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Orbital order in a bosonic p-band triangular lattice
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We present a detailed study of the Bose-Hubbard model in a p-band triangular lattice by focusing on the
evolution of orbital order across the superfluid-Mott insulator transition. Two distinct phases are found in
the superfluid regime. One of these phases adiabatically connects the weak interacting limit. This phase is
characterized by the intertwining of axial p± = px ± ipy and in-plane pθ = cos θ px + sin θ py orbital orders,
which break the time-reversal symmetry and lattice symmetries simultaneously. In addition, the calculated
Bogoliubov excitation spectrum gaps the original Dirac points in the single-particle spectrum but exhibits
emergent Dirac points. The other superfluid phase in close proximity to the Mott insulator with unit boson filling
shows a detwined in-plane ferro-orbital order. Finally, an orbital exchange model is constructed for the Mott
insulator phase. Its classical ground state has an emergent SO(2) rotational symmetry in the in-plane orbital
space and therefore enjoys an infinite degeneracy, which is ultimately lifted by the orbital fluctuation via the
order by disorder mechanism. Our systematic analysis suggests that the in-plane ferro-orbital order in the Mott
insulator phase agrees with and likely evolves from the latter superfluid phase.
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I. INTRODUCTION

Orbital order is a long-standing issue tracing back to the
transition metal oxides [1–3]. The precise mechanism driving
orbital order remains largely unknown due to the intricate
interplay among spin, orbital, charge, and lattice degrees of
freedom in host crystals. In particular, a recent example of
relevance is the nematic phase in iron-based superconduc-
tors, which entwines with spin Ising order, orbital order,
and lattice structural distortion as dictated by symmetry [4].
Among diverse theoretical proposals in addressing the origin
of nematicity [5,6], one interesting finding is that the orbital
order in the nematic phase manifests its essential role in
the metal-insulator transition and promotes an intermediate
phase, i.e., the orbital-selective Mott phase [7]. This phase is
characterized by the orbital-dependent Mott localization and
interpolates the itinerant and Mott localized limits, validating
the incipient Mott picture [8,9]. By contrast, a natural question
may raise for bosonic systems: how the orbital order evolves
in the superfluid-Mott insulator (SF-MI) transition.

Yet, much efforts have been denoted to the understanding
of orbital order in electronic materials. While the studies
in bosonic systems are rare [10,11]. Experimentally, artifi-
cial systems, such as ultracold atomic [12–16] and photonic
[17–19] systems, have been shown the exciting possibility
of stimulating the crystals with p-orbital bosons in the first
excited band. For instance, the Dirac points in the p-band
hexagonal lattice are theoretically predicted by the early study
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[20] and experimentally observed in photonic systems [17].
Later, the orbital edge state, which is extensively studied
in graphene [21–23], is confirmed in the subsequent pho-
tonic experiment [18]. More recently, the evidence of nematic
superfluid (SF) phase in a hexagonal lattice, which is at-
tributed to the orbital order, is also reported in ultracold atomic
systems [24].

The main purpose of our study is to give a comprehensive
understanding of the orbital order in the SF-MI transition.
The single-particle spectrum of the p-band triangular lattice
exhibits a pair of Dirac points at the corners of the hexagonal
Brillouin zone (HBZ), resembling the low energy physics of
graphene [21–23]. The evolution of orbital order across the
SF-MI transition is then studied based on the Bose-Hubbard
model. In the weak-interacting limit, the p-band triangular
lattice is frustrated due to the inability to simultaneously
minimize both the kinetic and interacting energies. This weak-
coupling SF phase is characterized by the intertwining of the
axial p± = px ± ipy and in-plane pθ = cos θ px + sin θ py or-
bital orders. Interestingly, the Bogoliubov excitation spectrum
in this SF phase gaps the original Dirac points in the single-
particle spectrum but exhibits emergent Dirac points. In the
strong-interacting limit, the orbital order is also studied based
on the orbital exchange model. We show that the classical
ground state is of ferro-orbital type and enjoys an emergent
SO(2) rotational symmetry, which ensures an infinite degener-
acy. The orbital fluctuation ultimately lifts the degeneracy and
selects discrete quantum ground states through the order by
disorder mechanism. Moreover, the phase diagram established
by the Gutzwiller approach interpolates these two limits. Be-
sides these two phases, we find an intermediate SF phase with
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FIG. 1. (a) The structure of triangular lattice and the hexagonal
Brillouin zone. The blue lines mark the Wigner-Seitz cell and the
reduced Brillouin zone due to the umklapp scattering between the
band minima at M points. (b) The band structure of the tight-binding
model in Eq. (1) with the σ -bonding tσ = 1 being the energy unit.
The pseudovector fields d ≡ (dz, dx ) near the Dirac point at K (c) and
K ′ (d) resemble the vortex in XY systems with winding number
W = 1.

the ferro-orbital order. This intermediate phase survives in a
wide range of low boson filling and gradually increase the
occupation in the preferable in-plane orbital when approach-
ing the Mott insulator (MI) with unit boson filling n = 1.
Our study provides strong clues that the ferro-orbital order
in the MI n = 1 phase likely evolves from the intermediate
SF phase, facilitating the understanding on the role of orbital
order in the SF-MI transition.

The remainder of this paper is organized as follow. In
Sec. II we introduce the p-band tight-binding model in the
triangular lattice as well as the Bose-Hubbard model. We es-
tablish the ground-state phase diagram by utilizing Gutzwiller
approach in Sec. III. The orbital order in the weak-interacting
limit is further studied with the Bogoliubov approximation
by treating the Bose-Hubbard interaction perturbatively in
Sec. IV. In Sec. V the orbital exchange model is constructed
to study the orbital order by treating the hopping processes as
perturbations. Finally, we summarize and discuss the results
in Sec. VI.

II. MINIMAL MODEL

We begin with the tight-binding model that describes the
hopping processes of bosons in the p-band triangular lattice
depicted in Fig. 1(a). Introducing an orbital pseudospin rep-
resentation, the momentum-space Hamiltonian in the basis
pk = [pxk, pyk]T reads

Hk = d0(k)τ0 + dx(k)τx + dz(k)τz, (1)

where τ0 and τ are the identity matrix and Pauli
matrices, respectively, and the coefficients d0(k) = (tσ +
tπ )

∑
i cos ki, and {dx(k), dz(k)} = (tσ − tπ )/2{√3(cos k3 −

cos k2), cos k1 + ∑
i cos ki}. Here the crystal momenta

{k1, k2, k3} are measured along reciprocal lattice vectors
{b1, b2, b3 ≡ −b1 − b2}, and the hopping integrals tσ and tπ
denote the σ and π bonding of p orbitals, respectively. For
the π bonding, the bond vector lies in the nodal plane of p
orbitals. As a result, the strength of π bonding is typically

much weaker than that of σ bonding. The band structure
of the tight-binding model in Eq. (1) is plotted in Fig. 1(b).
Notably, two bands cross at the Dirac points located at K and
K ′ points of HBZ. To describe the corresponding low-energy
behavior around K and K ′ points, we derive the effective k · p
model

HK/K ′ (q) = d0τ0 + dxτx + dzτz + O(q2), (2)

with the coefficients

d0 = − 3
2 (tσ + tπ ), {dx, dz} = ± 3

4

√
3(tσ − tπ ){qx,−qy}.

Diagonalizing HK/K ′ (q) gives two noninteracting bands
E±

K/K ′ (q) = d0 ± √
d2

x + d2
z , resulting in a linear dispersed

Dirac point with the velocity v = 3
√

3/4(tσ − tπ ). The pseu-
dovector fields d ≡ (dz, dx ) around K and K ′ points, shown
in Figs. 1(c) and 1(d), respectively, have a p-wave symmetry.
The topological charge of the Dirac point is given by the wind-
ing number of the pseudovector field: W = 1

2π

∮
C ∇θ (q) ·

dq = 1, where θ ≡ arctan(dx/dz ) and C is a contour enclosing
the singular K/K ′ point, indicating that the Dirac point carries
a π Berry flux. The band minima are located at three inequiv-
alent centers M of HBZ edges, promoting a finite-momentum
Bose-Einstein condensate for weakly interacting bosons. For
noninteracting bosons, an infinite degenerate manifold of the
single-particle ground state can be constructed by the linear
superposition of the Bloch functions at these band minima.
The umklapp scattering between the band minima transfers
a lattice phonon which carries the momentum of multiple
primitive reciprocal vectors. This process folds three M points
to � point and underlies the reduced Brillouin zone (RBZ) and
the enlarged Wigner-Seitz cell, as illustrated by the blue lines
in Fig. 1(a).

Having established the single-particle physics, we are then
in a position to study the effects of many-particle interactions.
The interacting Hamiltonian can be generally constructed in
terms of Haldane pseudopotentials by projecting a pair of
particles into relative angular momenta, respecting the quan-
tum statistics [25,26]. The Bose-Hubbard interaction which is
mathematically described by zero relative angular momentum
takes the form

HI = 3

2
U

∑
i

[
n̂i

(
n̂i − 2

3

)
− 1

3
L̂2

zi

]
, (3)

where n̂i = ∑
α=x,y p†

αi pαi is the occupation operator and

L̂zi = −i
∑

α,β=x,y εzαβ p†
αi pβi is the z-component orbital angu-

lar momentum at ith site [27–29]. Here εαβγ is the Levi-Civita
antisymmetric tensor. The interaction can be experimentally
realized through the Feshbach resonance [30] and optical
nonlinearities [31] for ultracold atomic and photonic systems,
respectively.

III. GUTZWILLER APPROACH

To gain an overall understanding on the ground-state phase
diagram, the Gutzwiller approach [32–35] has its advance
in capturing the physics in the intermediate regime of the
Hubbard interaction U , and straddles the limits of the weakly
interacting SF and strongly interacting MI phases. It has been
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FIG. 2. Gutzwiller approach. (a) The ground-state phase diagram
in μ/U vs U/tσ plane accommodates three distinct phases, including
(1) ISF, the superfluid phase intertwining axial and in-plane orbital
orders; (2) DSF, the superfluid phase with the detwinned in-plane
orbital order; and (3) MI n = 1, the Mott insulator phase with unit
filling n = 1. The transition lines separating these three phases merge
at a triple point (U/tσ , μ/U ) ≈ (12.2, 0.66). (b) Evolution of am-
plitude of condensate order parameter φ = (φx, φy ), compressibility
κ = ∂n/∂μ, and orbital pseudospin τ at fixed μ/U = 0.5. The black
and blue dots in (a) mark the critical points with the vanishing order
parameters |φ| and |τy|, respectively. In the numerical calculations,
the truncation of local Fock space N± = 10 for the maximum occu-
pation in axial orbitals p± = px ± ipy and tπ = 0 are used.

utilized to establish the phase diagram of the p-band Bose-
Hubbard model with different lattice geometries in the early
study [27]. This approach starts from the factorized local Fock
state

|�GW〉 =
∏

i

∑
F

ηi
F|F〉i,

|F〉i = 1√
nF+!nF−!

(p†
+i )

nF
+ (p†

−i )
nF

−|0〉,

where nF
± is the occupation of bosons in the axial orbitals

p± = px ± ipy and ηi
F is the probability weighting factor

determined variationally. It takes into account that the mul-
tioccupation of bosons in the local orbitals are energetically
costly. In numerical calculations, a truncation of the local
Fock space is imposed and the filling of bosons is dictated
by the chemical potential μ for the grand canonical ensem-
ble. We decompose the hopping terms in the tight-binding
Hamiltonian as p†

αi pβ j ≈ p†
αiφβ j + φ∗

αi pβ j − φ∗
αiφβ j with the

condensate order parameter φαi = ∑
FF′ ηi∗

F ηi
F′ i〈F|pαi|F′〉i en-

tangling the local Fock states. The self-consistent solution
of the order parameters φαi requires an iterative minimiza-
tion of the energy functional over the Wigner-Seitz cell in
Fig. 1(a). The calculated phase diagram for tπ = 0 shown in
Fig. 2(a) accommodates three different phases including two
distinct SF phases and the MI phase. We have also verified
that the phase diagram remains qualitatively robust against
the perturbative π bonding tπ = −0.1tσ . To characterize the
orbital order, we numerically evaluate the ground-state ex-
pectation of orbital pseudospin τ̂ = ∑

αβ p†
αταβ pβ . The axial

orbital order p± = px ± ipy is characterized by the orbital
polarization τy in y axis, while the in-plane orbital order pθ =
cos θ px + sin θ py directing at angle θ with x axis corresponds
to the orbital polarization (τz, τx ) = τ (cos[2θ ], sin[2θ ]) in
zx plane. Figure 2(b) shows the detailed evolution of order

parameters at fixed μ/U = 0.5, which determines the phases
across the SF-MI transition. The stability of each phase is
further checked with various sets of supercell sizes up to
8a1 × 8a2. As shown in Fig. 2(b), two distinct SF phases
share a nonvanishing uniform order parameter |φi| and can be
distinguished by the ground-state expectation value of orbital
pseudospin τ̂. Initially, the ground state at weak Hubbard in-
teraction U develops an intertwined order by entangling both
the axial and in-plane orbital orders. The former is character-
ized by the alternating signs in adjacent rows but an identical
amplitude of τ i

y therefore suggesting the ordering of antiferro-
orbital angular momentum, while the latter is indicated by the
uniform (τ i

z , τ
i
x ) implying the ferro-orbital order. Therefore,

this superfluid phase intertwining axial and in-plane orbital
orders is denoted as ISF. The detailed pattern of orbital orders
will be further discussed in Sec. IV. At the critical Hubbard
interaction Uc1, the orbital pseudospin is completely aligned
in the zx plane (τz, τx ), showing a detwinned ferro-orbital
order. This superfluid phase is thus denoted as DSF. Since
the intersite hopping process is treated at the mean-field
level in Gutzwiller approach, we will show in Sec. V that
the orientation of the in-plane orbital is solely determined
by the quantum fluctuation due to the orbital anisotropy.
With further increasing Hubbard interaction U > Uc2, the MI
phase obtained within the Gutzwiller approximation is simply
a product of local Fock states and is thus featureless. As
shown in Fig. 2(b), the ISF-DSF-MI transition driven by he
Hubbard interaction U is well detected by the discontinuous
jumps of the compressibility κ = ∂n/∂μ. Therefore, the phase
transition discussed here may be experimentally probed by
measuring the boson filling n. Below we shall justify the
orbital orders above from two extrema limits.

IV. WEAK-COUPLING APPROACH

In the weakly interacting limit, the Hubbard interaction U
is treated perturbatively. The operators can be decomposed
in terms of quantum fluctuations p̃αk� around the condensed
ground-state wave function φα�,

pαk� = φα�δ(k) + p̃αk�, α = x, y, (4)

with � specifying the sublattice in the Wigner-Seitz cell. In
the spirit of Bogoliubov approximation [36,37], the Hamil-
tonian is expanded in powers of quantum fluctuations and
is truncated up to the quadratic order. Detailed derivations
are presented in Appendix A. The zeroth-order terms in
this expansion determine the energy functional ε(φ∗,φ) of
the condensate at � point in RBZ. The time-dependent
Gross-Pitaevskii equation can be readily derived via the Euler-
Lagrange equation

∂L
∂φ∗

α�

− d

dt

(
∂L

∂φ̇∗
α�

)
= 0, (5)

where the Lagrangian L = ∑
α� ih̄(φ∗

α�φ̇α� − φα�φ̇
∗
α�) −

ε(φ∗,φ) [38]. The ground state can be numerically
solved through the imaginary-time evolution of the
Gross-Pitaevskii equation by propagating an initial trial
state [39]. Mathematically, this procedure is equivalent
to the minimization of the energy functional ε(φ∗,φ),
which causes the linear order terms in p̃αk� to vanish. The
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FIG. 3. Bogoliubov approach. (a) The condensed ground state
intertwines the ferro-orbital order with the in-plane orbital being
parallel to the bond, and the antiferro-orbital angular momentum
with the spatial pattern indicated by red and blue lines, supporting
staggered fluxes. (c) The Bogoliubov excitation spectrum along the
high symmetry line indicated in (b). (d) The detailed Bogoliubov
excitation spectrum indicated by the pink box in (c) exhibits Dirac
bosons. (e) The pseudovector field d of the Dirac boson in the lowest
two excitation branches around M point has winding number W = 1.
The parameters used in numerics are (tσ , tπ , nU ) = (1, 0, 1).

calculated ground-state condensate develops an intertwined
order, confirming the results from the Gutzwiller approach.
The ferro-orbital order is characterized by orientating the
in-plane orbital parallel to the bond, which breaks the
lattice rotational symmetry. The antiferro-orbital angular
momentum is characterized by the alternating sign of τy

along the direction perpendicular to the in-plane orbital,
and breaks the time-reversal symmetry as well as the lattice
translational symmetry. Interestingly, the symmetry breaking
of this weak-coupling phase, which has been studied in
detail, is shown to be universal in the strong-coupling
regime with boson filling n � 2 [40]. As schematically
depicted in Fig. 3(a), the staggered flux pattern of the ground-
state condensate arising from the time-reversal symmetry
breaking is characterized by the bond current Ji j = −i

∑
αβ

tαβ
γ (〈p†

αi pβ j〉 − c.c.)δ j,i±aγ
where the hopping matrix tγ =

{(tσ + tπ )τ0 + (tσ − tπ )(cos[2θγ ]τz + sin[2θγ ]τx )}/2 and θγ

is the azimuthal angle of aγ . Early studies find pure axial
orbital orders with different lattice geometries, which support
bond currents as a natural consequence [28,41,42]. In
contrast, the intertwined orbital order in the present study, due
to the inability to simultaneously minimize both kinetic and
interacting energies, originates from the geometric frustration
of the triangular lattice. Having settled the ground state, we
then proceed with the quadratic order

H(2)
k = 1

2
[ p̃†

k, p̃−k]

[
Xk Y

Y † X−k

][
p̃k

p̃†
−k

]
, (6)

which describes the Bogoliubov excitation on top of the
ground-state condensate. The diagonal terms X±k in Eq. (6)
receive contributions from both the hopping processes and
the self-energy correction of Hubbard interaction U , while the
off-diagonal terms Y (Y †) describe the anomalous processes in
which a pair of bosons scatter with each other into the excited
states (condensates). As shown in Fig. 3(c), the Bogoliubov
excitation spectrum has a gapless Goldstone mode around �

point in RBZ as the signature of U (1) symmetry breaking.

Interestingly, we find that the Bogoliubov spectrum along the
high symmetry line K-K ′ gaps out the original Dirac points at
K and K ′ points in the band structure but exhibits emergent
Dirac bosons at M point. As a representative example, the
Dirac point in the lowest two branches is identified by nu-
merically calculating the winding number shown in Fig. 3(e).
It is worth mentioning that the Dirac bosons only exist on one
edge of RBZ parallel to the bond that is selected by the in-
plane orbital order, serving as a fingerprint of lattice rotational
symmetry breaking. We have also checked that the Dirac
related physics is robust for tπ = −0.1tσ . While the early
study focuses on the Dirac fermion in the band structure
with staggered fluxes [43], the present study investigates the
Dirac bosons in the elementary excitation on top of the Bose-
Einstein condensate with staggered fluxes instead.

V. STRONG-COUPLING APPROACH

Finally, we turn to the strong-coupling limit in which the
virtual hopping processes are treated perturbatively. Since the
charge excitation in MI phase is suppressed by the charge gap
proportional to Hubbard interaction U , the orbital fluctuation
is the remaining low energy degree of freedom. Following
the standard second-order perturbation theory, the effective
low-energy physics for the MI n = 1 phase is captured by the
following orbital exchange model:

HOE = J
∑

〈i j〉‖aγ

τ i
γ τ j

γ + J ′ ∑
〈i j〉

(
τ i · τ j + 2τ i

yτ
j

y

)
, (7)

with

τγ = τz cos [2θγ ] + τx sin [2θγ ].

Detailed derivations are presented in Appendix B. The ferro-
orbital exchange J = −(tσ − tπ )2/16U in Eq. (7) is inherently
anisotropic originating from the anisotropic shape of p
orbitals. In contrast, the exchange J ′ = −tσ tπ/8U is antiferro-
orbital due to the opposite sign of tσ and tπ . The first term
in Eq. (7) involving interacting orbital degrees of freedom is
coined as the compass model [44,45]. The ground state is
first studied by treating the orbital pseudospin τ as a clas-
sical vector. The orbital interaction can be minimized via
the diagonalization of the orbital exchange Hamiltonian in
momentum space HOE = ∑

k τ−k�kτ
k. As shown in Fig. 4(a),

the lowest eigenvalue of �k is found at � point in RBZ and
has a twofold degeneracy, suggesting that the classical ground
state is ferro-orbital ordering. The degenerated eigenvalue has
important implications on the structure of orbital order. A
close inspection of the Hamiltonian in Eq. (7) reveals that
the y component of orbital pseudospin τy is decoupled from
the other two components τz,x, in which the lowest degener-
ate eigenvalue arises. It indicates that the ordering of orbital
pseudospin τ lies in the zx plane. More importantly, this
degeneracy renders a continuous SO(2) rotational symmetry
of orbital pseudospin (τz, τx ) = τ (cos θ, sin θ ) as shown in
Fig. 4(b). Note that this symmetry restricted to the classical
ground state is emergent and is not an exact symmetry of
the orbital exchange model, which is only invariant under
finite point group rotations. The orbital order of the classical
ground state evolves in the zx plane without any energy cost,
which makes the system particularly susceptible to quantum
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FIG. 4. Strong-coupling approach. (a) The eigenvalues of orbital
interaction matrix �k within the classical approximation. (b) The
emergent SO(2) rotational symmetry in the easy plane (τz, τx ) of
orbital pseudospin space. (c) The zero-point energy EZP(θ ) in Eq. (8)
from the correction of orbital fluctuations has minima at θ = π/6 +
Zπ/3. The energies in (a) and (c) are in units of t2

σ /16U .

fluctuations. Following Holstein-Primakoff spin wave theory
[46], the zero-point energy arises from the correction of quan-
tum fluctuations, and is studied as a function of the rotation
θ about the y axis of orbital pseudospin. To the leading order,
the zero-point energy takes the form

EZP(θ ) = 1

2N

∑
k

ωk(θ ) + 6J + 12J ′, (8)

where N is the number of sites, the orbital excitation ωk(θ ) =
2
√

[ϕk(θ ) + 2ϕ′
k − 6J − 12J ′]2 − [ϕk(θ ) + ϕ′

k]2, and the aux-
iliary functions {ϕk(θ ), ϕ′

k} = {2J
∑

γ sin2[2θγ + θ ], 4J ′}
cos[k · aγ ]. Detailed derivations are presented in Appendix
C. The numerical evaluation of zero-point energy is shown in
Fig. 4(c). The orbital fluctuation lifts the degeneracy protected
by the continuous SO(2) rotational symmetry, and selects the
quantum ground state at θ = π/6 + Zπ/3 (Z is an integer).
This mechanism is known as order by disorder in frustrated
spin systems [47–51].

VI. CONCLUSION AND DISCUSSION

To summarize, we have studied the evolution of orbital
ordering across the SF-MI transition in the p-band triangular
lattice. The ground-state phase diagram is first established
by the Gutzwiller approach, which interpolates continuously
between two extreme limits, deep in SF phase and deep in
MI phase. The orbital orders in these two limits are further
examined by the perturbation approaches. With systematic
analyses, we identify an intermediate SF phase with the de-
twined in-plane ferro-orbital order, which correctly reproduce
the orbital order in the MI n = 1 phase. It is worth re-
marking several directions for further studies. The quantum
fluctuations, which can be partially restored with the cluster
Gutzwiller approach [52,53], may deserve to be studied for
its role in selecting the orbital order in the vicinity of SF-MI
transition. Alternatively, it is also interesting to investigate the
details of SF-MI transition within a single unified method,
e.g., the quantum Monte Carlo simulation. Finally, we close
by briefly discussing the dissipation. The experimental re-
alization of the Bose-Hubbard model in photonic systems

involves light-matter interactions, which may be better de-
scribed as an open system. Therefore, another direction to
generalize our work is to study the effect of dissipation.
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APPENDIX A: DETAILS OF BOGOLIUBOV APPROACH

In the weak-coupling limit, the band minima are occu-
pied by a macroscopic number of bosons N0 at zero crystal
momentum k = 0 in RBZ, which can be expressed in terms
of the ground-state wave function N0 = ∑

α� |φα�|2. Here α

and � specify the orbital and sublattice degree of freedom,
respectively. The quantum effects arising from the commu-
tation relation [pα�k=0, p†

α′�′k=0] = δα,α′δ�,�′ are suppressed by
the macroscopic occupation N0. The occupation of the excited
states at nonzero momentum k �= 0 with the corresponding
operator pα�k �=0 is generally small and is treated as quantum
fluctuations p̃α�k. The Hamiltonian can be reexpressed by
splitting the operators into the ground-state wave function φα�

and the quantum fluctuations p̃α�k. To the lowest order in p̃α�k,
one neglect all fluctuations and obtain the energy functional
per unit cell

ε(φ∗,φ) = T� (φ∗,φ) + I (φ∗,φ), (A1)

with the energy functional

Tk(φ∗,φ) = 1

Nuc

∑
αα′

∑
��′

tαα′
��′ (k)φ∗

α�φα′�′ (A2)

and

I (φ∗,φ) = 3U

2N2
uc

∑
�

[
|φx�|4 + |φy�|4 + 4

3
|φx�|2|φy�|2

+ 1

3
φ∗2

x� φ2
y� + 1

3
φ2

x�φ
∗2
y�

]
(A3)

arising from the hopping processes and the Hubbard interac-
tion, respectively. Here Nuc is the number of unit cells and
tαα′
��′ (k) is the matrix elements describing the process that the

bosons with crystal momentum k hop among the sublattices
in the Wigner-Seitz cell. The ground-state wave function is
obtained by minimizing the energy functional in Eq. (A1),
which ensures the linear order terms in p̃α�k to vanish. The
quadratic order terms can be written as

H(2)
k = 1

2
[ p̃†

k, p̃−k]

[
Xk Y

Y † X−k

][
p̃k

p̃†
−k

]
. (A4)
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TABLE I. The ith eigenstate �i
n of the Hamiltonian HI in Eq. (B1)

with the corresponding eigenenergy E�i
n

for pn=0,1,2 configurations.

p0 p1 p2

configuration configuration configuration

i 1 1 2 1 2 3
E�i

n
0 0 0 2U 4U 2U

|n+n−〉 |0, 0〉 |1, 0〉 |0, 1〉 |2, 0〉 |1, 1〉 |0, 2〉

The elements of diagonal matrix in the orbital-sublattice basis
p̃k = [ p̃x1k, p̃x2k, p̃x3k, p̃x4k, p̃y1k, p̃y2k, p̃y3k, p̃y4k] are

X α�,α′�′
k = −(T� + 2I )δα,α′δ�,�′ + tαα′

��′ (k)

+ 2U

Nuc
δα,α′δ�,�′[|φx�|2 + |φy�|2 + 2|φα�|2]

+ 2U

Nuc
(1 − δα,α′ )δ�,�′[φ∗

x�φy� + φ∗
y�φx�]. (A5)

It is worth mentioning that the first term in Eq. (A5) arises
from the conservation of bosons. The total bosons consist of
condensed bosons at zero momentum and excited bosons in
the fluctuating fields N = N0 + ∑

α�k p̃†
α�k p̃α�k. The elements

of off-diagonal matrix are as follows:

Y α�,α′�′ = U

Nuc
δα,α′δ�,�′

[
φ2

x� + φ2
y� + 2φ2

α�

]
+ 2U

Nuc
(1 − δα,α′ )δ�,�′φx�φy�. (A6)

The Bogoliubov excitation is determined by the eigenval-
ues of the Bogoliubov dispersion matrix [54]

σz

[
Xk Y

Y † X−k

]
=

[
Xk Y

−Y † −X−k

]
, (A7)

where σz = diag(+1,−1) is the block Pauli matrix.

APPENDIX B: DERIVATION OF ORBITAL EXCHANGE
HAMILTONIAN

To derive the effective low-energy Hamiltonian, we shall
first diagonalize the on-site Hubbard interaction

HI = 3

2
U

[
n̂

(
n̂ − 2

3

)
− 1

3
L̂2

z

]
. (B1)

It is easy to show that the Hamiltonian in Eq. (B1) commutes
with both the total occupation operator n̂ and the z-component
angular momentum L̂z. Moreover, the matrix representation of
the operators n̂ = n̂+ + n̂− and L̂z = n̂+ − n̂− is diagonal in
the basis of axial orbitals p± = px ± ipy. Here n̂± correspond
to the occupation operators of axial orbitals p±. Therefore,
the eigenstate of the Hamiltonian in Eq. (B1) can be labeled
by the corresponding quantum number

|n+n−〉 = 1√
n+!n−!

(p†
+)n+ (p†

−)n−|0, 0〉. (B2)

The orbital exchange model in the MI n = 1 phase involves
the pn=0,1,2 configurations. The eigenstates �i

n with the cor-
responding eigenenergies E�i

n
are listed in Table I. The p1

configuration with zero energy is an orbital doublet with one

boson occupying either p+ or p− orbital. Note that the charge
excitation (p1)i(p1) j � (p2)i(p0) j through the hopping pro-
cesses tαβd†

iαd jβ has an energy gap that is proportional to
the Hubbard interaction U . In the large-U limit, the effective
low-energy model is described by the second-order hopping
process with both the initial and final states in p1 configu-
ration, which involves no charge gap. Let us first derive the
orbital exchange interaction along the a1 = x̂ bonds. Employ-
ing the second-order perturbation theory [55], the matrix form
of orbital exchange interaction is given by

Jkl,k′l ′ = −
∑
mn

1

E�m
2

+ E�n
0

×
〈

�k
1

i-th site
�l

1
j-th site

∣∣∣∣∣
∑
αβ

t∗
αβ p†

jβ piα

∣∣∣∣∣ �m
2

i-th site
�n

0
j-th site

〉

×
〈

�m
2

i-th site
�n

0
j-th site

∣∣∣∣∣
∑
δγ

tδγ p†
iα p jγ

∣∣∣∣∣ �k′
1

i-th site
�l ′

1
j-th site

〉
+ i ↔ j.

(B3)

To describe the orbital exchange Hamiltonian, we introduce
the orbital pseudospin operators {τ+, τ−} ≡ {p†

x py, p†
y px},

which flip the states of the orbital doublet in p1 configuration.
The z component of pseudospin τ vector follows through the
spin-1/2 angular momentum algebra τz = [τ+, τ−]. A lengthy
but straightforward algebra leads the orbital exchange Hamil-
tonian along the a1 bonds

H1
OE =

∑
〈i j〉

[
Jτ i

zτ
j

z + J ′(τ i · τ j + 2τ i
yτ

j
y

)]
, (B4)

with

{J, J ′} =
{
− (tσ − tπ )2

16U
,

tσ tπ
8U

}
. (B5)

Having derived the orbital exchange interaction H1
OE along

bond vector a1, the interaction H2,3
OE has exactly the same form

with H1
OE if the orbital pseudospin operators τ are defined in

the local coordinate. Thus, the connection between the local
and global coordinates (the global x axis along a1 bond vector)
is linked by a rotation of θ = 2π

3 , 4π
3 about z axis, correspond-

ing to the a2, a3 bonds, respectively. Under this rotation, the p
orbital wave functions transform as

px → cos θ px − sin θ py, (B6a)

py → sin θ px + cos θ py. (B6b)

Accordingly, the pseudospin operators τ transform as follows:

τz → sin [2θ ]τx + cos [2θ ]τz, (B7a)

τx → cos [2θ ]τx − sin [2θ ]τz, (B7b)

τy → τy. (B7c)

The pseudospin vector τ is rotated by 2θ about its y axis
in the pseudospin space. It is now straightforward to obtain
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the Hamiltonian H2,3
OE by replacing the pseudospin τ in

H1
OE. Finally, the total orbital exchange Hamiltonian takes

the form

HOE = J
∑

〈i j〉‖aγ

τ i
γ τ j

γ + J ′ ∑
〈i j〉

(
τ i · τ j + 2τ i

yτ
j

y

)
, (B8)

with

τγ = τz cos [2θγ ] + τx sin [2θγ ], {θ1, θ2, θ3} = {
0, 2

3π, 4
3π

}
.

Unlike spin systems, the orbital exchange is anisotropic. It
roots in the fact that the hopping processes are bond dependent
due to the spatial orientation of p orbitals.

APPENDIX C: LINEAR ORBITAL WAVE

Having established the classical ground state of the orbital
exchange Hamiltonian HOE in Eq. (B8), we then proceed to
derive the Hamiltonian that describes the orbital excitation.
The orbital pseudospin operators, obeying the angular mo-
mentum algebra of spin T = 1/2, can be expressed in terms

of Holstein-Primakoff bosons [46]

τx =
√

2T (a† + a), (C1a)

τy = i
√

2T (a† − a), (C1b)

τz = 2(T − a†a). (C1c)

Note that the classical ground state enjoys a continuous SO(2)
rotational symmetry, which transforms the orbital pseudospin
as

τz → cos θτz + sin θτx, (C2a)

τx → − sin θτz + cos θτx. (C2b)

The pseudospin in Eq. (B8) is first replaced by the above trans-
formation. Expanding in powers of T followed by Fourier
transformation then leads to the following θ -dependent
Hamiltonian:

HOE(θ ) = 4T 2NEc + 2T
∑

k

ĤLOW(k, θ ) + O(
√

T ). (C3)

The first term Ec = 3J + 6J ′ in Eq. (C3) recovers the classical
ground energy per site. The second term in Eq. (C3) describes
the linear orbital wave Hamiltonian

ĤLOW(k, θ ) = −(12J + 24J ′)a†
kak − 3ϕ′

k(aka−k + a†
−ka†

k) + [ϕk(θ ) + 2ϕ′
k](a†

−k + ak)(a†
k + a−k) (C4)

= [a†
k, a−k]

[
ϕk(θ ) + 2ϕ′

k − 6J − 12J ′ ϕk(θ ) − ϕ′
k

ϕk(θ ) − ϕ′
k ϕk(θ ) + 2ϕ′

k − 6J − 12J ′

][
ak

a†
−k

]
+ N (6J + 12J ′), (C5)

with the auxiliary functions

ϕk(θ ) = 2J
∑

γ

sin2[2θγ + θ ] cos[k · aγ ], (C6a)

ϕ′
k = 4J ′ cos[k · aγ ]. (C6b)

It can be diagonalized via the Bogoliubov transformation [54]

[
ak

a†
−k

]
= Tk

[
bk

b†
−k

]
, (C7)

which relates the Holstein-Primakoff bosons with orbital ex-
citation modes. Notably, the bosonic statistics require that Tk

satisfies the paraunitary condition

T †
k σzTk = σz. (C8)

Therefore, the linear orbital wave Hamiltonian can be written
in terms of diagonalized bosons

HLOW(θ ) =
∑

k

ωk(θ )b†
kbk + NEZP(θ ), (C9)

where the orbital wave excitation is

ωk(θ ) = 2
√

[ϕk(θ ) + 2ϕ′
k − 6J − 12J ′]2 − [ϕk(θ ) + ϕ′

k]2

and the energy from zero-point motion per site is

EZP(θ ) = 1

2N

∑
k

ωk(θ ) + 6J + 12J ′. (C10)

Finally, the zero-point energy can be evaluated numerically.
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