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The debate whether uranium 5 f electrons are closer to being localized or itinerant in the ferromagnetic
compound UGa2 is not yet fully settled. The experimentally determined magnetic moments are large, approxi-
mately 3 μB, suggesting the localized character of the 5 f electrons. In the same time, one can identify signs of
itinerant as well as localized behavior in various spectroscopic observations. The band theory, employing local
exchange-correlation functionals, is biased toward itinerant 5 f states and severely underestimates the moments.
Using material-specific dynamical mean-field theory (DMFT), we probe how a less approximate description of
electron-electron correlations improves the picture. We present two variants of the theory: starting either from
spin-restricted (LDA) or spin-polarized (LSDA) band structure. We show that the L(S)DA+DMFT method can
accurately describe the magnetic moments in UGa2 as long as the exchange interaction between the uranium 6d
and 5 f electrons is preserved by a judicious choice of the spin-polarized double-counting correction. We discuss
the computed electronic structure in relation to photoemission experiments and show how the correlations reduce
the Sommerfeld coefficient of the electronic specific heat by shifting the 5 f states slightly away from the Fermi
level.
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I. INTRODUCTION

The 5 f electrons in actinides and their compounds can
be either itinerant and participating in chemical bonds, or
localized and not contributing to cohesion. A transition akin
to Mott metal–insulator transition occurs in elemental actinide
metals between Pu and Am [1]. Although elemental ura-
nium has itinerant 5 f electrons, its compounds display both
types of 5 f states. A traditional way of classifying uranium
compounds is by placing them in the Hill plot that relates
the critical temperature (magnetic or superconducting) to the
nearest neighbor U–U spacing [2]. Small U–U distances favor
superconducting behavior at low temperatures, whereas long-
range magnetic order takes place at spacings greater than the
so-called Hill limit (3.5 Å).

In UGa2, an intermetallic binary compound with a hexag-
onal AlB2 structure (space group P6/mmm, Fig. 1), the Ga
atoms effectively separate the uranium atoms, increasing the
U–U distance to 4.0 Å, that is, above the Hill limit. Ac-
cordingly, the compound exhibits ferromagnetic order below
TC = 125 K with the easy magnetization axis along the [100]
direction. Experimental observations establish magnetic mo-
ments of approximately 3 μB per U atom in the ferromagnetic
phase, using magnetization measurements [3,4] as well as
neutron diffraction [5,6]. UGa2 thus exhibits moments and
ordering temperature that are larger than typical for ferromag-
netic uranium intermetallics [7], which indicates localized 5 f
electrons. The magnetic behavior can indeed be accurately
reproduced by a fully local crystal-field model corresponding
to the 5 f 3 configuration of the U ion [8]. In addition, the
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observed Sommerfeld coefficient γ = 11 mJ mol−1 K−2 [9]
is not much enhanced compared to the analogous compound
without 5 f electrons, LaGa2, displaying γ = 4 mJ mol−1 K−2

[10], which testifies against a high density of electronic states
at the Fermi level in UGa2, again favoring the localized
picture of the 5 f electrons. The spectroscopic evidence, on
the other hand, is not conclusive about the nature of the 5 f
states since one can identify spectral features characteristic
to localized electrons as well as features typical to itinerant
electrons [11–13]. Similarly, the Fermi surface probed by the
de Haas–van Alphen effect is not compatible with full 5 f
localization [9].

The large spin-orbit coupling (SOC), the crystal-field split-
ting, and the Coulomb interaction between the 5 f electrons
influence the magnetic moments in a nontrivial manner. This
complexity contributes to the fact that the electronic structure
of UGa2 is not yet satisfactorily understood. The first-
principles band theory based on semi-local approximations to
the density-functional theory (DFT) severely underestimates
the moments, yielding about 0.6 μB per uranium atom [14,15].
The correlated band theory incorporating an on-site Hubbard
interaction term, DFT+U , can successfully model the mag-
netically ordered states, particularly in insulating compounds
with localized 5f electrons [16–18]. In UGa2, it enhances the
magnetic moments up to 2.8 μB but the spectroscopic results
are not reproduced very well [15,19].

The DFT+U method is a static mean-field approximation
and as such it cannot account for the multi-reference character
of the 5 f shell nor for dynamical many-body effects. These
limitations are lifted when DFT is combined with the dy-
namical mean-field theory (DMFT) [20,21], which accurately
models both itinerant and localized electrons. In this paper, we
investigate how the theoretical description of the magnetism
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FIG. 1. The hexagonal lattice of UGa2 with uranium atoms
shown in blue and gallium atoms in red. The uranium magnetic
moments (arrow) are aligned along the [100] direction.

and of the electronic structure of UGa2 improves when the
DFT+DMFT is applied. We estimate and discuss the effects
of the 6d−5 f exchange interactions on the 5 f magnetic mo-
ments, and compare the computed spectral properties with
the experimental valence-band photoemission spectra (PES).
We also discuss technical matters pertaining to spin-polarized
DFT+DMFT solutions.

II. METHOD

The DFT+DMFT method improves upon DFT+U by
replacing the static mean-field potential, approximating the
Coulomb interaction among the uranium 5 f electrons, with an
energy-dependent (dynamical) potential (self-energy) [20,22].
This self-energy is computed by solving an auxiliary impu-
rity model—a many-body problem, for which we employ the
exact diagonalization. We present two variants of the the-
ory differentiated by the self-energy being inserted (a) into
the spin-restricted LDA band structure (we call this method
LDA+DMFT), and (b) into the ferromagnetic LSDA band
structure (we refer to this variant as to LSDA+DMFT). A
similar comparison of spin-restricted and spin-polarized par-
ent band structures was performed for ferromagnetic nickel in
Ref. [23].

A. General formalism

We start with determination of the first-principles band
structure by means of the WIEN2K code [24] using parameters
listed in Appendix A. Scalar relativistic effects as well as the
spin-orbit coupling are included in these WIEN2K calculations
[25]. Afterwards, the relevant valence bands are represented
by a tight-binding Hamiltonian in the basis of the maximally-
localized Wannier functions [26,27]. This Hamiltonian is then
used as the parent band structure for the DMFT calculations.

In each iteration of the DMFT self-consistency cycle, the
local electronic structure around one shell of the uranium 5 f
Wannier functions is mapped onto a noninteracting impurity
model (Appendix B),

Ĥimp =
∑

mm′σσ ′
[Hloc]σσ ′

mm′ f̂ †
mσ f̂m′σ ′ +

∑
J

εJ b̂†
J b̂J

+
∑
mσJ

(VJmσ f̂ †
mσ b̂J + V ∗

Jmσ b̂†
J f̂mσ ), (1)

where f̂ †
mσ creates an electron in the 5 f shell with mag-

netic quantum number m and spin projection σ ∈ {−1/2, 1/2}
(eigenvalues of ŝz). The first term in Eq. (1) corresponds to
the local Hamiltonian, which describes the 5 f shell. It can be
decomposed as

Hloc = ε f Î + ζ l̂ · ŝ − ŝ · �X + B20Ô20

+ B40Ô40 + B60Ô60 + B66Ô66, (2)

where ε f is the energy of the 5 f level, ζ is the strength of
the SOC, �X gives the exchange splitting, and Ôkq and Bkq

are Stevens operators and the corresponding parameters that
characterize the D6h crystal-field potential at the uranium site
in UGa2. In general, the parameters Bkq can be spin depen-
dent, which we briefly discuss at the end of Appendix C.
Note that the decomposition introduced in Eq. (2) is only used
for the analysis of Hloc and has no influence on the DMFT
calculations and results.

The second term in Eq. (1) corresponds to an effective
medium usually referred to as the bath, with which the 5 f
shell interacts. The operator b̂†

J creates an electron in this
effective medium. The last term in Eq. (1) accounts for the
hybridization of the 5 f shell with the bath. In our calculations,
the off-diagonal hybridization induced by the noncommutativ-
ity of the hexagonal symmetry with the SOC is fully taken into
account. The crystal-field splitting of the 5 f states is partly
due to the crystal-field potential contained in Hloc and partly
due to the hybridization.

The full interacting impurity model, in which the self-
energy is computed, is given by

ĤDMFT
imp = Ĥimp + Û , (3)

where Ĥimp is the noninteracting one-electron part shown in
Eq. (1) and Û is the Coulomb repulsion among the 5 f elec-
trons,

Û = 1

2

∑
mm′m′′
m′′′σσ ′

Umm′m′′m′′′ f̂ †
mσ f̂ †

m′σ ′ f̂m′′′σ ′ f̂m′′σ

−
∑
mσ

(UH − σUX ) f̂ †
mσ f̂mσ , (4)

where Umm′m′′m′′′ is considered in its full spherically symmetric
form parametrized by four Slater integrals F0 = 2.0 eV, F2 =
7.09 eV, F4 = 4.60 eV, and F6 = 3.36 eV, which correspond
to Coulomb U = 2.0 eV and Hund J = 0.59 eV. The first
integral, F0, is at the upper limit, beyond which the 5 f peak in
the occupied LSDA+U density of states moves too far from
the Fermi level to be compatible with the valence-band pho-
toemission spectra [11,15]. The other three parameters (F2, F4,
F6) correspond to the atomic Hartree–Fock values calculated
for the U3+ ion (5 f 3 configuration) and then reduced to 80%
to mimic screening [28,29]. Note that the unscreened ionic Fk

values yield Hund J = 0.79 eV, which can be considered as
the maximal value for the uranium 5 f 3 systems.

The second term in Eq. (4) is the double-counting correc-
tion introduced to remove the static mean-field approximation
of the 5 f −5 f Coulomb interaction that is incorporated in the
DFT band structure. We assume the double-counting correc-
tion to be spherically symmetric (neither UH nor UX depends
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on the magnetic quantum number m), with UX = 0 for the
LDA band structure and UX �= 0 for the LSDA band structure.
The numerical values of UH and UX are discussed later in
Secs. II C and II D.

The impurity model, Eq. (3), is solved using the exact
diagonalization (Lanczos) method [30,31] as implemented in
our in-house code [32]. The size of the models, which can be
solved by this method, is limited due to unfavorable scaling of
the computational demands. The impurity models employed
in this paper consist of 14 spinorbitals corresponding to the 5 f
shell and another 42 spinorbitals representing the bath. Of the
bath states, N<

b = 14 orbitals have εJ below the Fermi level
(they are nominally occupied) and N>

b = 28 orbitals have εJ

above the Fermi level (they are nominally empty). Even these
small models are too demanding unless we turn to a reduction
of the many-body basis inspired by the work of Gunnarsson
and Schönhammer [32,33]. A cutoff M is introduced for each
N-electron Hilbert space HN , and the diagonalization is per-
formed only in a subspace

H(M )
N = {| f N−N<

b −n+m bn bm〉, 0 � m + n � M}. (5)

In this notation, f N−N<
b −n+m indicates N − N<

b − n + m elec-
trons in the uranium 5 f shell, bn indicates n electrons in the
bath orbitals above the Fermi level, and bm means m holes
in the bath orbitals below the Fermi level. We use M = 2 for
the cutoff. The convergence with respect to M is discussed in
Appendix D.

The impurity solver yields a self-energy [�̂(z)]σσ ′
mm′ acting

in the subspace of 5f spinorbitals, which enters the Dyson
equation for the local Green’s function Ĝ(z),

Ĝ(z) = 1

N
∑

k

[zÎ − Ĥk − �̂(z)]−1, (6)

where N is the number of k points in the Brillouin zone (4096
in our calculations) and Ĥk is the tight-binding Hamiltonian.
The local Green’s function determines an updated impurity
model (Appendix B), concluding one iteration of the DMFT
cycle.

After the DMFT self-consistency is reached, the occupa-
tion matrix of the 5 f states is evaluated from the 5 f block of
the local Green’s function,

n̂ f =
∫ EF

−∞
Â f (ε) dε, Â f (ε) = − 1

π
Im Ĝ f (ε + i0), (7)

where the integral runs over all occupied states up to the
Fermi energy EF. Knowing the occupation matrix, we can
calculate the 5 f electron occupation as well as spin and orbital
moments as averages of the corresponding operators,

n f = Tr(n̂ f ) and 〈O〉 = Tr(Ô n̂ f ). (8)

Finally, the Sommerfeld coefficient of the electronic specific
heat γ is evaluated using the Fermi-liquid formula

γ = πk2
B

3

[
g f (EF)

Z f
+ gspd (EF)

]
, (9)

where g f (EF) = Tr[Â f (EF)] is the density of 5 f states at the
Fermi energy, gspd (EF) is the density of all other states at the
Fermi energy, and Z f < 1 is the average quasiparticle weight

in the 5 f bands that is estimated from the DMFT self-energy
as suggested in Ref. [34],

1

Z f
= Tr

[
Â f (EF)

g f (EF)

(
Î − d�̂(ε + i0)

dε

)∣∣∣∣∣
ε=EF

]
. (10)

All DMFT calculations presented in this paper are per-
formed at temperature T = 0 K in order to obtain the
ferromagnetic state with saturated magnetic moments.

B. Choice of the tight-binding model

We investigated several tight-binding models Ĥk of in-
creasing size. As the minimal model, we considered one that
contains gallium 4s and 4p, and uranium 5 f and 6d states.
Then we included uranium 7s and finally also 7p states.
Various characteristics of these models are listed in Table I.
Although the uranium 7p states are relatively high above the
Fermi level, their inclusion makes a sizable difference, in
particular to the crystal-field parameters in Hloc and to the
filling of the gallium states.

On the top of that, we found that the LDA+DMFT calcu-
lations without the U 7p states converge to the out-of-plane
[001] ferromagnetic state, whereas the calculations with the
U 7p states predict an in-plane ferromagnetic state. Since the
experiments determine UGa2 to be an in-plane ferromagnet
[3,4], all results presented in the following sections were ob-
tained in the tight-binding models that include uranium 7s and
7p states.

C. LDA+DMFT

When the parent band structure is spin-restricted (LDA),
we induce the ferromagnetic solution by introducing a small
symmetry-breaking magnetic field into the impurity model,
Eq. (1), in the first few iterations of the DMFT self-
consistency cycle. Afterwards, this field is removed again.
Since we do not implement any charge self-consistency, the
tight-binding Hamiltonian Ĥk remains unchanged during the
whole LDA+DMFT cycle and the spin (and orbital) polariza-
tion is introduced only by means of the polarized self-energy
applied to the 5 f states. This method very likely results in an
underestimated spin polarization of the 6d bands. Moreover,
the local Hamiltonian Hloc stays nonpolarized as demon-
strated in Appendix C, that is, no exchange field �X is
induced in Hloc by the polarized self-energy. Nevertheless,
there should be some exchange field present in Hloc due
to the partially filled and partially polarized 6d bands, and
neglecting this exchange certainly means underestimated 5 f
moments (which is indeed what we observe in Sec. III A).
We fix this deficiency by introducing an empirical exchange
field � f d analogously to the earlier computational studies
of rare-earth systems [35,36]. The magnitude of this field is
estimated as � f d ≈ I f d md [35], where md is the magnetic
moment due to the 6d electrons and I f d is intra-atomic ex-
change integral. The magnetic moment is approximated by its
LSDA value, md ≈ 0.24 μB (see Table I for the spin-resolved
filling of the 6d bands), the exchange integral is estimated
by atomic calculations, I f d ≈ 0.15 eV/μB [37]. This yields
I f d md ≈ 36 meV and we explore the LDA+DMFT solutions
for � f d varied around this value.
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TABLE I. Characteristics of several tight-binding models derived from the DFT band structure. All models contain gallium 4s and 4p
orbitals, the included uranium orbitals are listed in the first column. The quantities ζ , ε f , and �X are shown in eV, the crystal-field parameters
Bkq in meV.

Orbital occupations Local Hamiltonian Hloc

Model U 5 f U 5 f ↑ U 5 f ↓ U 6d↑ U 6d↓ U 7s U 7p Ga 4s Ga 4p ζ ε f �X B20 B40 B60 B66

Nonmagnetic solution
d, f 2.79 0.94 0.94 – – 1.51 2.18 0.248 0.634 0 −0.72 −0.14 0.00 −0.19
s, d, f 2.77 0.95 0.95 0.35 – 1.50 2.03 0.248 0.639 0 −0.69 −0.12 −0.01 −0.16
s, p, d, f 2.72 1.03 1.03 0.76 0.74 1.39 1.50 0.251 0.679 0 −2.83 −0.01 0.00 −0.06

Ferromagnetic solution [001]
s, d, f 2.77 2.41 0.37 1.00 0.87 0.35 – 1.49 2.02 0.246 0.926 0.972 5.98 −0.11 −0.01 −0.16
s, p, d, f 2.72 2.37 0.36 1.08 0.96 0.76 0.74 1.39 1.49 0.249 0.968 0.980 3.71 0.01 0.00 −0.05

Ferromagnetic solution [210]
s, p, d, f 2.72 2.34 0.38 1.08 0.95 0.76 0.74 1.34 1.54 0.248 0.956 0.956 3.92 0.03 0.00 −0.04

The absence of �X is a disadvantage of the spin-restricted
parent band structure. Its advantage, on the other hand, is that
the double-counting correction in Eq. (4) reduces to a single
number UH , since the spin-dependent part UX vanishes. One
possible approximation to the double counting is the so-called
fully localized limit (FLL),

U FLL
H = U (n f − 1/2) − J (n f − 1)/2, (11)

where n f is the self-consistently determined number of 5 f
electrons [16,38]. In our calculations, it turned out that this
U FLL

H severely overestimates the number of 5 f electrons,
resulting in n f ≈ 4. We hence employ an alternative strat-
egy: we choose UH such that the number of 5 f electrons
remains close to its LDA value (n f = 2.72, Table I) also in
the LDA+DMFT solution to simulate charge self-consistency
[39,40]. This condition implies UH ≈ 3 eV. We note in passing
that the FLL formula, Eq. (11), gives 3.93 eV for n f = 2.72,
4.41 eV for n f = 3, and 2.71 eV for n f = 2.

D. LSDA+DMFT

As discussed above, using spin-restricted LDA as the par-
ent band structure has two deficiencies: underestimated spin
polarization of the 6d (and other) bands, and missing ex-
change field due to 6d moments acting on the 5 f electrons.
We dealt with the second issue empirically, but we did not
address the first one yet. We attempt to do so by using the spin-
polarized (LSDA) solution as the parent band structure. This
way, all non-5 f bands are potentially spin-polarized, which
enhances the polarization of the bath and of the bath–5 f
hybridization in the auxiliary impurity model, Eq. (1), when
compared to LDA+DMFT described in Sec. II C.

Although it may seem that the LSDA parent band structure
also provides an improved estimate of the local exchange field
�X , it is not so, since the LSDA exchange field combines
the 6d–5 f exchange (tens of meV) with the 5 f –5 f exchange
(about 1 eV). The latter has to be removed by the double-
counting correction UX , which we know only approximately.
The FLL ansatz for the double counting UX reads as [16]

U FLL
X = E↓

FLL − E↑
FLL = J (n↑

f − n↓
f ), (12)

where

Eσ
FLL = U (n f − 1/2) − J (nσ

f − 1/2), (13)

which we find to overcorrect the LSDA 5 f –5 f exchange.
With the LSDA occupation numbers (Table I) and with J =
0.59 eV, the double counting U FLL

X becomes 1.19 eV, whereas
the LSDA exchange is only �X = 0.98 eV (Table I).

Instead of using Eq. (12) or any other similar formula, we
again employ the approach introduced in Sec. II C, that is,
we select UX such that � f d = �X − UX ≈ I f d md ≈ 36 meV.
Since �X is a parameter of the local Hamiltonian, it remains
constant during the DMFT self-consistency iterations as fol-
lows from the derivation presented in Appendix C, hence � f d

and UX remain constant as well.
For the spin-independent part of the double-counting cor-

rection, we choose UH = 3.3 eV. This value is 0.3 eV larger
than in LDA+DMFT because the average position of the 5 f
level is approximately 0.3 eV higher in the ferromagnetic
LSDA solution compared to the nonmagnetic LDA solution
(Table I).

III. RESULTS

A. Magnetic moments

The method outlined in the preceding sections is not en-
tirely self-contained—there are several semiempirical param-
eters, such as the Coulomb parameters Fk , the double-counting
correction UH , and the exchange field � f d . Especially the
exchange field was estimated only roughly and hence we
decided to explore a range of values around this estimate.

In Fig. 2, we show how the magnetic moments depend on
� f d in the LDA+DMFT calculations when � f d is applied
in plane, along the [210] direction, which corresponds to the
[210] ferromagnetic state.1 The orbital and spin contributions
to the magnetic moment are antiparallel as expected for 5 f

1We choose the [210] in-plane direction of magnetization instead
of the experimental [100] direction due to technical limitation of
our impurity solver. We have checked that this change does not
significantly affect the ordered magnetic moments or the spectra in
LSDA (Table III).
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FIG. 2. The total magnetic moment (red), the orbital (black) and
spin (blue) contributions to the magnetic moment of the 5 f shell as
functions of the exchange field � f d applied along the [210] direc-
tion in the LDA+DMFT calculations. The realistic value of � f d is
marked by the orange stripe, the experimental magnetic moment is
indicated by the dashed line [4].

filling smaller than 7. At � f d = 0 meV, the total magnetic
moment is clearly underestimated (1.76 μB), which confirms
our earlier reasoning that some exchange field has to be intro-
duced. As the exchange field increases, the magnetic moment
quickly increases too, it reaches 2.75 μB at � f d = 35 meV,
at which point it is already very close to the saturation value
≈2.88 μB. The quick saturation of the moments is a conve-
nient feature—an inaccuracy in estimating the realistic value
of � f d translates to only a minor uncertainty of the computed
magnetic moments. The moments and 5 f filling at the realistic
value of � f d are compared to the LSDA solution and to
experiments in Table II.

Analogous calculations were performed also for the ex-
change field � f d applied along the out-of-plane [001]
direction. In this case, the ferromagnetic state parallel to the
exchange field is stable only above some critical value of

TABLE II. The orbital and spin magnetic moments in ura-
nium 5 f shells, mS and mL (in μB), the total magnetic moment in
the unit cell mtot (in μB), the occupation of the 5 f shells nf , and the
Sommerfeld coefficient γ (in mJ mol−1 K−2). The moments and the
5 f filling correspond to the maximally localized Wannier functions.
The experimental mtot is taken from Ref. [4], the experimental γ from
Ref. [9].

UH � f d dir. mS mL mtot nf γ

LSDA – – [210] −1.96 2.79 0.65 2.72 24.5

LSDA – – [001] −2.00 2.89 0.70 2.72 21.2

LDA+DMFT 3.0 35 [210] −1.85 4.60 2.75 2.76 8.2

LDA+DMFT 3.0 35 [001] −1.91 4.87 2.96 2.74 7.7

LSDA+DMFT 3.3 35 [210] −1.66 4.15 2.30 2.82 7.2

LSDA+DMFT 3.3 35 [001] −1.59 3.89 2.12 2.80 7.5

Experiment 3.07 11.0

 0

 1

 2

 3

 0  1  2  3  4  5  6  7  8

m
om

en
t (
� B

)

�fd (meV)

mtot
[001]

mtot
[210]

FIG. 3. Projection of the total magnetic moment to the [210]
direction (red) and to the [001] direction (green) when the exchange
field � f d is applied along the [001] direction and the LDA+DMFT
calculations are started from the LDA solution with �(z) = 0.
The orbital and spin moments (not shown) behave similarly as
in Fig. 2.

� f d , see Fig. 3. Above this value, the magnetic moment
very quickly saturates, much faster that in Fig. 2. For smaller
values of � f d , the DMFT iterations converge to a nearly in-
plane state with just a small out-of-plane tilt of the magnetic
moments. For a range of � f d values, we get two stationary
solutions, one nearly in-plane and the other out-of-plane, de-
pending on the starting point of the DMFT iterations. Figure 3
shows calculations that were started at a given � f d from the
LDA state with �(z) = 0. The transition from the in-plane to
out-of-plane state then occurs at � f d ≈ 2.2 meV. Calculations
starting from the [001] ferromagnetic state converge to the
out-of-plane state already at � f d � 0.6 meV (not shown).

Unfortunately, we cannot determine which of the two sta-
tionary states found for � f d between 0.6 and 2.2 meV is the
ground state because we cannot reliably evaluate the total
energy in our LDA+DMFT implementation. For the same
reason, we cannot estimate the magnetocrystalline anisotropy
energy. We can, however, conclude that the response of the
magnetic moments to � f d as observed in LDA+DMFT is
consistent with the experimental finding that the easy axis
is oriented in plane. Starting from the paramagnetic state
(� f d = 0) and cooling down, the system always ends up in the
in-plane state, since the moments exhibit an instability toward
in-plane direction. Increasing in-plane moment increases in-
plane � f d , which stabilizes the in-plane state further.

The magnetic moments computed using LSDA+DMFT,
with the spin-dependent part of the double-counting correc-
tion UX varied to reproduce the same range of � f d as explored
above, are presented in Figs. 4 and 5 for the in-plane and
out-of-plane orientations of the LSDA polarization. As in the
LDA+DMFT, the total magnetic moments relatively quickly
saturate with increasing � f d , and the saturation is again faster
in the [001] state than in the [210] state. Surprisingly, the sat-
urated values of the total moments are noticeably smaller than
in the corresponding LDA+DMFT calculations, by 15% in
the case of the [210] ferromagnet and by 30% in the case of the
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FIG. 4. Variation of magnetic moments with � f d , computed us-
ing the LSDA+DMFT method when the parent band structure is
polarized in the [210] direction. Compare with Fig. 2.

[001] ferromagnet (compare with Figs. 2 and 3). We expected
the opposite, since the LSDA parent band structure is certainly
more polarized than the LDA parent band structure—besides
� f d that is the same in both approaches by construction, the
LSDA has all non-5 f bands spin split, which results in an en-
hanced polarization of the hybridization function. Intuitively,
this should have induced a larger polarization in the 5 f shell
but the calculations show that it does not.

The difference in the computed moments could in principle
be due to a difference in fillings of the 5 f shell between
the LDA+DMFT and LSDA+DMFT solutions, but this is
not the case either. The 5 f filling in both methods is very
close as can be checked in Table II where we summarize our
results for the realistic setting of the exchange field � f d . We
speculate that the inaccurate LSDA+DMFT moments come
from some artifact of the static LSDA approximation, possibly
from an artificially broken symmetry. One suspect feature
is the strong spin dependence of the crystal-field parameters
Bkq in the local Hamiltonian shown in Appendix C. Another
feature, for which we do not have a clear explanation and
which is likely to be connected to the LSDA solution as
well, is the jump in magnetic moments near � f d = 30 meV
in Fig. 4.

Figures 3 show the computed magnetic moments as func-
tions of the exchange field � f d for a fixed spin-independent
part of the double-counting correction UH . Although the em-
ployed values of UH are well justified in Secs. II C and II D,
it is useful to analyze the sensitivity of the magnetic moments
to changes of UH or, equivalently, to changes of the 5 f filling
n f . This sensitivity is illustrated in Fig. 6 for the [210] ferro-
magnetic state calculated with the LDA+DMFT method. The
[001] ferromagnetic state and the results of the LSDA+DMFT
method behave analogously. The magnetic moments increase
toward the experimentally determined value with increasing
n f but this route to improved agreement with experiments
does not have a solid physical backing. Moreover, it would
come at the cost of worsened agreement with the spectro-
scopic measurements, since increased UH would push the
uranium 5 f states to too large binding energies.
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FIG. 5. The same plot as in Fig. 4, only the parent LSDA band
structure is polarized in the [001] direction. To be compared with
Fig. 3.

B. Valence-band spectroscopy

Two measurements of valence-band photoemission spec-
tra of UGa2 can be found in the literature, the ultraviolet
photoemission spectrum [11] (UPS, shown in the left panel
of Fig. 7) and the soft-x-ray photoemission spectrum [12]
(SX-PES, shown in the middle panel of Fig. 7). The UPS was
measured on sputter-deposited films at room temperature, that
is, in the paramagnetic phase. The maximum intensity was
observed just below the Fermi level with a long tail extending
toward higher binding energies. The SX-PES was measured
on a freshly cleaved single crystal at T = 20 K, that is, well
below the Curie temperature. The spectrum shows a narrow
peak slightly below the Fermi level accompanied with two
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FIG. 6. The computed LDA+DMFT magnetic moments plotted
as functions of the 5 f filling nf that is varied by changing the double-
counting correction UH . The exchange field � f d = 35 meV was
applied along the [210] direction. The value UH = 3.0 eV employed
throughout the paper is marked by the orange stripe.
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FIG. 7. Experimental photoelectron spectra (black line) from [11] (left) and from [12,41] (middle) are compared to the LDA+DMFT
estimate of the spectra (green line). A Gaussian broadening (FWHM 0.2 eV) is added to simulate the instrument resolution. The LDA+DMFT
total DOS, subject to the same broadening, is shown for comparison (dotted line). In the right panel, we plot the orbital-resolved DOS without
broadening (5 f in red, sum of all others in dotted blue). All theoretical lines correspond to the [210] ferromagnet (� f d = 35 meV).

broader features at −0.5 and −1.0 eV, and an even broader
hump can be discerned at −2.8 eV.

The two spectra are clearly different and the difference can-
not be ascribed to the lower resolution of the UPS spectra. The
magnetic order is also unlikely to cause such large changes,
we certainly do not see any evidence of that in DFT+DMFT
calculations (not shown), and the experiment does not detect
any changes either [12]. The more probable source of the
differences is the probing depth of the two experiments. The
UPS used incident photons with energy 40.8 eV (He II line),
SX-PES used 800 eV (synchrotron radiation), and hence the
photoelectrons are emitted from deeper layers in the bulk of
the sample in the SX-PES measurements.

Since our calculations do not include any surface effects,
they should be closer to the SX-PES data. In Fig. 7, we show
our theoretically estimated photoelectron spectra at the appro-
priate photon energies, calculated for the [210] ferromagnetic
phase with the LDA+DMFT method (� f d = 35 meV, but the
spectra are not sensitive to variations of the 6d−5 f exchange
field). The spectra are constructed as linear combinations of
the orbital-resolved densities of states (DOS) weighted with
photoionization cross sections listed in Ref. [42]. According
to these cross sections, the 5 f DOS has by far the largest
weight for both 40.8 eV and 800 eV photon energies, and
hence these photoemission measurements probe mainly the
5 f states.

The computed spectra display a main peak at −0.15 eV and
a satellite at −0.8 eV. The satellite has a considerably smaller
intensity than the features seen in the SX-PES and as such the
theory appears to be closer to the UPS spectra. The −0.5-eV
and −2.8-eV features observed in SX-PES do not show up in
the theoretical PES, but there are distinct peaks appearing at
nearby energies in the LDA+DMFT total DOS (Fig. 7). They
originate from orbitals that have small photoionization cross
sections. These peaks are due to hybridized U 6d and Ga 4p
bands at −0.5 eV, and mainly Ga 4p bands at −2.4 eV. The
distinct feature outside the range probed by photoemission, at
−7.6 eV, is due to Ga 4s. The fact that SX-PES sees a signal
where the theory places Ga 4p bands may be an indication

that the theory underestimates the hybridization between Ga
4p and U 5 f states. If the hybridization was stronger, some U
5 f DOS would possibly appear at the position of the Ga 4p
states, but that is just a speculation at this point.

Photoemission experiments access only the occupied part
of the spectrum. The unoccupied part could be probed by in-
verse photoemission (we are not aware of any such experiment
being performed to date) or by x-ray absorption spectroscopy
(we discuss recent x-ray absorption measurements at the
uranium M4,5 edges in UGa2 elsewhere [13]). In Fig. 8, we an-
alyze the complete (occupied and unoccupied) 5 f DOS from
a theoretical perspective. We compare the LDA+DMFT result
with the DOS computed for a spherically symmetric 5 f 3 ion,

5f3 ion
U = 1.55 eV

E (eV)
−2 −1  0  1  2  3  4  5

DMFT

U = 2.0 eV

5f
 D

O
S

 (
st

at
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total 5f
j = 5/2

0

2
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FIG. 8. The uranium 5 f DOS in the [210] ferromagnet from the
LDA+DMFT method (� f d = 35 meV) in the top panel is com-
pared to the DOS from an atomic calculation (5 f 3 state) in the
bottom panel (black lines). The parameter F0 = U was reduced in
the atomic calculation to mimic the screening effects incorporated in
the LDA+DMFT method. The j = 5/2 components of the 5 f DOS
are shown in red.
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since three is the closest integer value to the computed average
5 f filling n f (Table II) and the probability of finding the 5 f
shell in the 5 f 3 configuration predicted by LDA+DMFT is
large, namely 83%. See Appendix D, Eq. (D1), for the mean-
ing of the fluctuating number of 5 f electrons. We can achieve
a very close correspondence of the ionic and LDA+DMFT
densities of states when the Coulomb U in the ionic model
is reduced to 1.55 eV compared to 2.0 eV in LDA+DMFT.
The higher Slater parameters Fk and the spin-orbit parameter
ζ are identical. This observation indicates that the 5 f states in
the LDA+DMFT are very close to being fully localized, only
their Coulomb repulsion is screened more than it would be
in the fully localized Hubbard-I approximation. In addition,
Fig. 8 also shows the j = 5/2 component of the 5 f DOS to
be compared with the shape of the M4 absorption line [13].

Finally, in Fig. 9, we present the momentum-resolved 5 f
spectral density along high-symmetry directions in the Bril-
louin zone. We compare different models for the electronic
correlations, namely LSDA, LSDA+U , and LSDA+DMFT,
in the ferromagnetic state with magnetic moments pointing
along the [210] direction. The [001] ferromagnetic state dif-
fers only in minor details. When the Hubbard term is included
(LSDA+U and LSDA+DMFT), a gap between the occu-
pied and unoccupied 5 f bands appears and the occupied 5 f
states move slightly away from the Fermi level. Given the
same interaction parameters (U and J , or Fk), this gap is
larger in LSDA+U , which indicates that the screening of
the Coulomb parameters is stronger in LSDA+DMFT than
in LSDA+U . The situation is analogous to Fig. 8 since the
U -induced potential in LSDA+U has the form of a ionic
Hartree–Fock approximation. Another difference between the
LSDA+DMFT and LSDA+U electronic structure is the inco-
herent character of the 5 f states visible in the LSDA+DMFT
solution, starting approximately 2.5 eV above the Fermi level.

C. Sommerfeld coefficient

Figure 9 illustrates that the Fermi level cuts right through
the 5 f bands in LSDA, which is accompanied by a high den-
sity of states at the Fermi level and, subsequently, by a large
Sommerfeld coefficient of the electronic specific heat γ . In-
deed, LSDA predicts γ > 20 mJ mol−1 K−2 (Table II), which
is at odds with the experimental value 11 mJ mol−1 K−2 [9]. In
DFT+DMFT (and in LSDA+U as well), the 5 f states move
away from the Fermi level toward higher binding energies and
the coefficient γ is reduced to approximately 8 mJ mol−1 K−2

(Table II), yielding a considerably better agreement with ex-
periments. The computed Sommerfeld coefficient should be
smaller than observed in experiments since we do not take
into account any enhancement due to phonons. We do not
observe much variation of γ when changing the orientation
of the magnetic moments or when alternating the parent band
structure (Table II).

IV. CONCLUSIONS

We have studied the electronic structure and magnetic
properties of the ferromagnetic compound UGa2 using the
DFT+DMFT method, and compared our results with more
approximate electronic-structure methods. We have found that

FIG. 9. Momentum-resolved 5 f spectral density. The electronic
correlations are described with increasing level of sophistication
from top to bottom: LSDA, LSDA+U (U = 2.0 eV, J = 0.59 eV
and the FLL double counting), and LSDA+DMFT (the same inter-
action parameters, and UH = 3.3 eV and � f d = 35 meV). The [210]
ferromagnetic state is shown in all three panels. The same U and J
produce a larger gap between the occupied and unoccupied 5 f states
in LSDA+U than in LSDA+DMFT.

our implementation of the DFT+DMFT method reproduces
the experimentally observed large magnetic moments as well
as the sign of the magnetocrystalline anisotropy energy, when
the exchange interaction between uranium 6d and 5 f states
is included in a semiempirical manner. This is done either in
the form of an extra potential acting on the 5 f states or in
the form of a spin-polarized double-counting correction. We
have compared two formulations of the DFT+DMFT method,
one keeping the non-5 f states spin restricted (LDA), and the
other allowing their spin polarization (LSDA). Of the two,
the LDA-based variant was found to provide more consistent
results. It is a future work to investigate how the semiempirical
approach to the 6d–5 f exchange could be improved toward a
fully first-principles method.
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Besides the magnetic properties, we have also modeled
the valence-band photoemission spectra on the basis of the
DFT+DMFT density of states. We were not able to fully
explain the differences between the two published photoe-
mission experiments [11,12] but we could understand how
the electron-electron correlations move the 5 f states slightly
away from the Fermi level, which is in accord with both
photoemission spectra as well as with the observed small
Sommerfeld coefficient of the electronic specific heat. With
the aid of the DFT+DMFT method, it is thus possible to
reconcile large magnetic moments and a small Sommerfeld
coefficient with the 5 f spectral density in the close vicinity of
the Fermi level.

Our calculations indicate a close-to-localized uranium 5 f
states in UGa2. From the comparison to the experimental pho-
toemission spectra we deduce that the tendency to localization
is probably slightly overestimated in our theoretical descrip-
tion. Such a tendency is to be expected for the employed
impurity solver that implements a form of expansion around
the atomic limit.
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APPENDIX A: PARAMETERS OF DFT CALCULATIONS

To perform all DFT calculations presented in this paper,
we employed the WIEN2K package [24] that implements lin-
earized augmented plane-wave method and its extensions.
It combines a scalar-relativistic description with spin-orbit
coupling [25]. All calculations were performed at the ex-
perimental lattice constants a = 4.213 Å and c = 4.020 Å,
reported in Ref. [3], with the following parameters: the radii
of the muffin-tin spheres were RMT(U) = 2.80 aB for uranium
atoms and RMT(Ga) = 2.25 aB for gallium atoms, the Bril-
louin zone was sampled with 6137 k points (900 k points
in the irreducible wedge), and the basis-set cutoff Kmax was
defined with RMT(Ga) × Kmax = 10.0. The default basis set
with local orbitals for semicore states (U 6s, 6p, and Ga 3d)
was used in all cases.

In Table III, we list the orbital and spin magnetic moments
of the uranium 5 f shell, the total magnetic moment of the unit
cell, the filling of the 5 f shell, and the Sommerfeld coefficient
for three ferromagnetic states with moments pointing along
different crystallographic axes. The moments and the filling of
the 5 f shell correspond to the muffin-tin sphere, they can be
compared to the values computed for the maximally localized
Wannier functions shown in Table II. The largest components
of the total moment quoted in Table III are the 5 f moments, a
sizable contributions come also from the spin moments in the
U 6d states (≈ − 0.1 μB) and in the interstitial (≈ − 0.2 μB).
The moments induced at Ga atoms are negligible.

TABLE III. The orbital and spin magnetic moments in uranium
5 f shell, mS and mL (in μB), the total magnetic moment in the unit
cell mtot (in μB), the occupation of the 5 f shell nf , and the Sommer-
feld coefficient γ (in mJ mol−1 K−2). The 5 f magnetic moments and
the 5 f filling correspond to the atomic (muffin-tin) spheres.

Direction mS mL mtot nf γ

LDA – – – – 2.45 43.9
LSDA [100] −1.82 2.67 0.57 2.51 24.7
LSDA [210] −1.82 2.64 0.54 2.50 26.7
LSDA [001] −1.86 2.72 0.57 2.50 22.5

The maximally localized Wannier functions for the DMFT
calculations were found with the WANNIER90 code [27]. The
spread minimization was performed on 16 × 16 × 16 mesh of
k points. Since there are no gaps in the spectrum above the
Fermi level, disentanglement was necessary [43]. We used 62
Bloch states on input, which corresponds to the energy win-
dow from −10 to 24 eV. (Our largest tight-binding models,
that is, those actually used for the DMFT calculations, have
48 Wannier functions). The frozen inner window extended to
6 eV (3 eV for the smallest model listed in Table I), going
higher meant that the centers of the Wannier functions started
drifting away from the atomic centers, which is undesirable
in our application that assumes the Wannier functions to be
atomic-like. In the model used for the DMFT calculations,
the original WIEN2K bands were represented perfectly up to
6 eV above the Fermi level, the match was still very good up
to approximately 12 eV, and above that the correspondence
quickly deteriorated.

APPENDIX B: CONSTRUCTION OF THE
IMPURITY MODEL

Here we discuss how the parameters of the finite impurity
model, Eq. (1), are found so that the model matches the ef-
fective medium (the bath) as closely as possible. The impurity
Hamiltonian has the form a block matrix

Himp =

⎛
⎜⎜⎜⎜⎜⎜⎝

Hloc V1 V2 V3 · · ·
V †

1 H(1)
bath 0 0 · · ·

V †
2 0 H(2)

bath 0 · · ·
V †

3 0 0 H(3)
bath · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B1)

where all blocks are 14 × 14 square matrices. The local
Hamiltonian Hloc contains a strong spin-orbit coupling which
does not commute with the hybridization function that follows
the crystal symmetry. Therefore, the problem cannot be sim-
plified to diagonal matrices.

If there is only one Hbath block, all three matrices Hloc,
Hbath, and V can be determined by comparing the large z
asymptotics of the local block of the impurity Green’s func-
tion,

Gloc(z) =
[

zI − Hloc −
∑

i

Vi
(
zI − H(i)

bath

)−1
V †

i

]−1

, (B2)
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to the asymptotics of the bath Green’s function defined as

G(z) = [
G−1

f (z) + �(z)
]−1

. (B3)

Here G f (z) is the 5 f block of the local Green’s function
G(z) from Eq. (6). We refer the reader to [32] for details. For
larger impurity models, like Eq. (B1), this strategy leads to an
unsolvable set of polynomial equations for the 14 × 14 square
matrices. To overcome the problem, we combine two shorter
asymptotic expansions, one for the Green’s function as before,
and one for the hybridization function.

The asymptotic expansion of the local block of the impu-
rity Green’s function Gloc(z) starts as

Gloc(z) = I

z
+ Hloc

z2
+ O(z−3), (B4)

and the analogous expansion of the hybridization function

�imp = zI − Hloc − G−1
loc (z) (B5)

starts as

�imp =
∑

i

Vi
(
zI − H(i)

bath

)−1
V †

i

=
∑

i

[
ViV

†
i

z
+ Vi H

(i)
bathV

†
i

z2

]
+ O(z−3). (B6)

From the other side, the bath Green’s function, Eq. (B3), reads
in the spectral representation as

G(z) =
∫

A(ε)

z − ε
dε, (B7)

where we introduced the spectral density

A(ε) = G(ε − i0) − G(ε + i0)

2π i
. (B8)

The asymptotic expansion of the bath Green’s function is
obtained by expanding the denominator in Eq. (B7),

G(z) =
∞∑

n=0

Mn

zn+1
, Mn =

∫
εnA(ε) dε, (B9)

where Mn are moments of the spectral density. The spectral
density A(ε) is a hermitian matrix and hence its moments are
hermitian matrices as well. We immediately see that

Hloc = M1. (B10)

The spectral representation of the hybridization function
corresponding to G(z), that is, of �(z) = zI − M1 − G−1(z),
can be written as

�(z) =
∫

B(ε)

z − ε
dε, (B11)

where the spectral density is defined as

B(ε) = �(ε − i0) − �(ε + i0)

2π i
. (B12)

Now we split the support of B(ε) to as many segments as
many H(i)

bath blocks we wish (or can afford) to have,

�(z) =
∑

i

�i(z), where �i(z) =
∫ εi+1

εi

B(ε)

z − ε
dε (B13)

with εi < εi+1, and we pair each �i with one summand in
Eq. (B6). The splitting can be arbitrary or it can be guided by
an insight into the structure of the hybridization function—the
individual H(i)

bath blocks can be aligned with groups of bands.
In UGa2, the hybridization below the Fermi level comes
mainly from Ga 4s and 4p bands, and in the first ≈6 eV above
the Fermi level it is dominated by U 6d bands.

The asymptotic expansion at the individual intervals reads
as

�i(z) =
∞∑

n=0

N (i)
n

zn+1
, N (i)

n =
∫ εi+1

εi

εnB(ε) dε. (B14)

Comparing Eqs. (B6) and (B14), the blocks of Himp can be
written in terms of the moments N (i)

n as

Vi = V †
i =

√
N (i)

0 , (B15a)

H(i)
bath = V−1N (i)

1 (V †)−1, (B15b)

which, together with Eq. (B10), concludes the construction
of the impurity model Himp from the local Green’s function
G(z). Optionally, we can diagonalize the blocks H(i)

bath to make
their interpretation more straightforward and to arrive at the
form of the impurity model used in Eq. (1). The corresponding
transformations are

H(i)
bath → C−1

i H(i)
bathCi, Vi → ViCi, (B16)

where Ci are the appropriate unitary matrices and the new Vi

are no longer hermitian. By construction, the eigenvalues of
H(i)

bath are confined to intervals (εi, εi+1).
For the purpose of their actual evaluation, the moments are

expressed in terms of contour integrals in the complex plane.
Using the path segments sketched in Fig. 10, we have

M1 = 1

2π i

[∫
−L−

−
∫

L+

]
zG(z) dz

= 1

2π i

[∫
C−

+
∫

C+

]
z G(z) dz, (B17)

N (i)
n = 1

2π i

[∫
−L(i)

−
−

∫
L(i)

+

]
zn[zI − M1 − G−1(z)]dz

= 1

2π i

[∫
C(i)

−
+

∫
C(i)

+

]
zn[zI − M1 − G−1(z)]dz, (B18)

where the integral over the (dashed blue) circle C = C− ∩ C+
encloses the entire support of A(ε) and the integrals over the
(red) circles C(i) = C(i)

− ∩ C(i)
+ enclose the intervals (εi, εi+1).

During the DMFT calculations, the self-energy is thus evalu-
ated along the circles C and C(i), and also along one additional
semicircle in the upper half plane to compute the number of
electrons in the primitive cell and to adjust the Fermi level.
An alternative to the circle C, which serves for evaluation of
Hloc = M1, is described in Appendix C.

In the DFT+DMFT calculations of UGa2 discussed in the
paper, we used three intervals (εi, εi+1), namely, (−10, 0) eV,
(0,6) eV, and (6,12) eV. The hybridization above 12 eV was
discarded, since our tight-binding Hamiltonians do not ac-
curately represent the original DFT bands that far above the
Fermi level (Appendix A).
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FIG. 10. Contours in the complex plane used for integration of
the moments M1 (dashed blue) and N (i)

n (red). Line segments are
denoted as L±, half circles as C±.

APPENDIX C: ASYMPTOTICS OF THE BATH GREEN’S
FUNCTION AND THE LOCAL HAMILTONIAN

At each k point, the tight-binding Hamiltonian Ĥk can be
divided into four blocks,

Ĥk =
(

Ĥ f
k T̂k

T̂ †
k Ĥ spd

k

)
, (C1)

and the 5 f block of the lattice Green’s function can be written
as

Ĝ f
k (z) = [

zÎ − Ĥ f
k − �̂(z) − T̂k

(
zÎ − Ĥ spd

k

)−1
T̂ †

k

]−1
. (C2)

Its asymptotic expansion reads as

Ĝ f
k (z) = Î

z
+ Ĥ f

k + �̂(∞)

z2
+ O(z−3), (C3)

where �̂(∞) is the static part of the self-energy, which is the
leading term of the expansion �̂(z) = �̂(∞) + O(z−1). For
the bath Green’s function, Eq. (B3), we need only the local
element,

Ĝ f (z) = 1

N

∑
k

Ĝ f
k (z)

= Î

z
+ N−1 ∑

k Ĥ f
k + �̂(∞)

z2
+ O(z−3), (C4)

respectively its inverse,

Ĝ−1
f (z) = zÎ − 1

N

∑
k

Ĥ f
k − �̂(∞) + O(z−1). (C5)

TABLE IV. Crystal-field parameters Bσ
kq, Eq. (C8e), derived

from the LSDA tight-binding Hamiltonian (s, p, d, f model). Spin-
restricted parameters Bkq computed from Eq. (C8d) are the same as
shown in Table I.

B20 B40 B60 B66

Ferromagnetic solution [001]
restricted 3.72 0.0061 −0.0043 −0.052
spin ↑ 1.75 −0.0024 0.0017 −0.107
spin ↓ 5.68 0.0146 −0.0100 0.003

Ferromagnetic solution [210]
restricted 3.92 0.0262 −0.0011 −0.044
spin ↑ 1.54 0.0111 −0.0154 −0.009
spin ↓ 6.30 0.0414 0.0133 −0.079

Inserting this expression into the definition of the bath Green’s
function, Eq. (B3), yields

G(z) = Î

z
+ 1

z2

1

N

∑
k

Ĥ f
k + O(z−1). (C6)

The self-energy cancels out from the first moment of the
corresponding spectral density, and the moment thus equals
to the local block of the tight-binding Hamiltonian,

M1 = 1

N

∑
k

Ĥ f
k = Hloc, (C7)

throughout the whole DMFT self-consistency loop.
To extract the individual contributions to the Hamiltonian

shown in Eq. (2), we can exploit the orthogonality of operators
Î , l̂ · ŝ, ŝ and Ôkq as 14 × 14 matrices. We can write

ε f = Tr(Hloc)/14, (C8a)

�α
X = Tr(ŝα Hloc)/ Tr(ŝα ŝα ), α = x, y, z, (C8b)

ζ = Tr(l̂ · ŝHloc)/ Tr(l̂ · ŝ l̂ · ŝ), (C8c)

Bkq = Tr(Ôkq Hloc)/ Tr(ÔkqÔkq). (C8d)

In the case of spin-polarized electronic structure, spin-
dependent crystal-field parameters can be introduced as

Bσ
kq = Tr(ÔkqP̂σ Hloc)/ Tr(ÔkqP̂σ ÔkqP̂σ ), (C8e)

where P̂σ is a projector to spin σ . Since the operator Ôkq is
spin-independent, it commutes with P̂σ and we can simplify
the denominator as

Tr(ÔkqP̂σ ÔkqP̂σ ) = Tr(ÔkqÔkqP̂σ P̂σ )

= Tr(ÔkqÔkqP̂σ ) = 1
2 Tr(ÔkqÔkq). (C9)

Consequently, the parameters Bkq are averages of the spin-
dependent parameters Bσ

kq,

Bkq = 1

2

∑
σ

Bσ
kq. (C10)

The spin dependence of the crystal-field parameters derived
from the LSDA band structure is substantial, which is illus-
trated in Table IV. Note that we do not attempt to remove
the 5 f self-interaction from the crystal-field potential [44,45].

205146-11
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FIG. 11. The ground-state energy E0 of the impurity model at
different fillings N computed for increasing size of the many-body
basis characterized by the cutoff M.

Nevertheless, the spin dependence would not disappear even
if we did [45].

APPENDIX D: CONVERGENCE OF THE
IMPURITY-MODEL SOLUTION WITH THE SIZE

OF THE MANY-BODY BASIS

As indicated in Sec. II A, we cannot diagonalize the im-
purity model in the complete Fock space, only in reduced
subspaces H(M )

N , defined in Eq. (5), where N is the number
of electrons in the model (its filling) and M is a cutoff pa-
rameter. Analyzing the convergence of the complete DMFT
solution with respect to M is computationally very demand-
ing. Hence, we limit this Appendix to selected intermediate
quantities, evaluation of which does not involve computing
the self-energy. In particular, we diagonalize the auxiliary
impurity model corresponding to the [210] ferromagnetic
LDA+DMFT solution, obtained for � f d = 35 meV and pre-
sented in Sec. III, for different settings of the cutoff parameter
M. The crudest approximation is M = 0 that does not allow
any hops of electrons between the 5 f shell and the bath, and
thus corresponds to the Hubbard-I approximation. The best
approximation we consider is M = 3, one step better than the
setting employed in the main text.

Figure 11 shows the M dependence of the ground-state
energy E0 for fillings N around the overall grand canonical
ground state which is located at N = 17. The differences
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N
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FIG. 12. Convergence of the 5 f occupation number Nf (red tri-
angles, left axis) and its fluctuation �Nf (blue circles, right axis) with
respect to the basis-set cutoff M.

between the M = 2 and M = 3 basis sets are very small
(less than 70 meV), which indicates that M = 2 is indeed a
sensible choice. The differences are even smaller (less than
30 meV) for energy gaps E0(N ± 1) − E0(N ) that determine
the positions of the main peaks in the valence-band spectra
like those plotted in Fig. 8.

Furthermore, we present the 5 f occupation number Nf =
Tr(N̂ f ρ̂ ), where ρ̂ is the grand canonical density matrix of the
impurity model, together with its fluctuation

�Nf =
√

Tr
(
N̂2

f ρ̂
) − N2

f (D1)

as functions of the cutoff M in Fig. 12. Both these quantities
again change very little when M is increased from M = 2 to
M = 3, which represents another reassurance that M = 2 is
good enough.

Note that Nf should be the same number as n f defined in
Eq. (8) and listed in Table II, which follows from the DMFT
embedding condition. In our DMFT calculations, they are
not the same, Nf is approximately 0.2 larger than n f , which
is a consequence of the approximate finite impurity model
(discrete bath) being used instead of the exact infinite impurity
model (continuous bath). This is roughly the same discrep-
ancy as we observed earlier when we applied this method to
the ferromagnetic nickel [46]. In principle, the situation could
be improved by adding more bath orbitals, but in practice, it
is computationally prohibitive at present.
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