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Emergent moments in a Hund’s impurity
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Motivated by the relevance of Hund’s coupling in the context of multiorbital superconductors, we revisit the
problem of a multiorbital Kondo impurity with Hund’s interaction. Using dynamical large-N techniques, we
propose an efficient approach that retains the essential physics at play, while providing a pathway to scalable
quantum impurity solvers. We are able to follow the ground state, dynamic, and thermodynamic properties of
this system over many decades of temperature. Our approach captures the emergence of large moments and
follows the stretched evolution of the physics down to their exponentially suppressed Kondo temperature. We
focus our analysis on the intermediate finite temperature phase which presents an alternate paramagnetic state
due to the emergent moment and discuss the relevance of this regime to Hund’s metals.
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I. INTRODUCTION

In multiorbital systems, the Coulomb interaction is mani-
fested as a range of competing interactions between electrons
in various orbitals, known collectively as “Hund’s interac-
tions.” The key component of the Hund’s interactions, the
direct ferromagnetic coupling between spins, gives rise to
the well-known Hund’s rules, whereby the total spin of the
multiorbital atom is maximized, but when immersed inside
a metal, the Hund’s interactions become an important driver
of complex electronic states. These effects are particularly
notable in the iron based family of pnictide and chalcogenide
high-temperature superconductors, and in various ruthenate
metals, now known collectively as “Hund’s metals” [1–3].
Hund’s metals delay the formation of a Fermi liquid until
remarkably low temperatures. The intermediate energy scales
are characterized as spin frozen [4], with slowly fluctuating
magnetic moments [5].

One of many challenges posed by these materials is the
task of developing lightweight methods to model the local
dynamics of Hund’s metals. Here we approach this problem
from the perspective of multiorbital Kondo models [6–10]
which capture both the “Hundness” and metallicity of Hund’s
metals. We present here a lightweight method for describing
the local physics of a Hund’s coupled quantum impurity.

Our study, motivated by the iron-based superconductors
[11,12], considers the case of an iron atom in a tetrahedral
environment, interacting with a conduction sea. We investi-
gate the case where iron is in its Fe+ state (3d5 configuration),
with the t2g orbitals being half filled, having one electron
occupying each of the three orbitals. The study of valence
fluctuations into states where some orbitals are empty, as in
the Fe2+ configuration, will be part of a forthcoming work. It
has been shown recently that the interplay of these elements

and spin-orbit coupling [13] at the iron sites promotes a triplet
resonating valence bond state in the t2g orbital triad that may
then escape into the conduction sea, bringing about a fully
gapped superconducting state [14]. In light of this work, we
here present the first steps to tackle the Hund coupled impurity
with a method that is versatile enough to eventually bridge to
more physical situations.

In the Hund-Kondo model, the presence of the Hund’s
coupling acts as a new energy scale below which a larger
local moment emerges out of the impurity. This nearest-orbital
interaction −JH leads to ferromagnetic alignment of the local
moments between different orbitals. Furthermore, each orbital
is individually coupled to an autonomous electron bath via
an antiferromagnetic Kondo coupling JK , recreating the local
embedding of the impurity in a conduction sea, as shown
through the schematics of Fig. 1. The Hamiltonian is then

HHK = Hc +
3∑

m=1

(JK �Sm · �σm − JH �Sm · �Sm+1),

Hc =
3∑

m=1

∑
κ

εκc†
κ,mcκ,m, (1)

with Hc the conduction-electron specific Hamiltonian, and
where �Sm is the spin on the mth orbital (where m is de-
fined modulo 3, i.e., �S4 ≡ �S1). The conduction electrons are
coupled to the local moments �Sm through their spin density
�σm ≡ c†

mα �σαβcmβ with α, β = ↑,↓. The conduction electron
creation operator at the orbital site is given by c†

mα = ∑
κ c†

κmα ,
where κ is the electron momentum such that the electron’s
spectrum is εκ . The same model with antiferromagnetic JH <

0 was recently studied in Ref. [15] as a toy model for decon-
finement.
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FIG. 1. Schematic of the different physical regimes employing a
conjectured renormalization group (RG) diagram [6] (arrows signify-
ing the flow towards reduced temperature). At high temperatures, the
system is in the free moment regime (near the lower left fixed point
and inset). In the decoupled case, JH = 0, the system quickly reaches
the Nozières Fermi liquid within a relatively short RG time corre-
sponding to T 0

K ∼ De−1/ρJK . If however JH � T 0
K , upon reduction of

temperature below Torb ∼ JH , the spins of the three orbitals first align
ferromagnetically (flow towards the “locked moments” fixed point,
see top left inset). Subsequently, at low temperatures T < T eff

K , the
RG flow leads to the Fermi liquid state as the conduction sea fully
screens the large moment (bottom right fixed point and inset).

The structure of the paper is as follows. In Sec. II, we re-
view the current literature concerning the Hund-Kondo model.
We present a heuristic interpretation of the different phases
as well as the phase diagram obtained using the dynamical
large-N formalism. The analytical methods used are briefly
covered in Sec. III. A thorough analysis of the thermody-
namical observables and spectral features obtained from the
large-N treatment is presented in Sec. IV, as well as a compar-
ison to expected limiting values. An approximate analytical
treatment of the self-consistency equations is presented in
Sec. V. This single-iteration approach confirms the general
features of the phase diagram obtained through our numerical
investigation. Finally, Sec. VI summarizes our results and pro-
vides a discussion of the successes and remaining challenges
of this method to tackle realistic Hund’s coupled multiorbital
systems.

II. PHASE DIAGRAM OVERVIEW

The key aspects of the Hund-Kondo model can be pictori-
ally summarized in a schematic renormalization group (RG)
flow diagram, Fig. 1. As you will see, this model presents
three fixed points: a free moments fixed point (JH = JK = 0),
a locked moments fixed point (JH �= 0, JK = 0), and an at-
tractive Fermi-liquid fixed point (JH = 0, JK �= 0). Hence,
the thermodynamics are inherently dictated by the tuning
of JH and T 0

K 	 De−1/ρJK with ρ = 1/2D the uniform elec-
tronic density of states for a conduction electron band with
half bandwidth D. Two extreme limits are readily explained.

For JH 
 T 0
K , the spins magnetically decouple, amounting to

three copies of the standard single channel Kondo model.
Hence, the ground state is a product state of three singlets
between local moments on the orbitals �Sm and the conduction
electrons spin density �σm, generating the Nozières Fermi liq-
uid [16] at temperatures below T = T 0

K . The coupling between
adjacent spins is irrelevant near this fixed point. This amounts
to the exclusively horizontal flow in Fig. 1.

The opposite limit T 0
K 
 JH and JH > D was investigated

by Schrieffer in 1967 [17], who was studying the dependence
of the Kondo temperature on the impurity spin. This situation
corresponds to a flow that starts at the locked moment regime
and then flows directly to the Fermi liquid point. This is
because such a large JH leads to an automatic alignment of the
three local moments into a larger spin S′ = 3S moment. The
larger spin S′ moment now interacts with the total spin density
�σ = ∑

m �σm via an effective Kondo coupling JK,eff = JK/3.
This leads to T eff

K /D = (T 0
K /D)M , where M = 3 for the triad,

showcasing an exponential suppression of the Kondo tem-
perature. For systems of M strongly Hund-coupled orbitals,
this result predicts the suppression of the Kondo tempera-
ture through five orders of magnitude between Ti2+ (M = 2,
S = 1) and Mn2+ (M = 5, S = 5/2) impurities.

The intermediate regime where JH plays a significant role
but does not exceed the electronic bandwidth is the prime
interest of this work. Studies using Poor Man’s scaling [6] as
well as numerical RG [18] show that as temperature is brought
down, the effective moment μ (that is extracted from the
spin susceptibility χ ∼ μ2/T ) goes from a high-temperature
value μI to an intermediate larger value μII > μI. This larger
emergent moment then has the effect of drastically reducing
the Kondo temperature. This model, with its rich physics and
understood phases, is a prime setting for testing the ability of
our approach to extract detailed thermodynamical information
and dynamical correlations.

We choose to revisit this model using a large-N Schwinger
boson approach that treats the ferromagnetic Hund’s cou-
pling and the antiferromagnetic Kondo coupling on the same
footing. This method was successfully used to treat both
ferromagnetic and antiferromagnetic spin chains embedded
in a conduction bath [19,20] and in more complex models
[21–23]. The approach’s flexibility derives from its unification
of the Arovas and Auerbach treatment of ferromagnetism
using Schwinger bosons [24] with the Parcollet-Georges
decoupling of the Kondo problem [25–28]. It is partic-
ularly powerful in describing the dynamics of emergent
excitations.

The results of our investigation are summarized in
Fig. 2(a). Starting on the right side of the diagram, T 0

K /JH

is large and the ferromagnetic coupling between orbitals is
unable to align the local moments before they are indepen-
dently screened by their individual conduction electron bath
at a temperature T ∼ T 0

K . Below this temperature, the sys-
tem settles into a low-temperature Fermi liquid phase with
Pauli spin susceptibility χ ∼ 1/T 0

K and linear specific heat
Cv ∼ T/T 0

K . The ground state is a triplicate of independent
Kondo singlets formed from the individual local moments
and their respective conduction electron seas. We do not ob-
serve a further crossover into the ordered magnetic state at
ultralow temperatures for finite but small JH . At finite N , it is
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FIG. 2. (a) Phase diagram obtained by self-consistently solving equations (6). Data points are extracted from local maxima of the specific
heat, cf. (c), on the right, with blue for the low-temperature maxima at T eff

K and red for the high-temperature maxima at Torb. The blue crosses
(red dots) in the diagram correspond to the Fermi-Liquid (locked moment) phase boundary, respectively. The right side of the T 0

K /JH axis
corresponds to the uncoupled moments, whereas the left side corresponds to the Schrieffer limit which stops the downward trend of T eff

K . The
black dashed line at intermediate JH follows the form T 	 T 0

K (T 0
K /JH )2. The grey dashed-dotted line delineates the cross-over between the

high and low spin limits of the Nozières Fermi liquid. (b) The uniform (χ0) and staggered (χ±) susceptibilities for T 0
K /JH = 0.07. (c) The

impurity specific heat Cimp for the same parameters. Two clear peaks of the specific heat identify the boundaries T eff
K and Torb of the emergent

moment regime, which is also seen by a plateauing of the staggered susceptibility. Sketches for each phases are added. Once the Fermi liquid
is established below T eff

K , the uniform susceptibility becomes Pauli-like. All results were obtained with the local filling of Schwinger bosons
set to q = 2S/N = 0.3.

expected that there is some residual Hund’s coupling present
there, although in our large-N method, no such ferromagnetic
alignment is seen.

As JH is increased, the system arrives at a point where
it is energetically favorable for the local moments to align
with one another. The thermodynamics of this intermediate
regime are shown in Figs. 2(b) and 2(c). The locking which
develops at Torb ∝ JH is signaled by a specific heat peak as the
system screens the orbital degrees of freedom. In the locked
moment phase, we observe a plateau in the staggered spin
susceptibility [χ± = ∑

n exp (±i2πn/3)χ (n) where χ (n) ∝∑
m

∫
dτ 〈�Sm±n(τ ) · �Sm(0)〉]. As the individual moments align,

magnetic excitations to the staggered state (all spins have
a 120◦ angle between them) become gapped, which leads
to the saturation of χ± at T < Torb. As the temperature is
further decreased, the uniform susceptibility (χ0) follows a
Curie temperature dependence, χ0 ∼ μ2

II/T , due to the large
emergent free moment. This regime spans many decades in
temperature until Kondo screening inevitably occurs at a new
Kondo temperature T eff

K , heralded by a large specific heat
peak and a Pauli-like spin susceptibility. This effective Kondo
temperature is exponentially reduced as JH is increased. The
ground state is now one Kondo singlet formed from the emer-
gent local moment and three conduction electron seas. This
is different from the ground state seen on the right; at the
large-N level, the transition between those two states is first
order, whereas for finite N we expect it to become a crossover,
with Fermi-liquid-related quantities such as the Wilson ratio
RW = (χ/χ0)/(γ /γ0) evolving continuously [6,16,29,30].

Finally, once JH > D, there can be no free local moments
on the impurity, and the high-temperature limit of the problem

is one of three locked local moments. Further increasing JH

leads to the same high-temperature fixed point, which ends
the downward reduction of the effective Kondo temperature.
Instead, we find a small, fixed Kondo temperature correspond-
ing to the aforementioned Schrieffer limit.

Realistically, JH 	 0.4 eV in the iron-based pnictides
and chalcogenides, as revealed in first-principle calculations
[1,31]. The effective bandwidth is of the same order D 	
0.1–0.3 eV. Therefore these compounds are firmly on the left
side of Fig. 2.

We note that we can fit the exponential decrease of T eff
K in

the limit of intermediate JH by the form T eff
K /T 0

K ∼ (T 0
K /JH )ζ ,

where ζ = M − 1 was predicted by Coleman and Nevidom-
skyy [6]. The black line in Fig. 2, corresponding to ζ = 2,
shows the agreement of our work with this prediction. The
same behavior is obtained using a single iteration of the large-
N equations as an approximation (see Sec. V). In the next
sections, we first introduce in detail the large-N formulation
of the Hund-Kondo model and then our detailed thermody-
namical results for the intermediate regime.

III. DYNAMICAL LARGE-N APPROACH

A. Schwinger boson formulation

The dynamical large-N approach, on which we focus our
attention in this paper, is taken by a fractionalized represen-
tation of the local moments by means of Schwinger bosons.
Whereas a realistic system has spins of size S and of SU(2)
symmetry, here we generalize this symmetry group to SU(N ).
Analytical solutions are controlled as N → ∞. The mth local

205147-3



VICTOR DROUIN-TOUCHETTE et al. PHYSICAL REVIEW B 103, 205147 (2021)

moment’s representation in terms of Schwinger bosons is then

Sm,αβ = b†
mαbmβ − δαβ

2S

N
, (2)

with the constraint on the number of bosons per orbital,
nb(m) = 2S. This constraint is enforced through a Lagrange
multiplier λm. The local moment on each orbital is individu-
ally coupled to a conduction sea with K = 2S channels. This
is an essential element of the technique, as setting the number
of channels to be commensurate with spin K = 2S allows
the development of a perfectly screened Kondo effect. Since
the second term in equation (2) acts as an irrelevant local
scattering potential, we omit it in subsequent calculations.
Under this procedure, the Hamiltonian becomes

H = Hc + HK + HH +
3∑

m=1

λm(nB,m − 2S ),

Hc =
∑
κ,m

εκc†
κmaαcκmaα,

HK = JK

N

∑
m

(b†
mαcmaα )(c†

maβbmβ ),

HH = −JH

N

∑
m

(b†
mαbm+1,α )(b†

m+1,βbmβ ) (3)

with the assumption of an implicit summation convention over
repeated indices a and α, with the indices α ∈ [1, . . . , N]
referring to the SU (N ) spin indices and a ∈ [1, . . . , K] to
the channel index. In the large-N method, the coupling con-
stants have been scaled so that the action is extensive in N .
To maintain perfect screening at the individual orbital sites,
we take q = k where 2S = qN and K = kN . Carrying out
a Hubbard-Stratonovich decoupling of the interaction terms
leads to

HH →
∑

m

[�̄m(b†
m+1,αbmα ) + H.c.] + N |�m|2

JH
,

HK →
∑

m

[(b†
mαcmaα )χma + H.c.] + N χ̄m,aχm,a

JK
, (4)

where we have introduced two new fields. The first one
�m corresponds to the hopping amplitude of the Schwinger
bosons, which we will call spinons. The χma are Grassmann
fields representing the charged, spinless holons that mediate
the Kondo interaction in channel a. The full action in the
large-N limit, maintaining the implicit sum over repeated in-
dices a and α, is then

S =
∫ β

0
dτ

∑
m

[ ∑
κ

c†
κ,maα (∂τ + εκ )cκ,maα

+ b†
m,α (∂τ + λm)bmα + [�̄m(b†

m+1,αbmα ) + H.c.]

− 2Sλm + N |�m|2
JH

+ 1√
N

[(b†
mαcmaα )χma + H.c.] + N

JK
χ̄m,aχm,a

]
. (5)

FIG. 3. The bosonic (�B(τ )) and holonic (�χ (τ )) self-energies
to leading order in the 1/N expansion.

B. Self-consistent solution

The spinon and holon have nontrivial dynamics, interacting
with one another, via the (b†

mαcmaα )χma vertex originating
from the decoupling of the Kondo interaction. This causes
them to influence each other’s self-energy. This generates
self-consistent equations for the holon and spinon self-energy,
as is shown in Fig. 3 as well as in imaginary time in
equation (6)

�χ (τ ) = gc(−τ )GB(τ ), �B(τ ) = −kgc(τ )Gχ (τ ). (6)

These self-energy self-consistent equations are written in
terms of the local propagators Gχ (τ ), GB(τ ), and gc(τ ) for the
holon, spinon, and conduction electrons, respectively. These
two equations are of order O(1) in the large-N method, since
each vertex contributes 1/

√
N and the summation of a or

α indices in the loop leads to a further factor of K or N ,
respectively. On the other hand, the conduction electron’s
self-energy correction is of order O(1/N ), which we then
neglect in the large-N scheme. We discuss this further in
Sec. VI. The bare Green’s function for the conduction electron
gc(τ ) = gc,0(τ ) is used; in the frequency domain it takes the
form

gc,0(z) =
∫ D

−D
dε

ρ(ε)

z − ε
= −ρ log

(
D − z

−D − z

)
, (7)

corresponding to a flat density of states with half bandwidth
of D. The holon’s Green’s function takes the form

Gχ (z) = [−J−1
K − �χ (z)

]−1
. (8)

The bare holon Green’s function is devoid of any dynamics
at the bare level and its dynamical features derive from its
self-energy. It is also purely local (no m dependence). As
for the spinons, one can show (see Appendix A) that the
uniform solution �m = −� is the state with the lowest free
energy in the absence of any Kondo coupling. Hence, we ex-
plore the parameter space of translationally invariant solutions
where, for the full temperature range studied, �m = −� and
λm = λ. The spinons then have a discrete spectrum εB(p) =
−2� cos p where p = 0,±2π/3. Each mode has a propagator
GB(p, z) = [z − εB(p) − λ − �B(z)]−1. Here we used that the
locality of electronic and holonic Green’s functions implies
that the bosonic self energy is local in orbital space. This is an
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exact result for this single impurity model, as p is the basis of
the Fourier transform of the orbital basis m. This index p is not
a lattice momentum, for which the locality of the self-energy
would be motivated by a DMFT-like approximation. The local
propagator is then

GB,loc(z) = 1

3

∑
p

GB(p, z)

= 1

3

(
2

z − �− λ − �B(z)
+ 1

z + 2�− λ − �B(z)

)
.

(9)

The self-consistent equations presented in Eq. (6) need to
be solved while preserving the stationarity of the free energy
with respect to variations of λ and �. This leads to the follow-
ing two constraints

q = −
∫ ∞

−∞

dω

π
nB(ω) Im[GB,loc(ω + iη)]

�

JH
=

∑
p

∫ ∞

−∞

dω

π
nB(ω) Im[cos (p) GB(p, ω + iη)]. (10)

In the numerical solution of these equations, we set �

and q = 2S/N as initial parameters. We subsequently use the
constraints, Eq. (10), to determine the corresponding chemical
potential λ and the Hund’s coupling JH . We opted for a para-
metric approach where we set � and find the corresponding
JH , which improves the numerical stability of the solutions to
the integral equations. The self-consistency equations, Eq. (6),
are solved using the real frequency form of GB and Gχ on a
logarithmic grid spanning ω/D ∈ ±[10−5, 105]. All thermo-
dynamic quantities are extracted from the real frequency form.

Large-N treatments of ferromagnetism are notoriously
plagued by first-order transitions. To circumvent such artifacts
we add a repulsive biquadratic term H ′

m = ξJH (�Sm · �Sm+1)2.
For SU(2) spins, this perturbation can be reabsorbed in the
nearest neighbor interaction, but for SU(N) spins, it leads to
a quartic term in the effective action and transforms the first
order features into second order transitions. Upon adding such
a term, the effective J∗

H is obtained as J∗
H = JH/(1 + ξ�2/J2

H ),
which removes the nonmonotonic features [19,22]; a value
of ξ = 10 has been used here. We expect that a crossover
between the two T → 0 Fermi liquid states presented in Fig. 2
rather than a phase transition is restored upon inclusion of
quantum fluctuations about the saddle point solution, which
are beyond the scope of the present study.

IV. RESULTS

All numerical solutions of the integral equations were done
for D = 500 and T 0

K = 1.58, along a logarithmic real fre-
quency grid with up to N = 5000 points. A small thermal
broadening of the Green’s functions is used for numerical
stability. Furthermore, calculations were done using q = 0.3,
a deviation from the expected q = 1/2 for a S = 1/2 SU(2)
impurity. It has been shown [28] that tuning q does not af-
fect the qualitative behavior of all other thermodynamical
quantities and merely tunes T 0

K . This can be done as long
as perfect screening is maintained (2S = K ). We arbitrarily

chose q = k = 0.3 in the following sections to benchmark
with previous work.

A. Observables

In this study, we concentrate on three observables (im-
purity entropy, specific heat, and susceptibility), in addition
to the spectral functions of the emergent spinon and holon
excitations. Notably, we obtain the entropy and the spe-
cific heat from an explicit formula derived in Refs. [27,28]
(see Appendix B for a summary). The spin susceptibility
χ (n, τ ) = ∑

m,α,β〈Sm+n,αβ (τ )Sm,βα (0)〉/3N2 contains an on-
site part χloc(τ ) ≡ χ (n = 0, τ ) and an intersite part χ (n =
±1, τ ). We present our results through the Fourier transform
of these expressions for the susceptibility, which are [19]

χ (k, ω) = 1

3

∑
p

∫
dω′

2π
nB(ω′) Im[GB(p, ω′ + iη)]

× [GB(p − k, ω′ − ω − iη)

+ GB(p + k, ω′ + ω + iη)]. (11)

Three main static susceptibilities (ω → 0) are extracted: the
zero-momentum, local, and finite momentum susceptibilities.

χ0 = χ (k = 0, ω = 0) =
∑

n

χ (n, ω = 0), (12a)

χloc = 1

3

∑
k

χ (k, ω = 0) = χ (n = 0, ω = 0), (12b)

χ± = χ (k = ±2π/3, ω = 0) = [3χloc − χ0]/2, (12c)

where in terms of Schwinger bosons,

χloc =
∫

dω

π
nB(ω) Im G2

B,loc(ω + iη), (12d)

χ0 = 1

3

∑
p

∫
dω

π
nB(ω) Im G2

B,loc(p, ω + iη). (12e)

In the three-site impurity model, only the k = ±2π/3 fi-
nite momenta are present, and both momenta have the same
form. We call χ± the staggered susceptibility, as it relates
to the fluctuations of the excited state, where the spins are
misaligned (they have a 120◦ angle between one another at
the SU(2) level). Both the local and uniform susceptibility
exhibit Curie-like behavior at high-temperature characteris-
tic of a paramagnet state, as well as a Pauli-like behavior
at low temperature once the Kondo effect sets in. Ahead of
computations, it is possible to extract limiting values for the
susceptibilities as well as the total impurity entropy in the
large-N limit. These derivations are presented in Appendix B.
Two distinct regimes of JH � T and T � JH can be tackled,
and an analytic form for each regime is obtained. Both limits
can be understood in terms of general functions

S̃(x) = (1 + x) ln (1 + x) − x ln x, (13)

χ̃ (x, T ) = 2x(1 + x)/T, (14)

with S̃(q) the high-temperature entropy for a system with
q = 2S/N and χ̃ (q, T ) the high-temperature spin suscepti-
bility in its Curie form. The analytic limiting results are
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TABLE I. The limiting values of the susceptibilities and the im-
purity entropy, with q = 2S/N and β = 1/T the inverse temperature.
Derivation of these limits is presented in Appendix B.

JH � T T � JH

χ0 χ̃ (3q, T )/3 χ̃ (q, T )

χ±
2q
�

χ̃ (q, T )

χloc
1
3

[
χ̃ (3q,T )

3 + 4q
�

]
χ̃ (q, T )

Simp S̃(3q) 3 S̃(q)

summarized in Table I. This analysis reveals that the forma-
tion of the large moment for JH � T reduces the entropy
as the system has an effective q′ = 3q. This also leads to a
plateau in the finite-momentum susceptibility, as all tempera-
ture dependence is overshadowed by the large spinon hopping
� present.

B. Numerical solution

The obtained thermodynamical quantities for a prototypi-
cal point in the intermediate regime are presented in Fig. 4.
From the analytical expression of the impurity entropy in the
large-N limit, it is possible to directly extract the entropy
Simp(T ) and specific heat Cimp(T ) from its derivative. The
specific heat data was used to construct our phase diagram, see
Fig. 2. Furthermore, we observe that when the system loses
a significant proportion of its high-temperature entropy, the
uniform susceptibility χ0 changes behavior. While remaining
Curie-like such that χ0 ∼ μ2/T , the moment size increases, as
is seen in Fig. 4(a). Dotted and filled black lines correspond to
the two analytical limits for the entropy and the magnetic mo-
ment, and these are indeed reached in their respective limits.

FIG. 4. (a) The impurity moment μ2 = T χ0 and (b) the entropy
Simp, respectively, as well as the two limits obtained analytically, as
seen in Table I. Parameters used were q = 0.3 and T 0

K /JH = 0.07.

FIG. 5. Holon and spinon spectral function [(a) and (b), respec-
tively] for T 0

K /JH = 100 (corresponding to �/T 0
K = 0.01) at T =

0.0945T 0
K , with a clear Kondo gap �0

K at small frequencies. Parame-
ters used were q = 0.3.

Solving the self-consistent equations in the uncoupled limit
(T 0

K /JH � 1), we observe that changes of the Hund’s coupling
do not change the thermodynamics, and all curves collapse
onto each other. In all cases, as the temperature is lowered,
each orbital moment becomes fully screened and forms a
Fermi liquid. The Schwinger bosons and the holons both
present a clear spectral gap �0

K 	 T 0
K for temperatures below

the bare Kondo temperature. This is seen in Fig. 5(a). The
strong coupling of the spinons and the conduction electrons
into a singlet, which manifests itself as a full holon phase shift
of δχ ≡ Im ln[−G−1

χ (0 − iη)] = π , is the reason for this gap.
Charge conservation between conduction electrons and holons
links their corresponding phase shifts: δc = δχ/N [32,33],
where δχ ≡ Im ln[−G−1

χ (0 − iη)]. For a SU(N) Kondo model,
a π/N phase shift of the conduction electrons corresponds to
a local Fermi-liquid state, which is observed here.

In the intermediate regime, where T 0
K /JH<1 while JH
D,

we observe some of the most drastic effects of the Hund
coupling on the holon and spinon’s dynamics. As temperature
is reduced, the first effect that takes place is the settling of
the Schwinger bosons into their lowest energy state. This
is seen in the splitting in two of the high-frequency feature
of the spinon’s spectral function in two at Torb. These two
features are separated by 3�, the upper band corresponding
to excitations out of the fully ferromagnetically aligned state
and the lower one to energy fluctuations to the underscreened
Kondo regime. The presence of a large spinon gap dampens
the k = ±2π/3 spinonic excitation modes, and most of the
spectral weight moves to the k = 0 mode as temperature is
further reduced. The low-frequency feature then keeps mov-
ing to lower frequencies, passing by the uncoupled system’s
gap edge �0

K . It is prevented from settling there since a signifi-
cant amount of spectral weight still resides in the upper spinon
band. Finally, as T 	 T eff

K , a much smaller gap �eff
K 
 �0

K
develops in both the spectral function ρi = 1

π
Im Gi(ω − iη)

for both GB,loc and Gχ , as can be seen in Fig. 6. The fixing
and sharpening of the low-frequency mode is accompanied by
another negative frequency resonance confining the spinons
and indicating that the Kondo effect has fully settled in.

These effects are further evident when looking at the dy-
namical susceptibility, in Fig. 7(b). For a temperature T1

below Torb but much higher than T eff
K , the Kondo gap has
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FIG. 6. (a) Temperature dependent Schwinger boson’s spectral
function and (b) holon’s spectral function for the intermediate
regime. In the locked moment phase, the low frequency peak moves
downwards, finally settling into a constant value once T reaches
T eff

K ∼ 0.22 T 0
K . This leads to a clear gap in the bosonic and holon

spectra at low frequency, while the high frequency spinon band
remains. Parameters used were q = 0.3 and T 0

K /JH = 0.08, corre-
sponding to a spinon gap of �/T 0

K = 3.3.

not been established, and χ (0, ω) presents a large maxima at
zero frequency. However, the staggered susceptibility χ (k =
±2π/3, ω) has a broad maxima at approximately ω ∼ 3�,
corresponding to spinon excitations out of the ferromagnet-
ically ordered state. This peak is present for a large swath
of temperatures and remains prominent for T2 < T eff

K . At
these low temperatures, the low-energy gap starts to form and
pushes the k = 0 peak to finite frequency, opening a gap. Note
that for the T2 chosen, there remains a finite density of states
in the gap, leading to a nonzero value of the k = 0 dynamical
susceptibility at zero frequency.

For JH � T 0
K , i.e., in the pure Schrieffer limit, solving the

self-consistency equations becomes more and more unstable
at high temperature. In this limit, the high-frequency spinon
excitation band moves completely out of the electronic band-
width, such that effectively, GB,loc(z) ∼ 1

3 GB(p = 0, z). This
amounts in a condensation of the spinons into the uniformly
aligned state at high-temperature, akin the RG flow from the
locked moment fixed point of Fig. 1. Since the moment is
already formed, further increasing JH does not change T eff

K .
We find that T eff

K /D ∼ (T 0
K /D)2.6 in the Schrieffer limit, as

FIG. 7. Dynamical spin susceptibility χ ′′(k, ω)/ω for temper-
ature T1 in the locked moment regime, and T2 < T eff

K in the
Fermi-Liquid regime, for the uniform [k = 0; (a) and the stag-
gered (k = ±2π/3; (b)], enhanced by a factor of 100 for visibility]
contributions. Parameters used were q = 0.3 and T 0

K /JH = 0.08, cor-
responding to a spinon gap of �/T 0

K = 3.3.

opposed to the expected (T 0
K /D)3, using the maximum of the

spin susceptibility as our indicator for T eff
K . An alternate way

to indicate the Kondo temperature is through the progression
of the holon phase shift towards unitarity: δχ → π . If we set
δχ/π = a at T = T eff

K , then the obtained exponent for the
Schrieffer limit tends towards the expected 3 as a is taken
closer and closer to 1, i.e., full unitary phase shift. We view
this as a confirmation that we retrieve the Schrieffer limit with
the full numerical treatment of the large-N equations.

It is clear that one could change M and repeat this ex-
haustive investigation of the exponential depletion of T eff

K . We
note that already for M = 3, the effective Kondo temperature
for large JH is already more than four orders of magnitude
decreased. For realistic systems with M = 5, for example
Mn2+, the effective Kondo temperature would be more than
10 orders of magnitude below. The trend from Fig. 2 would
be downward with an ever increasing slope for larger M.
Even at M = 5, the physics would look very similar to that
of a ferromagnetic 1D chain [19], with the effective Kondo
temperature so low that it would be effectively unmeasurable
experimentally.

V. KONDO TEMPERATURE AND
SINGLE-ITERATION APPROACH

An approximate treatment of the effective Kondo tem-
perature can be obtained with only a single iteration of the
self-consistency equations.

A. Kondo temperature

We first establish a simple analytical criterion for the
Kondo temperature. As the temperature is lowered from high
temperatures, a pole in the holon’s Green’s function develops
and moves from positive frequency to negative frequency,
where a bound state forms. This consideration provides an
estimate for the Kondo temperature as the temperature at
which the holon pole is at zero frequency. Because of the
structure of the holon Green’s function from equation (8), this
leads to

− 1

JK
= Re �χ (ω = 0 + iη) at T = TK . (15)

Translating Eq. (6) from imaginary time τ to real frequency ω,
and then taking ω → 0, we get the following equation which
implicitly defines TK

− 1

JK
=

∫
dω

π

[
G′′

B,loc(ω)nB(ω)g′
c(ω)

−G′
B,loc(ω) f (ω)g′′

c(ω)
]
. (16)

B. Single-iteration approach

We evaluate this definition of the Kondo temperature in
a single-iteration approximation, which we introduce here.
We first solve the saddle point equations (10) using the bare
local bosonic Green’s function, i.e., equation (9) with �B = 0.
After slightly changing the notation by using λ′ = λ − 2�, we
obtain

3� = JH [nB(λ′) − nB(λ′ + 3�)]

3q = [nB(λ′) + 2nB(λ′ + 3�)]. (17)
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FIG. 8. Spinon gap � (left) and modified spinon chemical poten-
tial λ′ = λ − 2� (right) obtained from equations (17), as a function
of temperature. Parameters used were q = 0.3.

Solving this system of equations, we find λ′ and � versus
temperature T for different values of s and JH , Fig. 8. For
temperatures above a certain Torb, the spinon gap � is 0.
There, the spinon chemical potential is the same as it would
be for a single impurity, i.e., λhigh T = T log(1 + 1/q). At low
temperature on the other hand, the gap fully develops, and one

gets that � ∼ qJH and λ′ ∼ T log(1 + 1
3q ). This is consistent

with the formation of the large moment of size q′ = 3q.

C. Approximate Kondo temperature

Here, we estimate TK as defined through Eq. (16) using
the approximate single-iteration solution, Fig. 8. The first
line of Eq. (16),

∫
dωG′′

B,loc(ω)nB(ω)g′
c(ω)/π , describes the

correction to the holon self-energy due to an on-shell spinon
and virtual conduction electron. In contrast, the second line,∫

dωG′
B,loc(ω) f (ω)g′′

c(ω)/π , describes the reverse process:
Here the conduction electron is on-shell, while the bosonic
spinon is virtual. Clearly, the phase space for the second pro-
cess is parametrically larger, because the conduction electrons
form a continuum, while the spectrum of bosons in the limit
of �B = 0 is discrete. As a consequence, see Appendix C,
in the limit of D/T → ∞, the integral in the first line of
Eq. (16) is negligible compared to the second line, which
itself results in Eq. (18) [34]. In this equation, P.V. is the
principal value, and ψ̃ (z) = Re ψ (1/2 − i z/2π ), where ψ (z)
is the digamma function. We here considered only the realistic
case of λ′ 
 min{D, JH }. In Eq. (18), we introduced a soft
cutoff on the conduction electrons D2/(D2 + ω2) instead of
the sharp cutoff at ω = ±D.

− 3

JKρ
= P.V.

∫ ∞

−∞
dω

D2

ω2 + D2

(
2 f (ω)

ω − 3� − λ′ + f (ω)

ω − λ′

)

= ln(2πT/D) + ψ̃ (λ′/T ) + 2

1 + 9�2/D2
[ln(2πT/D) + ψ̃ (λ′/T + 3�/T )] − π

D/3� + 3�/D
. (18)

This is a nonlinear equation which is then solved assuming
the λ′(T ) and �(T ) behavior from the solution of Eq. (17)
for a given JK , ρ, JH , and q. The temperature that satisfies
this equation is then T eff

K as obtained by the single iteration
method. This semianalytical formalism reveals outstanding
details in some limiting cases. The result is shown in Fig. 9.

FIG. 9. Phase diagram obtained from a single iteration of the
large-N equations, by solving Eq. (18), for q = 0.3, D = 300, and
T 0

K /D = 0.007. The blue line is the solution T eff
K , while the red line

Torb is obtained from the solution of Eq. (17) for a given s and JH . The
black dashed line corresponds to the scaling at intermediate T 0

K /JH .

The single impurity result T 0
K is easily obtained by setting

� = 0 and λ′ = T λ0 with λ0 ∼ log(1 + 1/q). This leads to

T 0
K

D
	 1

2π
exp

[
− 1

JKρ
− ψ̃ (λ0)

]
, (19)

retrieving the well-known result. We use this expression to
obtain a compact self-consistent condition for T eff

K in the limit
D � JH , T 0

K ,

T eff
K

D
= T 0

K

D
exp

[
ψ̃ (λ0) − 1

3
ψ̃ (λ̃) − 2

3
ψ̃ (λ̃ + 3�̃)

]
, (20)

with λ̃ = λ′(T eff
K )/T eff

K and �̃ = �(T eff
K )/T eff

K . For JH � T 0
K ,

we can simplify the result much further using � 	 qJH , λ′ 	
T log(1 + 1/3q), and ψ (z) ∼ log(z) for large z arguments

T eff
K

D
∼ T 0

K

D

(
T eff

K

3qJH

)2/3

, (21)

or, equivalently, for D � JH � T 0
K

T eff
K

T 0
K

∼
(

T 0
K

3qJH

)2

, (22)

which is identical to the form of Ref. [6] that was obtained us-
ing a renormalization group study of the SU(2) Hund-Kondo
model.

A final important limit to mention is one with JH�D�T .
In that case, the spinon band is excluded from the electron
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bandwidth, and the system behaves right away like one of
q′ = 3q. By examining equation (18), it is clear that while
λ′ remains proportional to T eff

K , � is very large due to the
large JH . Hence, the second term of (18) tends to 0 in that
limit where D/� → 0. The resulting self-consistent equation
is then

T eff
K

D
= 1

2π
exp

[
− 3

JKρ
− ψ̃ (λS )

]
∝

(
T 0

K

D

)3

, (23)

with λS = log(1 + 1
3q ) so that one obtains the identical Schri-

effer limit for very large Hund’s coupling. The resulting full
T eff

K curve obtained by solving equation (18) is presented in
Fig. 9. One can see that even at the single-iteration level, the
exponential depletion of T eff

K in the presence of JH is correctly
captured. Furthermore, both the exponent β = 2 of that de-
crease in the regime of intermediate JH and the Schrieffer
limit for large JH � D are appropriately conveyed with this
approach.

Finally, we note the striking qualitative similarity with the
phase diagram obtained from the full numerical solution of
the large-N self-consistent equation, presented in Fig. 2. The
essential difference between them is twofold. Firstly, we used
here a very soft cutoff for the conduction electron, compared
to a sharper one in our numerical phase diagram. Secondly,
self-energy effects for the spinons change the value of T 0

K /JH

where the downward renormalization starts to take effect.

VI. CONCLUSIONS AND OUTLOOK

We here present the main conclusions of this work, as well
as future directions for the large-N method in multiorbital
systems.

A. Summary

The strength of the large-N Schwinger boson approach lies
in both its simplicity and its ability to capture the essential
features of a physical model, including its thermodynamic,
dynamic, and ground state properties. The analytical control
of the method comes at the price of a large-N limit, so that the
reader might wonder about the ability to correctly describe the
physical SU(2) case. Importantly, we find that all the relevant
regimes are both qualitatively and quantitatively retrieved.
This is in line with previous studies of this method on both
ferromagnetic and antiferromagnetic spin chains [19,20]. In
particular, and in contrast to large-N Abrikosov fermion meth-
ods, the present theory correctly captures the emergence of
Kondo screening as a crossover, rather than a second order
phase transition.

The essence of the renormalization of the Kondo temper-
ature in the presence of Hund’s coupling is rather simple: As
the local moments bind ferromagnetically, they form a larger
moment which exponentially suppresses the formation of the
Kondo singlet. Through both our numerical solution of the
self-consistent self-energy equations and our single-iteration
approach, we were able to correctly capture the exponential
decrease of T eff

K ∼ (T 0
K /JH )2, in alignment to previous RG

work [6], as well as the Schrieffer limit where JH > D.
Furthermore, this method benefits from an exact formula

in the large-N limit of the impurity entropy and specific

FIG. 10. (a) The electronic self-energy � (1)
c = 1

N Gχ (−τ )GB(τ )
(we suppressed the orbital index m) obtained from the Luttinger-
Ward functional. (b) Next-order correction which includes inelastic
scattering of the conduction electrons off the impurity, where vertices
are represented in (c).

heat. Our analysis combined these thermodynamical mea-
surements with dynamical quantities, such as the dynamical
staggered susceptibility. The loss of entropy consistent with
analytical limits at intermediate temperatures is correlated
with extremely short lived excitations into the staggered spin
state. This allowed us to clearly identify the development of a
high-spin Hund’s configuration, i.e., the emergence of a large
moment at the impurity.

B. Outlook

We conclude with two perspectives for future research.
First, in regards to Hund’s impurity models, a recent body
of work using numerical renormalization group (NRG) has
demonstrated the proximity of the doped multiorbital Kondo
model to a non-Fermi-liquid (nFL) fixed point [10,35,36].
In the case where two electrons occupy three orbitals, the
model bears a striking resemblance to the overscreened Kondo
model, which has a nFL fixed point. The influence of the
latter has been revealed upon tuning the interactions between
the orbitals. The natural extension of the work presented
here more relevant to the Fe2+ configuration is to consider
mixed valence scenarios, in which the holons are real particles
rather than virtual particles mediating Kondo interaction. Such
an infinite-U Hund-Anderson impurity model is expected to
display richer interplay between Hund’s interaction and the
Kondo physics. In closing, we remark that the exponential
suppression of the Fermi liquid temperature due to Hund’s
coupling, re-established here, may be linked to the apparent
direct transition from non-Fermi liquid to superconducting
state seen in iron-based superconductors.

Beyond the problem of an isolated impurity, a second per-
spective is to use the present Schwinger boson formalism as
a real-frequency impurity solver for a dynamical mean-field
theory (DMFT) of extended Hund’s metals. Technically, this
question is intimately linked to the self-energy of conduc-
tion electrons, which in the present approach scales as 1/N
in the large-N limit, as opposed to the spinon and holon
self-energies which are O(1) [see Fig. 10(a)]. In a DMFT
spirit, one may employ �c self-consistently with the other
self-energies, keeping N finite. This was done in Refs. [32,33]
for an impurity with a single orbital, where a (local) Fermi
liquid with a finite electronic phase shift was observed. It is
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worth asking, however, if the signature of the Fermi liquid,
the T 2 resistivity, can be recovered using this method. Unfor-
tunately, using �̃c = N�c to leading order in N , the expected
T 2 behavior is replaced by an exponential decay due to finite
gap in both the holons and spinons [21,33]. We envision that
one could use the obtained self-consistent Green’s functions
into �(2)

c [see Fig. 10(b)] to restore the inelastic scattering of
the electrons off the impurity. Taken together, these next steps
together would make the large-N approach a viable alterna-
tive to multiorbital impurity solvers by providing an accurate
electronic self-energy.
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APPENDIX A: MEAN FIELD SOLUTION AT JK = 0

We consider the Hund-Kondo Hamiltonian using the
Schwinger boson representation of the orbital moments, in
the absence of Kondo coupling. The most general mean field
model of the Hund coupling in this situation is

HMFT = (b†
1 b†

2 b†
3)

⎛
⎝λ1 �1 �3

�1 λ2 �2

�2 �3 λ3

⎞
⎠

⎛
⎝b1

b2

b3

⎞
⎠

+
∑

i

( |�i|2
JH

− λiq

)
, (A1)

with q = 2S/N , and where we consider the most general case
where the λi can all be different and �i =: �i,i+1 with pe-
riodic boundary condition. We diagonalize the matrix above
for different scenarios of λi and �i, and evaluate the free en-
ergy f = F

N = T
∑

i log(1 − e−Ei/T ) + ∑
i(

|�i|2
JH

− λiq) under
the stationarity conditions ∂λ f = 0 and ∂� f = 0. The four
scenarios are shown in Fig. 11.

Diagonalization of the mean-field Hamiltonian reveals the
following spectra for the four configurations examined:

Ea = (λ − �,λ − �,λ + 2�),

Eb = (λ − 2�,λ + �,λ + �),

Ec = (λ − �,λ + �,λ′),

Ed = (
1
2 ((λ + λ′) −

√
(λ − λ′)2 + 8�2),

λ′, 1
2 ((λ + λ′) +

√
(λ − λ′)2 + 8�2)

)
. (A2)

For configuration (a), the stationarity conditions with respect
to λ and � lead to

3q = 2nB(λ − �) + nB(λ + 2�),

3�

JH
= nB(λ − �) − nB(λ + 2�),

(A3)

FIG. 11. The four examined mean-field scenarios for the Hund’s
triangle. In order, these are the homogeneous solution with positive
spinon hoping (a), with negative spinon hopping (b), the dimerized
solution where only two sites are active with each other forming a
dimer in (c), and the situation where one link is missing.

where nB(x) = 1/(ex/T − 1). At low temperature, assuming
λ − � > 0 (keeping this the lowest energy state), then nB(λ −
�) 	 T/(λ − �) and nB(λ + 2�) 	 0. From Eq. (A3), we
find that this leads to � = qJH and then that λ − � = 2T

3q .
Putting this back into the free energy, and approximating that
ln(1 − x) 	 −x at low temperatures, then fa → 0.

For configuration (b), the stationarity conditions with re-
spect to λ and � lead to

3q = 2nB(λ + �) + nB(λ − 2�),

3�

JH
= nB(λ − 2�) − nB(λ + �). (A4)

Keeping λ − 2� as the lowest energy state as T → 0, this
leads to very similar conditions to (a) where now λ − 2� =
T
3q and � = qJH , we get fa → −3JH q2.

For configuration (c), the dimerized setup, there are now
three stationarity conditions, as λ and λ′ are now tunable
parameters. These lead to

2q = nB(λ − �) + nB(λ + �),

2�

JH
= nB(λ − �) − nB(λ + �),

q = nB(λ′). (A5)

Keeping λ − � as the lowest energy state as T → 0, this leads
to fc → −q2JH .

The same procedure for configuration (d) leads to a cum-
bersome set of equation. In the low-temperature limit, these
lead to � = √

2JH q and λ − √
2� = T

4q , which gets a free

energy of fd → (4 − 3
√

2)JH q2.
The calculation of the low-temperature free energy shows

that at low temperatures, configuration (b) is the lowest energy
state, and we are correct in assuming �m = −� and λm = λ

for the model with JK finite. This concludes the derivation of
the mean-field solution used in bosonic Green’s function at
equation (9).
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APPENDIX B: ENTROPY AND SUSCEPTIBILITY—LIMITING CASES

At finite temperature, our free energy f (T ) = F (T )/N only has a few terms that remain O(1). We obtain the following form
for k = K/N = q = 2S/N

f (T ) =
∑

p

∫
dω

π
nB(ω)

[
Im log

(−G−1
B (p, ω)

) + �′′
B(ω)G′

B(p, ω)
]

− q
∫

dω

π
nF (ω)

[
Im log

(−G−1
χ (ω)

) + �′′
χ (ω)G′

χ (ω) + �̃′
c(ω)g′′

c,0(ω)
] − 3λq, (B1)

Simp(T ) = −
∑

p

∫
dω

π
∂T nB(ω)

[
Im log

(−G−1
B (p, ω)

) + �′′
B(ω)G′

B(p, ω)
]

− q
∫

dω

π
∂T nF (ω)

[
Im log

(−G−1
χ (ω)

) + �′′
χ (ω)G′

χ (ω) − �̃′
c(ω)g′′

c,0(ω)
]
, (B2)

where �̃c = N�c = Gχ (−τ )GB(τ ). The total impurity entropy is obtained from this using Simp = − ∂ f
∂T . One can then evaluate

this in different regimes.
At high temperatures (T � �), we can neglect all self-energy contributions. This leads to GB(p = 0, ω) 	 [ω − λ + 2�]−1

and GB(p = ±2π/3, ω) 	 [ω − λ − �]−1, such that the spectral functions are ρB(q, ω) = δ(ω − λ − εq). Since the constraint
is always enforced, we get that q = ∫

dωnB(ω)ρB(ω) = 1
3 nB(λ − 2�) + 2

3 nB(λ + �). In the limit T � �, we have that nB(λ −
2�) 	 nB(λ + �) 	 nB(λ). This leads to q = nB(λHigh T), which, if inverted, give the high-temperature value of the spinon’s
chemical potential.

λHigh T = T log

(
1 + q

q

)
(B3)

We insert this into the impurity’s total free energy so that the high-temperature entropy limit is extracted from Simp =
−∂T f (T ) = 3[(1 + q) log(1 + q) − q log q].

f High T
imp = T

∑
p

∑
n

log(β(−iνn + λHigh T + εp)) − 3qλHigh T(T )

= T ln
(
1 − e−β(λHigh T−2�)

) + 2T ln
(
1 − e−β(λHigh T+�)

) − 3T [q log(1 + q) − q log(q)]

= −3T [(1 + q) log(1 + q) − q log(q)]. (B4)

One can also take an alternative limit where � � T at still high temperature. The spectral function is the same, but this leads
to a new consequence of the Schwinger boson number constraint. In this limit, we have that nB(λ + �) → 0, and nB(λ − 2�)
remains finite. This leads to q = 1

3 nB(λHigh � − 2�). Solving this leads to

λHigh � = 2� + T log

(
1 + 3q

3q

)
. (B5)

In effect what we have here is an effective q such that q′ = 3q. Calculating the free energy, we get

f High �

imp = T
∑

p

∑
n

log(β(−iνn + λHigh � + εp)) − 3qλHigh �(T )

= T ln
(
1 − e−β(λHigh �−2�)

) − 3qT [log(1 + 3q) − log(3q)] − 6q�

= −T [(1 + 3q) log(1 + 3q) − 3q log(3q)] − 6q�, (B6)

and hence the impurity entropy is Simp = −∂T f (T ) = [(1 + 3q) log(1 + 3q) − 3q log 3q]. This is a rather large decrease in
entropy between the truly high-temperature regime and the high-� regime (corresponding to the onset of Hund’s coupling and
ferromagnetic order in the triad). We expect that in situations where the three regimes are well separated, these two limits will
be present as entropy plateaus, and the transition between them will be at Torb corresponding to a large specific heat peak.

We now focus on the same limiting procedure for the susceptibilities. An important form we will need for these derivations
is Im G(ω)2. Let G(ω) = [ω − �]−1. Then, Im G2(ω) = 2πδ′(ω − �) where δ′(x) = ∂xδ(x). This statement is important in the
following derivations.

We recall the overall forms for the susceptibilities:

χ0 =
∫

dω

π
nB(ω) Im[χ0,ω], χ0,ω = 1

3

∑
p

G2
B(p, ω), (B7)

χ± =
∫

dω

π
nB(ω) Im[χ±,ω], (B8)
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χ±,ω = 2

3
GB(0, ω)GB(2π/3, ω) + 1

3
G2

B(2π/3, ω),

χloc =
∫

dω

π
nB(ω) Im G2

B,loc(ω) = 1

3
[χ0 + 2χ±], (B9)

with the local bosonic Green’s function GB,loc(ω) = 1
3

∑
p GB(p, ω). Starting then with χ0 and neglecting all self-energy

contributions, we get the expression in Eq. (B10). In the T � � limit, we can use the same asymptotic limit for λ, as well as the
approximation that nB(λ + �) = nB(λ − 2�) = nB(λ) = q. This leads to χ0 → 2q(1+q)

T being Curie-like at high temperature,
with a moment size determined by q = 2S/N , as expected. In the � � T limit, the limiting λ changes form to accommodate the
effective q′ = 3q, and we have nB(λ + �) = 0 and nB(λ − 2�) = 3q. This leads to χ0 → 2q(1+3q)

T in that limit, in line with the
idea of an emergent moment three times the size of the original local moment on the orbitals.

χ0 = 2

3

∑
p

∫
dωnB(ω)δ′(ω − λ + 2� cos p) = −2

3

∑
p

∫
dωn′

B(ω)δ(ω − λ + 2� cos p)

= 2

T

[
2

3
nB(λ + �)(1 + nB(λ + �)) + 1

3
nB(λ − 2�)(1 + nB(λ − 2�))

]
. (B10)

The same procedure can be done for χ±. Going back to our definition of the finite momentum susceptibility, we have that χ± =∫
dω
π

nB(ω) Im[χ±,ω] with χ±,ω = 2
3 G0G± + 1

3 G2
± where Gp = GB(p, ω + iη) and ± refers to p = ±2π/3 momenta. Taking the

imaginary part, we get that

Im[2G0G± + G2
±] = 2 Im G0 Re G± + 2 Re G0 Im G± + Im G2

±

= lim
η→0

(
−2πδ(ω − λ − �)

ω − λ + 2�

(ω − λ + 2�)2 + η2

−2πδ(ω − λ + 2�)
ω − λ − �

(ω − λ − �)2 + η2
+ 2πδ′(ω − λ − �)

)
, (B11)

The integral over frequencies weighted by the Bose function for the third term gives the usual 2βnB(λ + �)(1 + nB(λ +
�))/3. As for the first two terms, taking the limit of small η and performing the integral, we get 2(nB(λ + �) − nB(λ − 2�))/9�.
Putting these two together, we get

χ± = 2β

3
nB(λ + �)(1 + nB(λ + �)) + 2

9�
(nB(λ − 2�) − nB(λ + �)). (B12)

For T � �, we again use that nB(λ + �) = nB(λ − 2�) = nB(λ), as well as the high-temperature limit of λ so that
nB(λHigh T) = q. This leads to χ± → 2q(1+q)

3T . For the other limit where � � T while still being at high temperatures, we
approximate nB(λ + �) = 0 and nB(λ − 2�) = 3q. This leads to χ± → 2q

�
, which produces one of the results in Table I in

the main text for the staggered susceptibility (p = ±2π/3 contribution).
Finally, since χloc = 1

3 [χ0 + 2χ±], it will share the same high-temperature limit as χ0 and χ± at T � � and be Curie-like.
At intermediate temperature, i.e., when � � T , then the χ± contribution is outshone since it does not increase with decreasing
temperature. The behavior of χloc will then be nontrivial, but nevertheless we can ascertain that χloc < χ0 and will not present
the same clear intermediate plateau behavior.

Note that the interpretation of these limits is readily extended to the case of JH vs T , as � = O(1)JH at most. The different
limiting cases are succinctly presented in Table I in the main text, using the general functions

S̃(x) = (1 + x) ln (1 + x) − x ln x, (B13)

χ̃ (x, T ) = 2x(1 + x)/T . (B14)

This concludes the derivation of the limits presented in Table I, as well as in Fig. 4.

APPENDIX C: DETAILS FOR SINGLE
ITERATION APPROACH

In this Appendix, we proceed to derive the first part of
Re �χ (ω = 0 + iη) [see Eq. (16)]. Knowing that the imagi-
nary part of the bare local bosonic Green’s function is

G′′
B,loc(ω) = −π

(
1

3
δ(ω − λ′) + 2

3
δ(ω − λ′ − 3�)

)
, (C1)

then, together with the real part of gc from equation (7),
results in

Re
∫

dω

π
G′′

B,loc(ω)nB(ω)gc(ω)

= 2ρ

3
nB(λ′ + 3 �) ln

( |λ′ + 3 � − D|
|λ′ + 3 � + D|

)

+ ρ

3
nB(λ′) ln

( |λ′ − D|
|λ′ + D|

)
→ 0. (C2)
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For the physical regimes here considered, λ′ ∝ T 

min{JH , D}, we have that for the term proportional to nB(λ′),
since the accompanying logarithm tends to 0 due to the
cancellation of D. The leftover term is also 0 in the limit
where D � JH due to the logarithm. This logarithm factor is
however finite for � ∝ JH � D. In this case, the solution of
Eq. (17) shows that nB(λ′ + 3�) → 0. Hence this complete
term of Eq. (C2) can be correctly neglected compared to the
other contribution, as is mentioned in Sec. V C.

Note that this result was obtained with a symmetric elec-
tron dispersion. In the case of particle-hole asymmetry of
the conduction electrons, this integral would not tend to
0, but rather to a finite number which has the effect of
changing the effective value of JK . This is expected as
the particle-hole asymmetry creates potential scattering that
contributes to the renormalization of the Kondo coupling
[37].
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