magnitude. Also the shape of the phase bound-
ary of the AF region agrees between FLEX and FLEX +
DMFT.

On a close, more quantitative level, however, there are
profound differences between the phase diagrams revealed by
the different methods: The most prevalent difference between
all methods lies in the structures of the superconducting dome
in the phase diagram. The filling dependence of this dome
shape varies significantly. Due to the reasons of the previous

discussion, FLEX does not establish this dome structure. It
can be retrieved by incorporating strong correlation effects as
contained in DMFT, DCA, and also in TPSC. The level at
which correlations are incorporated, however, strongly influ-
ences the exact doping dependence.

IV. SODIUM COBALT OXIDE

The pairing type of superconductivity and its interplay with
magnetism in NaxCoO2 · yH2O is a very controversial issue as
we have elucidated in the Introduction. In the following, we
apply the FLEX + IR approach to study this problem.

A. Crystal and electronic structure

NaxCoO2 · yH2O is commonly synthesized by soft-
chemical methods from the parent compound Na0.7CoO2. The
latter is a layered material consisting of cobalt oxide planes
that are separated by sodium ions; cf. Fig. 4(a). The CoO2

planes are composed of edge-shared CoO6 octahedra that
place the Co ions on a perfect triangular lattice as depicted
in Figs. 4(b) and 4(c). During hydration, water molecules and
hydronium ions are intercalated between the CoO2 planes. As
a consequence, the separation between the CoO2 planes in
the c-direction increases while the CoO6 octahedra contract
in that direction. The material becomes thus more anisotropic,
i.e., H2O intercalation enhances two-dimensionality in the
CoO2 planes.

The Co atoms have partially filled t2g bands that are
electron-doped by the Na ions. In the simplest approximation,
their filling is n = 5 + x, where x is the Na content. Upon Na
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doping, a rich phase diagram [24,62] with weak correlations
for low dopings (x ∼ 0.3) and strong correlations for high
dopings (x ∼ 0.7) emerges. In this phase characterization, the
superconducting region is placed around x ≈ 0.3. However,
this classification had been made without consideration of
possible additional doping from the H3O+ ions because their
presence was only discovered at a later time [24]. Due to this,
the filling of the t2g-bands might be larger in the superconduct-
ing phase, locating it in the strongly correlated region [16,63].

To model the electronic structure, we use a three-band
tight-binding model for the t2g bands as formulated by
Mochizuki et al. [14], which describes the low-energy char-
acteristics of LDA band-structure calculations [64] quite well.
This model includes a crystal field term accounting for the
trigonal deformation of the CoO6 octahedra because of the
plane height reduction. It leads to a splitting of the t2g or-
bitals into a higher a1g and lower twofold e′

g levels. The
exact details on this model are presented in the Appendix.
The corresponding band structure is shown orbitally resolved
for a Co valence of s = 3.645 or respective electron filling
of n = 5.355 in Fig. 4(d). Panel (e) contains the associated
Fermi surface. It consists of one large a1g hole pocket around
the Brillouin zone center and six elliptically shaped e′

g hole
pockets near the K points. The latter play an important role
in creating strong ferromagnetic fluctuations since they have
a large density of states and offer good nesting conditions for
Q ≈ (0, 0) [14,21,25].

There has been much discussion on the actual existence
of the e′

g pockets on the Fermi surface in the literature. It
stems from the fact that ARPES measurements [65–69] locate
them below the Fermi level. However, these results might be
due to surface effects [70] since PES [71] and Shubnikov–de
Haas measurements [72] seem to support their existence. The-
oretical studies showed that the e′

g pockets are suppressed in
charge self-consistent LDA + DMFT calculations [73], while
LDA + DFMT performed with a realistic Hund’s coupling J
can stabilize them [74]. The problem of locating the e′

g pock-
ets in energy is very delicate since variations in the crystal
field splitting (layer height), electron filling, and bandwidth
renormalization influence the fermiology of NaxCoO2 · yH2O.
In this work, we study the interplay of spin fluctuations and
superconductivity for different models of the Fermi surface.
We start with the type of Fermi surface considered also in Ref.
[14] and vary the Fermi surface shape and topology afterward.

To this end, we first reproduce the results given in Ref. [14]
within FLEX + IR and then extend the calculations to lower
temperatures. We adapted the interaction strength of U = 6
in units of the hopping t3 (U ∼ 1.1 eV; see the Appendix)
and we vary the Hund’s coupling J as a ratio of U . For
the initial comparison, we use a k-mesh of 32 × 32 as in
Ref. [14], but the low-temperature calculations demand a
denser grid sampling for which we found Nk = 2102 lattice
sites to be converged.

B. Spin susceptibilities

To check the accuracy of our implementation, we calcu-
lated the static spin susceptibility and compare our results to
Ref. [14], where calculations were carried out for a temper-
ature of T/t3 = 0.02 and different J/U values. It should be

FIG. 5. Comparison of the largest eigenvalue of the static spin
susceptibility to results from Ref. [14] at T/t3 = 0.02 using a 32 ×
32 k-mesh. The second-order correction used in the calculations is
different between both panels [see the text and Eqs. (14) and (15)].

noted that a different second-order correction V̄ (2)(q) to the
FLEX interaction has been employed in Ref. [14], which is
given by

V̄ (2)(q) = − 1
4 (U S + U C)χ0(q)(U S + U C). (14)

Comparing it to the second-order contribution from Refs.
[42,75–78] as implemented in our code

V (2)(q) = − 3
4U Sχ0(q)U S − 1

4U Cχ0(q)U C (15)

it becomes evident that V̄ (2)(q) incorrectly includes mixing
between spin and charge channel contributions. In Fig. 5 we
show the largest eigenvalue of the static spin susceptibility χ̂ s

for both interactions together with data by Mochizuki et al.
from Ref. [14]. It can be seen that the results are very well
reproduced if V̄ (2)(q) is implemented (left panel). Comparing
it to the implementation of V (2) (right panel) shows that the
incorrect mixing of fluctuation channels leads to a reduction
of fluctuation strength.

Generally, the system contains F as well as AF fluctua-
tions. By increasing J , ferromagnetism is strongly enhanced
while the AF fluctuations are slightly decreased. The lat-
ter are generated by scattering on the a1g surface as well
as between different e′

g pockets, whereas the F fluctuations
emerge mostly from intrapocket scattering in the e′

g sheets.
The charge fluctuations are negligibly small and not shown
here.

The previously discussed results were at a relatively high
temperature of T/t3 = 0.02, which corresponds to ∼50 K. To
properly understand the superconducting transition, a lower
temperature range on the order of the experimental critical
temperatures needs to be investigated. In Fig. 6 we show
the temperature evolution of the largest eigenvalues of static
irreducible susceptibility χ̂0 and spin susceptibility χ̂ s for two
exchange interaction ratios J/U . χ̂0 does not show a strong
dependence on T . The peak at the M point becomes slightly
enhanced while the structure around the � point changes
a bit.

Contrary to this, χ̂ s shows a strong T dependence. By cool-
ing the system, the ferromagnetic fluctuation strength exhibits
a nonmonotonous behavior with a strong enhancement of the
peak at Q = (0, 0) for T/t3 ≈ 0.02. This nonmonotonous evo-
lution traces back to an almost divergent χ̂ s stemming from
the denominator in Eq. (5) approaching zero. In other words,
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FIG. 6. Evolution of the largest eigenvalues of static (iν0 = 0) irreducible susceptibility χ̂ 0 and spin susceptibility χ̂ s for two exchange
interactions J/U .

the simulated case is close of a ferromagnetic instability. In-
deed, we could not converge calculations for larger Hund’s
couplings J/U � 0.22 since J favors the formation of ferro-
magnetic order. For J/U = 0.2 we find that the maximum in
χ̂ s jumps at some intermediate temperature T ∼ 0.01 from
having an absolute maximum at Q = (0, 0) to an absolute
maximum at finite q-vectors. Hence, some long-wavelength
spin waves are the favored type of fluctuation in this regime.
The q-vectors associated with these spin waves match well to
the minor and major axes of the e′

g pockets. Since the Fermi
surface becomes less thermally smeared out, the scattering
between opposite edges is favored.

C. Triplet superconductivity possible?

The ferromagnetic fluctuations investigated in the previous
section seem promising to mediate triplet superconductivity
in NaxCoO2 · yH2O. To address this question, we solve the
Eliashberg equation for different pairing symmetries. Possible
triplet pairings compatible with the point group of the trian-
gular lattice are f1 ≡ fy(x2−3y2 )-, f2 ≡ fx(3x2−y2 )-, and p -wave,
for which px and py are degenerate. The k-dependence of the
respective order parameter is depicted in Fig. 7(a).

The temperature dependence of the corresponding su-
perconducting eigenvalues is shown in Fig. 7(b) for three
different Hund’s couplings. At high temperatures, the p- and
f1-wave solutions coexist with a near degeneracy that is lifted
for low T . There, the f1-gap clearly shows up as the dominant
pairing symmetry. Since it has line nodes between the � and
M points, the f1-gap fits well to the e′

g pockets of the Fermi
surface in the sense that the nodes do not intersect them.
Contrarily, the f2-gap has line nodes that intersect also the
e′

g pockets, which explains why the f2-symmetric gap appears
unfavorable in our calculations.

While we do find an enhancement in the f1- (dominant) and
p-wave (subdominant) superconducting eigenvalues of the
linearized Eliashberg equation upon lowering the temperature,
we do not find triplet superconductivity to be realized on the
order of experimental Tc. The eigenvalue of the leading f1-

symmetric gap stays below 0.6 at T/t3 = 10−3 corresponding
to approximately 2 K. Comparing λ f1 for different J/U indi-
cates an increase of superconducting pairing strength since the
F fluctuations are enhanced. Therefore, it might be possible
that the f1-pairing is realized for larger J/U , but we cannot
access this regime since it is masked in our FLEX calculations
by the magnetic instability.

FIG. 7. (a) Possible triplet-pairing symmetries of the supercon-
ducting gap. Shown is the orbital trace of the converged order
parameter �(iω1, k) for T/t3 = 0.003 and J/U = 0.2. The line
nodes (solid white) intersect differently with the Fermi surface
(dashed black) depending on the gap symmetry. (b) Temperature
dependence of the superconducting eigenvalue λκ for different gap
symmetries κ = f1, f2, p. The panels show different exchange inter-
actions J/U . Note that the T -axis is logarithmic.
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FIG. 8. Dependence of magnetic fluctuations and eigenvalues of the superconducting Eliashberg equation on Fermi surface topology. Each
row shows the noninteracting Fermi surface, maximal eigenvalue of irreducible and spin susceptibility, and superconducting eigenvalue at
T/t3 = 0.003 for the maximally convergable interaction parameters. The top row corresponds to a Fermi surface composed of the a1g pocket
only (�CF = −1.2), the middle row to both pocket types being present (�CF = 0.4), and the bottom row to only the e′

g pockets existing
(�CF = 9.0).

D. Influence of the Fermi surface

The Fermi surface topology naturally affects the magnetic
and superconducting fluctuations, whereas the exact shape of
the Fermi surface for NaxCoO2 · yH2O is an open question,
as explained in Sec. IV A. Therefore, it is insightful to inves-
tigate how the magnetism and superconductivity depend on
Fermi surface topology. We compare the situation with a1g

and e′
g pockets present [Fig. 4(e)] considered so far to the

cases in which either the a1g or e′
g pockets are absent (Fig. 8).

The Fermi surface with suppressed e′
g pockets corresponds

to the results observed in ARPES measurements [65–69].
The latter case, on the other hand, avoids any nodes of the
f1-symmetric gap on the Fermi surface, which leads to the
realization of f -wave superconductivity in the single-band
case [13].

We control the Fermi surface shape in our model via the
filling n and crystal field splitting �CF. In the following cal-
culations, we set the filling to n = 5.6. If we consider the
Fermi surface with only the e′

g pockets being present, then
their effective hole doping of 0.4 is equal to the hole doping of
the e′

g pockets in our previous calculation for n = 5.355 and
�CF = 0.4. By this, we can directly estimate the influence of
neglecting the a1g pocket. Furthermore, n = 5.6 corresponds
to the t2g filling reported for measurements of superconduc-
tivity when considering the additional H3O+ doping [24]. We
choose the crystal field splitting as �CF = −1.2, 0.4, 9.0 to
create the three different Fermi surface topologies as shown in
the left column of Fig. 8. For each, we performed calculations
with different interaction parameters U and J .

In the remaining panels of Fig. 8, we present χ̂0 and χ̂ s at
T/t3 = 0.003 and the superconducting eigenvalue λκ for the
maximal values of U and J for which we were able to con-

verge the FLEX loop. In the case of a single a1g Fermi sheet,
strong magnetic fluctuations do not emerge. If e′

g pockets
exist, intrapocket scattering strongly enhances F fluctuations.
This can be seen both in the case with a1g and e′

g pockets
being present and in the case of only e′

g pockets existing, as we
can stabilize FLEX solutions with sizable F or more generally
long-wavelength spin fluctuations.

Evaluating the eigenvalues of the linearized Eliashberg
equation shows that any spin-fluctuation-induced supercon-
ducting pairing is strongly suppressed in the absence of the
e′

g pockets. Since the AF fluctuations are dominant in this
scenario, we also tried to solve the Eliashberg equation for
d-wave symmetry. However, we could not find a converged
solution. If the material actually exhibits an a1g Fermi surface
only, a different mechanism has to be considered to explain
the superconductivity. In the cases with the e′

g pockets present
and correspondingly stronger F fluctuations, we again find the
dominant f1-wave together with subdominant p-wave sym-
metric solutions of the linearized Eliashberg equation. By
excluding the a1g pocket from the Fermi surface, the supercon-
ducting pairing strength in the aforementioned f1- and p-wave
channels is increased, likely due to the absence of gap nodes
intersecting with the Fermi surface in this case. Nonetheless,
even in the absence of the a1g Fermi pockets, we do not find
the superconducting transition on the order of experimental Tc.
As previously discussed, the transition might occur for larger
values of U or J , which are, however, outside the region where
we could stabilize the FLEX self-consistency loop.

V. CONCLUSION

We implemented the FLEX approximation using the IR ba-
sis to study magnetism and superconductivity in the Hubbard
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model and NaxCoO2 · yH2O. Benchmark calculations on the
Hubbard model showed an excellent agreement with previous
FLEX calculations but at a much lower numerical cost.

This gain in numerical efficiency allowed us to turn to
more realistic multiband systems and to approach so far unex-
plored low-temperature regimes. We studied the dependence
of magnetic and superconducting fluctuations on temperature,
Fermi surface topology, and interaction strength in NaxCoO2 ·
yH2O. We found the existence of e′

g pockets on the Fermi
surface to be crucial in order to generate strong ferromag-
netic fluctuations. Concerning superconducting pairing, we
find the fy(x2−3y2 )-wave symmetry to be dominant over other
triplet-pairing symmetries at low temperatures. We do not,
however, find the superconducting transition on the order of
the experimental Tc, but our calculations indicate that the
spin-fluctuation-driven transition takes place at significantly
lower temperatures. This situation might still change for larger
interactions, which are, however, inaccessible within FLEX
because of too strong magnetic fluctuations. Studies employ-
ing other methods could give more insight on this question.
If the e′

g Fermi pockets are absent, we only find weak mag-
netic fluctuations, which cannot establish superconductivity.
In this case, the pairing mechanism has to be of a different
origin.

In summary, we have shown that the FLEX + IR ap-
proach enables the study of complex multiorbital systems
at low-temperature scales not accessible with conventional
Matsubara frequency grid sampling. This should bring further
systems featuring possibly an interplay of spin fluctuations
and superconductivity into the reach of FLEX calculations
at experimentally relevant temperature scales. Since another
limiting factor of Green function methods is the momentum
integration in the Brillouin-zone, a combination with, e.g.,
adaptive k-space sampling methods [79–81] could further
extend the range of possible systems. Interesting grounds to
be explored range from moiré superlattice systems to realistic
multiband models of infinite-layer nickelate compounds.
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APPENDIX: TIGHT-BINDING MODEL
FOR NaxCoO2 · yH2O

The tight-binding model to describe the electronic structure
of NaxCoO2 · yH2O is constructed following Ref. [14] and
reads

HTB =
∑

γ ,γ ′,σ

(
ε

γγ ′
k + �CF

3
(1 − δγ γ ′ )

)
c†

kγ σ
ckγ ′σ . (A1)

Here, the summation goes over spin σ and the d-orbitals γ of
the t2g manifold. The first term describes the kinetic energy,
and the second term includes the crystal electric field �CF due
to the trigonal distortion of the CoO6 octahedra [cf. Fig. 4(c)].
The band dispersion is given by

ε
γγ

k = 2t1 cos kγ γ
α + 2t2

[
cos kγ γ

β + cos
(
kγ γ

α + kγ γ

β

)]
+ 2t4

[
cos

(
2kγ γ

α + kγ γ

β

) + cos
(
kγ γ

α − kγ γ

β

)]
+ 2t5 cos

(
2kγ γ

α

)
,

ε
γ γ ′
k = 2t3 cos kγ γ ′

β + 2t6 cos kγ γ ′
β + 2t7 cos

(
kγ γ ′

α + 2kγ γ ′
β

)
+ 2t8 cos

(
kγ γ

α − kγ γ

β

) + 2t9 cos
(
2kγ γ

α + kγ γ

β

)
,

where kxy,xy
α = kxy,zx

α = k1, kxy,xy
β = kxy,zx

β = k2, kyz,yz
α =

kxy,yz
α = k2, kyz,yz

β = kxy,yz
β = −(k1 + k2), kzx,zx

α = kyz,zx
α =

−(k1 + k2), and kzx,zx
β = kyz,zx

β = k1, with k1 and k2 being the
reciprocal-lattice vectors defined by the triangular lattice in
Fig. 4(a).

We employ the hopping parameters t1 = 0.45, t2 =
0.05, t3 = 1, t4 = 0.2, t5 = −0.15, t6 = −0.05, t7 =
0.12, t8 = 0.12, and t9 = −0.45, where t3 is the unit of en-
ergy. Setting �CF = 0.4 and t3 ≡ 0.18 eV reproduces LDA
band-structure calculations [64] well, particularly around the
Fermi level. The value of �CF significantly influences the
Fermi surface topology.
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