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Pressure-induced phase switching of Shubnikov–de Haas oscillations in the molecular Dirac fermion
system α-(BETS)2I3
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We report on the Shubnikov–de Haas (SdH) oscillations in the quasi-two-dimensional molecular conductor
α-(BETS)2I3 [BETS: bis(ethylenedithio)tetraselenafulvalene] laminated on polyimide films at 1.7 K. From the
SdH phase factor we verified experimentally that the material is in the Dirac fermion phase under pressure.
α-(BETS)2I3 is in the vicinity of the phase transition between strongly correlated insulating and Dirac fermion
phases, and is a possible candidate for an ambient-pressure molecular Dirac fermion system. However, the SdH
oscillations indicate that the Berry phase is zero at ambient pressure. Under pressure, a π Berry phase emerges
when the metal-insulator crossover is almost suppressed at ∼0.5 GPa. The results contrast with those for the pio-
neering molecular Dirac fermion system α-(BEDT-TTF)2I3 [BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene]
in which Dirac fermions and semiconducting behavior are simultaneously observed.
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I. INTRODUCTION

Dirac electrons in solids, which obey linear (pseudorela-
tivistic) dispersion relations, are one of the central issues in
condensed matter physics, particularly since the experimental
discovery of graphene [1]. However, materials in which the
Fermi energy (EF) lies at the contact point are still few. Among
them, the molecular Dirac fermion system α-(BEDT-TTF)2I3

has provided a unique platform for two-dimensional massless
Dirac fermions [2,3]. Unlike graphene, α-(BEDT-TTF)2I3 is
a bulk quasi-two-dimensional material, in which EF is close
to the contact points between highly tilted Dirac cones at non-
symmetric k points in the Brillouin zone [4]. The low Fermi
velocity (∼104 m/s) and the low damping of the Landau levels
allow us to precisely investigate how the Landau levels form
and separate towards the quantum limit [5].

The massless Dirac fermion phase appears in the vicinity
of a strongly correlated insulating phase by application of
pressure above 1.5 GPa. Therefore, the interaction effect on
the massless Dirac fermions in this system has also been of
great interest, and peculiar phenomena, such as an anisotropic
Dirac cone reshaping due to the tilt of the cone [6] and
ferrimagnetic spin polarization due to short-range Coulomb
interaction [7], have been reported. In addition, a deviation
from the Korringa law in NMR measurement suggests that
the system is in the strong coupling regime that graphene
cannot reach [7]. Probably because of these special situations,
the insulating behavior and charge gap remain even in the
massless Dirac fermion phase under high pressure [8–10]. The
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short-range interaction effect may become even more sig-
nificant in the vicinity of the correlated insulating phase.
Recently, the quantum phase transition between the insu-
lating phase and the massless Dirac fermion phase was
reported [11]. The Fermi velocity (vF) decreases without
creating a mass gap upon approaching the phase transition.
Further detailed experiments around the phase transition in
α-(BEDT-TTF)2I3 and its related materials will be interesting
as there are no other massless Dirac fermion systems in such
a strong electron correlation regime.

α-(BETS)2I3 [12,13], the selenium analog of
α-(BEDT-TTF)2I3, may be an excellent platform to explore
electronic states in the vicinity of the phase transition. It
shows similar resistivity behavior to α-(BEDT-TTF)2I3,
but the insulating phase can be suppressed under lower
pressure (0.6 GPa), probably due to the large bandwidth [2].
The transport properties above 0.6 GPa are reminiscent of
those of α-(BEDT-TTF)2I3 above 1.5 GPa. Therefore, the
electronic state of α-(BETS)2I3 is considered similar to that
of α-(BEDT-TTF)2I3 at approximately 0.9 GPa. Indeed,
band calculations based on the crystal structure under high
pressure indicate the presence of the Dirac cones in both
α-(BEDT-TTF)2I3 and α-(BETS)2I3 [14,15] (although Dirac
and normal electrons coexist). However, in-depth verification
of Dirac fermions with the quantum oscillation measurements
has not been reported so far. Recently, first-principles
calculations by multiple independent research groups indicate
that α-(BETS)2I3 is a type-I Dirac fermion system even
at ambient pressure [16–18]. Those groups simultaneously
suggest the possibility of different insulating mechanisms
from α-(BEDT-TTF)2I3 (spin-orbit coupling by Kitou et al.
[18], and Coulomb interaction + spin-orbit coupling by Ohki
et al. [16]).
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In this study, to uncover the presence of Dirac cones,
with similarities to and differences from α-(BEDT-TTF)2I3

in the vicinity of the phase transition, we investigate the
Shubnikov–de Haas (SdH) oscillation in thin single crystals
of α-(BETS)2I3 laminated on polyimide films using a similar
experimental method to α-(BEDT-TTF)2I3 [19]. From these
measurements we verified that α-(BETS)2I3 is in the Dirac
fermion phase under pressure. The period of the oscillation
does not significantly change before and after the transition,
indicating that α-(BETS)2I3 under pressure has no large Fermi
surfaces (type-I Dirac fermion system). Under high pressure,
α-(BETS)2I3 is in the Dirac fermion phase with approxi-
mately 20% lower Fermi velocity than that in similarly doped
α-(BEDT-TTF)2I3 [11].

II. METHODS

Polyimide films (CT4112, KYOCERA Chemical Corpora-
tion) were spin coated on polyethylene terephthalate (PET)
substrate (Teflex FT7, Teijin DuPont Films Japan Limited)
and baked at 180 ◦C for 1 h. We electrochemically synthe-
sized a thin (∼100 nm) single crystal of α-(BETS)2I3 from a
chlorobenzene solution (2% v/v methanol) of BETS [20] and
tetrabutylammonium triiodide by applying 5 μA for 20 h. The
thin crystal was transferred into 2-propanol with a pipette and
guided onto the substrate. After the substrate was removed
from the 2-propanol and dried, the crystal naturally adhered
to the substrate. The x-ray diffraction measurement is difficult
because the crystal is thin and laminated on the noncrystalline
polymer substrate. However, thanks to the polarizing property
of I−3 , optical images through a polarizer indicate that the crys-
tal is a single crystal in which the two-dimensional conducting
plane is parallel to the substrate [21]. The a and b axes tend
to correspond to the diagonals of the crystal if the shape is
close to diamond. Atomic force microscopy revealed that the
surface roughness of the crystal was smaller than the thickness
of the BETS conducting layer [21].

Unlike α-(BEDT-TTF)2I3, no polymorphs of (BETS)2I3

have been reported, and the temperature dependence of the
resistance is similar to the literatures [12,13] (as shown later).
We made electrical contacts with carbon paste and Au wires.
Samples 1 and 2 were subsequently shaped into Hall bars us-
ing a pulsed laser beam with a wavelength of 532 nm (samples
3 and 4 were not shaped). The dimensions of samples 1–4 are
90 μm (width) × 180 μm (length) × 130 nm (thickness), 90
μm × 110 μm × 90 nm, 310 μm × 160 μm × 80 nm, and
130 μm × 130 μm × 125 nm, respectively.

For samples 1–3 we measured the longitudinal resistiv-
ity and the Hall resistivity using a DC current of 1 μA
from a DC source (KEITHLEY 2400, Keithley Instruments)
and a nano voltmeter (Agilent 34420A, Agilent Technologies)
in a cryostat with a superconducting magnet that generate up
to 8 T (TeslatronPT, Oxford Instruments). For sample 4, a DC
current of 10 μA was applied from a DC source (KEITHLEY
6221, Keithley Instruments) and a nano voltmeter (Agilent
34420A, Agilent Technologies) in a He3 cryostat with a su-
perconducting magnet that generate up to 10 T (Cryogenic
Limited). The magnetic field was applied perpendicular to
the substrate of the samples. For pressure measurements we
employed a typical CuBe pressure cell and Daphne 7373 oil.

The pressures are values at room temperature, and the actual
pressures at low temperatures are 0.1–0.2 GPa less than the
notations [22].

Besides, the polymer film is not restricted to polyimide. We
also observe similar SdH oscillations in α-(BETS)2I3 directly
laminated on the PET substrate. However, we employed poly-
imide films because the oscillation signals tended to be more
clear probably due to more clean surface conditions of our
polyimide films.

III. RESULTS AND DISCUSSION

The SdH oscillation is a powerful tool to investi-
gate the Fermi surface and the Berry phase [23]. Neither
α-(BEDT-TTF)2I3 nor α-(BETS)2I3 shows the SdH oscilla-
tions in their bulk crystals regardless of pressure. We have
to dope some carriers to observe the oscillations. Here we
synthesize thin single crystals of α-(BETS)2I3 and lami-
nate them on polyimide films. The contact charging between
α-(BETS)2I3 and polyimide induces hole doping, resulting in
the observation of the SdH oscillations (one or two conduct-
ing layers are doped in the case of α-(BEDT-TTF)2I3 [19]).
According to the SdH oscillations period, the hole density is
approximately 1012 cm−2, corresponding to ∼0.5% of the first
Brillouin zone. Notice that the thin crystal consists of several
tens of conducting BETS and insulating I3 layers (as shown
in the Methods section), but the doped carriers are confined at
the surface. Therefore, the sample resistance is the combined
resistance of the nondoped bulk and doped surface, and is dif-
ficult to separate. Nevertheless, we can investigate the doped
surface using the SdH oscillations because the nondoped bulk
does not show the oscillations. The application of contact
charging also causes unintended strain effects from the sub-
strate. The crystal of the target material is much thinner than
the substrate and tightly adheres to the substrate. Therefore,
thermal and mechanical contractions (due to cooling and pres-
sure) of the nondoped bulk (∼100 nm) and the doped surface
(a few nanometers) are governed by those of the substrate.
These effects modify the effective pressure of the laminated
crystal, as shown later. However, this effect does not change
the essential pressure effect because the strain is biaxial and
parallel to the conducting plane. If we employ an unshrinkable
substrate such as Si, the shrinkable molecular crystal is bro-
ken under pressure (probably due to the Poisson effect). We
employed shrinkable plastic substrates in this study.

The period and phase of the oscillations imply the follow-
ing. At ambient pressure, the charge carriers are not Dirac
fermions at the doping levels in this study. The charge car-
riers turn out to be Dirac fermions when the metal-insulator
crossover is sufficiently suppressed by applying pressure. The
phase switching contrasts the behavior in α-(BEDT-TTF)2I3

in the intermediate pressure region, which shows a π Berry
phase along with insulating behavior [11].

A. Ambient pressure

Figure 1(b) shows the temperature dependence of the
resistivity at ambient pressure in sample 1 [α-(BETS)2

I3/polyimide/PET]. Compared with a bulk crystal [13],
the sample exhibits slightly lower metal-insulator crossover
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FIG. 1. (a) Molecular arrangement of α-(BETS)2I3 (I−
3 is not

shown) and schematic side view of the sample. (b) Temperature
dependence of the resistivity at ambient pressure in sample 1. Dotted
line denotes the data of a bulk crystal of α-(BETS)2I3 in the literature
[13]. (c) Magnetic field dependence of the longitudinal magnetore-
sistance [Rxx (B) − Rxx (0)]/Rxx (0) and the Hall resistance Rxy at 1.7 K
in sample 1. (d) 1/B dependencies of d2Rxx/dB2 (∝ −�Rxx) and
−d2Gxx/dB2 (∝ �Gxx) derived from the data in (c). Blue trian-
gles indicate minima and maxima. Yellow diamonds denote peaks
suspected to be Zeeman splitting peaks (see text). (e) Landau fan
diagram constructed from (d).

temperatures and more moderate resistivity increases at lower
temperatures. The former is ascribable to the fact that the
thermal contraction of the PET substrate applies compres-
sive strain to α-(BETS)2I3 [24] (therefore, this sample at
ambient pressure corresponds to a bulk crystal under weak
pressure), and the latter is attributable to the doping effect of
the polyimide layer. As the single crystal consists of several
tens of conducting (BETS) layers and the doped carriers are
confined at the interface, the doping effect appears only at low
temperatures where the bulk is insulating. At 1.7 K, the sheet
resistivity (resistance × width / length) is 8.4 × 103 �.

Figure 1(c) shows the magnetoresistance (upper) and the
Hall resistance (lower) at 1.7 K. The SdH oscillations along
with negative magnetoresistance are visible. The magnetore-
sistance is complicated in detail. It is slightly negative up to
0.4 T, turns positive up to 1.5 T, and then becomes negative
again by a further magnetic field. Such a negative mag-
netoresistance has not been observed in α-(BEDT-TTF)2I3

under low pressures [11]. The magnetoresistance can be sim-
ply explained by neither the weak localization nor weak

antilocalization. It is reminiscent of the negative longitudi-
nal magnetoresistance in topological semimetals [25] due to
charge carrier density or mobility fluctuations. However, the
magnetic field direction is different in this study (current
is perpendicular to the magnetic field). Its origin cannot be
clarified at this moment. We observe the negative magnetore-
sistance (without oscillations) in a bulk crystal [21]. Although
we cannot see whether the doped interface also shows the
negative magnetoresistance or not, the oscillations originate
from the interface. We focus on the oscillation signals in this
study.

The low-field Hall resistances are positive and proportional
to the magnetic field. The sign becomes negative at around
23 K with increasing temperature [21]. By contrast, a bulk
crystal shows negative Hall resistance at low temperatures
[21]. Therefore, the doped carriers are holes and the con-
centration is ∼1012 cm−2 by ignoring electrons in bulk (Hall
mobility ∼1080 cm2/V s).

The quantum oscillations originate from the quantization
condition for the energy levels of the electron [26,27]:

Sn = 2πe

h̄
B(n + γ ), (1)

where Sn is the area of the cyclotron orbit in k space, n is
an integer, B is the magnetic field, and γ is the phase factor.
The oscillation signal is periodic against 1/B, and the area
can be estimated using the measurement BF ≡ ( 1

Bn+1
− 1

Bn
)−1.

Assuming that the spin and valley degeneracies are both 2, the
carrier density N is

N = 4e

h
BF. (2)

The SdH oscillation is given by

�Rxx = R(B, T ) cos 2π

(
BF

B
− γ

)
, (3)

where Rxx and R(B, T ) are the longitudinal resistance and the
oscillation amplitude, respectively [28–30]. The phase factor
γ is associated with the Berry phase φB as

γ − 1

2
= − φB

2π
. (4)

In a conventional electron system with isolated bands, φB = 0
and γ = 1/2. However, if the cyclotron orbit surrounds the
contact point of the bands and the energy dispersions are linear
in k in the vicinity of the contact point, the π Berry phase
emerges and γ becomes zero [23]. Accordingly, when we plot
1/B corresponding to the peaks against Landau level index
(Landau fan diagram), the intercept −γ = 0 or −1/2 for 2D
Dirac or normal electrons.

Nevertheless, we have to be careful about the phase analy-
sis of the SdH oscillations. Equation (3) assumes the condition
Rxx � |Rxy| (graphene, α-(BEDT-TTF)2I3, and many low-
carrier-density semiconductors meet this condition), and the
minima in Rxx coincide with those in the conductance Gxx =
Rxx/(R2

xx + R2
xy). The condition may be violated due to low

mobility or the presence of a highly conducting bulk trans-
port channel. In the case that Rxx � |Rxy|, the minima in
Rxx correspond to the maxima in Gxx. The difficulty of
the phase analysis using resistance data has been pointed

205140-3



YOSHITAKA KAWASUGI et al. PHYSICAL REVIEW B 103, 205140 (2021)

(b) (c)(a)

0 20 40 60 80 100
10-3

10-2

10-1

T (K)

ρ
 (

Ω
cm

)
 Ambient
 0.35 GPa
 0.4 
 0.45 
 0.5
 0.55
 0.6 
 0.7 
 0.8 

0 2 4 6 8
0

2000

4000

6000

B (T)

R x
x 

(Ω
)

0 2 4 6 8

0

1000

2000

3000

4000

5000

B (T)

R x
y 

(Ω
)

1.7 K

 0.35 GPa
 0.4 
 0.45 
 0.5
 0.55
 0.6 
 0.7 
 0.8 

FIG. 2. Pressure dependence of the resistivity in sample 1. (a) Temperature dependence of the resistivities. Dashed line indicates the
resistivity when each conducting layer has the quantum resistance h/e2. (b) and (c) Magnetic field dependencies of Rxx and Rxy.

out for topological insulators [31,32]. However, the Hall re-
sponse is usually weak and the resistance oscillation is more
apparent in many cases. One may still use the reversed re-
sistance data when Rxx � |Rxy|, as in the case of graphite
[29]. Here we analyze the oscillations of both Rxx and Gxx in
α-(BETS)2I3/polyimide/PET at ambient pressure. To elim-
inate the background, we show the second derivative of the
data with respect to the magnetic field.

Figure 1(d) shows the 1/B dependencies of d2Rxx/dB2

and −d2Gxx/dB2 derived from Fig. 1(c). They correspond to
−�Rxx and �Gxx, respectively. The oscillation signal is more
apparent in the upper curve because �Rxx/R > �Gxx/G.
However, both curves show almost the same periods and
phases, indicating −�Rxx ∝ �Gxx. BF and N estimated from
the upper curve are 12.1 T and 1.17 × 1012 cm−2, respec-
tively, and correspond to 0.6% hole doping provided that the
doped carriers are confined within one conducting layer. The
N value provides a realistic Hall scattering factor γH of 1.70
(N = γH/eRH). γ is almost 1/2, indicating that the carriers
are not Dirac fermions at this doping level. The same anal-
ysis of sample 2 is described in Fig. S4 [21]. The transport
properties of sample 1, such as the temperature dependence of
the resistance, the magnetoresistance, the sign and magnitude
of the Hall effect, the relationship between resistance and
conductance oscillations, and the phase factor reproduced in
sample 2.

The leftmost peak in Fig. 1(d) (denoted by yellow dia-
monds) deviates from the position predicted from the fitting
line in Fig. 1(e). Provided that this is a split peak as a re-
sult of the Zeeman effect, we estimate the effective mass
m∗ ∼ 0.43me from the relation (nLL + 1

2 ) h̄e
m∗ BLL = (nLL +

1
2 ) h̄e

m∗ BZ + μBBZ, where BLL and BZ are the predicted and
observed peaks, respectively.

B. Under pressure

With increasing pressure, the entire sample is compressed.
The bandwidths of the bulk and surface are enhanced, and
their resistances decrease. The metal-insulator crossover grad-
ually diminishes and disappears at around 0.6 GPa, as shown
in Fig. 2(a). The dip at around 35 K and the upturn below 5 K
of the resistance have also been observed in bulk crystals [12],
but the detailed mechanisms are still unclear. Above 0.6 GPa,
the resistivity is almost constant down to approximately 15 K,

below which the metallic behavior of the doped holes appears.
The sheet resistivity per conducting layer is close to the quan-
tum resistance h/e2, as in the case of α-(BEDT-TTF)2I3. The
negative magnetoresistance observed at ambient pressure di-
minishes and becomes positive [Fig. 2(b)]. The Hall resistance
also decreases and becomes nonlinear, probably due to the
emergence of a conducting bulk transport channel [Fig. 2(c)].
As stated above, the bulk crystal of α-(BETS)2I3 does not
show the SdH oscillations even under pressure. We investigate
the doped surface by the analysis of the oscillations.

Figure 3(a) shows the pressure dependence of
−d2Gxx/dB2. At 0.35 and 0.4 GPa, the minima give γ ∼ 1/2;
this tendency is also observed at ambient pressure. m∗ values
are estimated to be ∼0.37me and 0.35me, respectively,
showing a decreasing trend with pressure. At 0.45 GPa
we cannot construct a convincing fan diagram because
of ambiguous oscillation signals and large background
signals. However, we can see a half-period oscillation (up
to 1/B ∼ 0.4 T−1), probably indicating the coexistence of
antiphase oscillations. One possible scenario is the phase
separation between the regions with γ = 1/2 and 0. Above

FIG. 3. Pressure evolutions of (a) −d2Gxx/dB2 vs 1/B plots at
1.7 K, (b) Landau fan diagrams, and (c) BF and γ in sample 1.
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0.5 GPa, γ becomes almost zero, implying the emergence
of Dirac fermions, although the oscillations at low 1/B
are not clear. The Landau fan diagrams and the pressure
dependence of BF and γ are summarized in Figs. 3(b) and
3(c). The conductance oscillations and Landau fan diagrams
of sample 3 at ambient pressure and 1.2 GPa are also shown in
Fig. S5 [21].

We cannot observe Dirac fermions unless the metal-
insulator crossover is sufficiently suppressed by pressure.
These results are in contrast to those for α-(BEDT-TTF)2I3,
in which the Dirac fermions and the semiconducting behavior
are simultaneously observed. Besides, we cannot confirm the
coexistence of Dirac and normal electrons (which has been
reported for α-(BEDT-TTF)2I3 [33]) in this study. The SdH
oscillations survive beyond the pressure-induced transition
and BF does not significantly vary with pressure. If large
Fermi surfaces emerge by applying pressure, as predicted by
band calculations in early reports [14,15], the doping effect
(and accordingly the quantum oscillations) should be ob-
scured by the dense carriers.

The most straightforward interpretation of the phase
switching is that the pressure-induced resistive transition is a
semiconductor-Dirac fermion system transition. Another pos-
sible scenario is the pressure-induced merging of the Dirac
cones [34,35]. In that case, the number and area of the Fermi
surface generally change at the transition. However, Fig. 3
shows that the BF does not significantly change during the
transition. To consider the merging of the Dirac cone as the
origin of the transition, we need a model and conditions con-
sistent with these measurements.

The SdH oscillations become more evident as pressure
increases. Figure 4 shows the magnetotransport properties of
sample 4 at 1.8 GPa and 0.5 K. Here the minima of Rxx coin-
cide with those of Gxx [21]. The minima indicate γ = 0 and
the interval of the Zeeman splitting peaks [yellow diamonds
in Fig. 4(b)] gives effective Fermi velocity vF ∼ 3.6 × 104

m/s, which is approximately 20% lower than that from the
same analysis for α-(BEDT-TTF)2I3 [11] (vF is estimated
from the relation

√
2eh̄v2

F|n|BZh − μBBZh =
√

2eh̄v2
F|n|BZl +

μBBZl, where BZh and BZl are the peak fields). The low vF

indicates that the Dirac cone is more tilted or more blunted
than α-(BEDT-TTF)2I3. However, we cannot determine the
central origin because the estimated vF is average over the or-
bit in the reciprocal space [36]. The peak around 1/B ∼ 0.15
further separates into two peaks [green squares in Fig. 4(b)].
We assign the bottom between these peaks to the Zeeman
splitting peak because a similar vF of 3.6 × 104 m/s is esti-
mated from the bottoms denoted by red circles. Therefore, the
small separation is considered a valley splitting. We roughly
estimate the valley-splitting energy �v/kB ∼ 0.92B K using
a similar analysis to vF, assuming that �v is proportional to
the magnetic field. A relative permittivity ε of ∼350 is de-
rived from the relation �v = e3

εε0Kh̄ B, where K is the distance
between the Dirac cones in k space (approximated by the
inverse lattice constant). In bulk α-(BEDT-TTF)2I3, ε near
the Dirac point is estimated to be ∼190 from the interlayer
magnetoresistance [37]. As the permittivity decreases near the
Dirac point, a comparable value is expected at the Dirac point
in α-(BETS)2I3.

FIG. 4. (a) Magnetic field dependencies of Rxx and Rxy in sample
4 at 1.8 GPa and 0.5 K. (b) −d2Rxx/dB2 vs 1/B plots derived from
(a). Blue triangles, yellow diamonds, green squares, and red circles
indicate the minima, the Zeeman splitting peaks at |n| = 2, the valley
splitting peaks, and the bottoms corresponding to the |n| = 1 Landau
level and its Zeeman splitting peak, respectively. Inset shows the
Landau fan diagram constructed from the minima in (b). The hori-
zontal and vertical axes are Landau level index and 1/B, respectively.

IV. SUMMARY

We have investigated the pressure dependence of the mag-
netoresistance and the Hall effect in slightly hole-doped thin
single crystals of α-(BETS)2I3 laminated on polyimide films,
and verified that the material is in the Dirac fermion phase
under pressure. We found a phase switching of the SdH os-
cillation near the pressure-induced metal-insulator crossover,
unlike in α-(BEDT-TTF)2I3 in the vicinity of the phase
transition. At ambient pressure, the system exhibits a metal-
insulator crossover below 50 K, and the phase of the SdH
oscillation at 1.7 K indicates γ = 1/2. Under pressure, γ

becomes zero above 0.5 GPa, whereas the metal-insulator
crossover disappears at approximately 0.6 GPa. A half-period
oscillation appears at the boundary (∼0.45 GPa), although
the oscillation signal is ambiguous. It may originate from the
coexistence of the regions with normal and Dirac fermions.
The pressure-induced phase switching of the SdH oscillation
indicates the presence of a semiconducting phase with normal
electrons next to a Dirac fermion phase in α-(BETS)2I3. In
α-(BEDT-TTF)2I3, the π Berry phase appears even in the
highly resistive states, and such a trivial insulating phase has
not been observed [11]. Recently, Kitou et al. reported that
α-(BETS)2I3 maintains the inversion symmetry below the
metal-insulator crossover [18], implying a different insulating

205140-5



YOSHITAKA KAWASUGI et al. PHYSICAL REVIEW B 103, 205140 (2021)

mechanism from α-(BEDT-TTF)2I3. Ohki et al. suggested
that the insulating phase is a spin-ordered massive Dirac elec-
tron phase where time-reversal symmetry is broken but spatial
inversion and translational symmetries are conserved [16].
Tsumuraya et al. explained that the system is in the massless
Dirac state but a gap opens as a result of the spin-orbit in-
teraction [17,18]. However, we cannot confirm the presence
of Dirac fermions at ambient pressure in this study. Under
high pressure (1.8 GPa), α-(BETS)2I3 is a Dirac fermion
system with vF of ∼3.6 × 104 m/s. At high magnetic fields,
the valley splitting is observed in the SdH oscillation. The

valley splitting energy �v/kB is estimated to be ∼0.92B K.
Further study is required to clarify the electronic states of
α-(BETS)2I3 which may provide a unique Dirac fermion sys-
tem different from α-(BEDT-TTF)2I3.
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