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Tensor network algorithms have proven to be very powerful tools for studying one- and two-dimensional
quantum many-body systems. However, their application to three-dimensional (3D) quantum systems has so far
been limited, mostly because the efficient contraction of a 3D tensor network is very challenging. In this paper,
we develop and benchmark two contraction approaches for infinite projected entangled-pair states (iPEPS) in
3D. The first approach is based on a contraction of a finite cluster of tensors including an effective environment
to approximate the full 3D network. The second approach performs a full contraction of the network by first
iteratively contracting layers of the network with a boundary iPEPS, followed by a contraction of the resulting
quasi-2D network using the corner transfer matrix renormalization group. Benchmark data for the Heisenberg
and Bose-Hubbard models on the cubic lattice show that the algorithms provide competitive results compared to
other approaches, making iPEPS a promising tool to study challenging open problems in 3D.
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I. INTRODUCTION

The study of strongly correlated quantum systems has
proven to be one of the most challenging endeavors in mod-
ern physics. Understanding the emergent phenomena in these
systems often requires a synergy between innovative meth-
ods from theory, numerics, and experiments. One important
family of numerical methods that has seen rapid develop-
ments in recent decades are tensor network algorithms. These
techniques have in common that the wavefunction is approxi-
mated by a variational ansatz formed by a product of tensors,
where the accuracy is systematically controlled by the bond
dimension of the tensors. The best known example is the
matrix product state (MPS) [1,2], the one-dimensional (1D)
ansatz formed by a product of rank-3 tensors, which is the
underlying variational state of the powerful density matrix
renormalization group (DMRG) [3,4] method.

The projected entangled-pair state (PEPS) [5,6] (also
known as tensor product state [7–9]) was introduced as a
higher-dimensional generalization of MPS, enabling the rep-
resentation of ground states of large 2D systems, or even
infinite 2D systems, called infinite PEPS (iPEPS) [10]. Thanks
to significant progress on the algorithmic side over the past
years, (i)PEPS has become a powerful approach for two-
dimensional (2D) strongly correlated systems, especially for
2D fermionic and frustrated systems which are notoriously
hard to simulate with quantum Monte Carlo (QMC), see, e.g.,
Refs. [11–24]. Besides the computation of ground states, for
which (i)PEPS was originally developed, significant progress
has also been achieved in other applications, including the
study of thermodynamic properties [25–44], excited states
[45,46], real-time evolution [38,47–49] and open systems
[38,50].
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The successes of tensor networks for both 1D and 2D quan-
tum systems raise the question of whether these methods can
also be applied to three-dimensional (3D) quantum systems. It
is expected that ground states in 3D typically require a smaller
bond dimension than their lower-dimensional counterparts,
because the entanglement of a site gets shared with more
neighbors, such that 3D states typically lie closer to a product
state. On the other hand, the presence of additional legs on the
tensors implies a higher computational cost of the algorithms,
forming one of the main obstacles in their development.

The main challenge of higher dimensional tensor net-
works is that they cannot be contracted exactly, but only
approximately, in contrast to the MPS. Several 2D contrac-
tion approaches have been developed, which can roughly be
divided into three categories: the corner transfer matrix renor-
malization group (CTMRG) [12,51–53], the (higher-order)
tensor renormalization group (TRG) [54–56] and the related
tensor network renormalization (TNR) [57,58], and bound-
ary MPS algorithms [5,10,53,59,60]. Several generalizations
of these approaches to 3D have been proposed, including
CTMRG in 3D [61,62] and TRG-based methods, such as
the higher-order TRG (HOTRG) [56] and other algorithms
[63,64]. 3D generalizations of the third category, based on
a boundary iPEPS, have been introduced for 3D classical
systems [65–70], or also in the context of imaginary time
evolution algorithms of 2D quantum states at zero [10,71,72]
and finite temperature [25–30,35,38], which effectively corre-
sponds to a contraction of an anisotropic 3D network. Outside
of these broad categories other algorithms were proposed for
3D networks, including embedding a small bulk part in an en-
tanglement bath [39,73], graph-based PEPS [74,75], isometric
tensor networks [76], and tree tensor networks [77].

In this paper we extend the algorithmic toolbox by propos-
ing two contraction techniques for the study of 3D quantum
models. The first method is based on the exact contraction
of only a finite number of tensors while using an effective
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environment to approximate the rest of the network. This
approach, which we call cluster contraction in the following,
provides a simple, approximate contraction, with the accuracy
being controlled by the cluster size. It forms an extension
of the approximate two-site cluster contraction used in pre-
vious works [74,75,78,79], and a related idea was also used
in the cluster update and evaluation procedures proposed in
Refs. [80–82] in 2D.

In the second approach, a full contraction of the network
is performed by defining a 2D boundary iPEPS and by itera-
tively absorbing layers of the 3D network (which can be seen
as infinite projected entangled-pair operator (iPEPO) layers)
into the boundary iPEPS. The contraction is based on the
simple update (SU) scheme [71], which is commonly used
in imaginary time evolution algorithms. After convergence of
the boundary iPEPS, the 3D tensor network can be effectively
represented by a quasi-2D network which is contracted using
the CTMRG algorithm. The accuracy of this SU + CTMRG
algorithm can be systematically controlled by the bond di-
mensions of the boundary iPEPS and CTMRG environment
tensors.

The paper is organized as follows. In Sec. II, a short in-
troduction to the iPEPS ansatz and the optimization algorithm
based on the 3D SU imaginary time evolution algorithm is
given. Then, the cluster contractions and the SU + CTMRG
method are introduced in Secs. III and IV, respectively. In
Sec. V, benchmark results for the Heisenberg and the Bose-
Hubbard model on the cubic lattice are provided, with a
comparison to previous studies based on QMC and other
approaches. Finally, we present our conclusions and outlook
in Sec. VI.

II. INTRODUCTION TO iPEPS

A. iPEPS ansatz

A PEPS is a variational ansatz which approximates the
wavefunction as a trace over a product of tensors. It forms
a natural generalization of the 1D MPS to higher dimensional
systems [5]. A general way to define the ansatz is

|ψ〉 =
d∑

s1...sN =1

Tr
(
T �r1

s1
. . . T �rN

sN

)|s1 . . . sN 〉, (1)

where �ri indicates the position of the tensor T �ri
si

in the ansatz
and si represents the index of the local Hilbert space of a site.
The tensors are connected with each other, typically according
to the underlying lattice. By defining a supercell of tensors
and repeating this cell infinitely many times on the lattice
we obtain an infinite PEPS (iPEPS), which represents a wave
function directly in the thermodynamic limit [10]. In this
work, we limit ourselves to the study of cubic lattices with
two independent tensors on the two sublattices, where each
tensor has six D-dimensional auxiliary indices connecting
each tensor with its nearest neighbors and one d-dimensional
physical index carrying the local Hilbert space. The parameter
D is called the bond dimension and controls the accuracy of
the ansatz.

A ground state simulation using iPEPS consists of two
stages. First, the ansatz is optimized such that it forms an
accurate representation of the ground state of some given

Hamiltonian. The optimization of the iPEPS is commonly
done either by an energy minimization [5,83–85] or by an
imaginary time evolution [10,71,72]. Once the iPEPS has
been optimized, properties of the state, such as expectation
values of observables, can be computed. In general both stages
involve a contraction of the 3D tensor network. However,
for the optimization we will make use of the SU imaginary
time evolution algorithm [71] which is a local, approximate
optimization scheme that does not require a full contraction.
This algorithm is discussed in the following for the 3D case,
before turning our focus on the contraction methods in Secs.
III and IV.

B. Simple update imaginary time evolution

The main idea of an imaginary time evolution algorithm
is to project an initial state |φ〉 onto the ground state |ψ0〉 by
acting with the imaginary time evolution operator e−βĤ in the
infinite β limit,

e−βĤ |φ〉 β→∞→ |ψ0〉, (2)

where Ĥ is the Hamiltonian. In practice, the imaginary time
evolution operator is split up into smaller two-body gates
using a Trotter-Suzuki decomposition. The first-order Trotter-
Suzuki decomposition is given by

e−β
∑

i Ĥi = (e−τ
∑

i Ĥi )M =
M∏

j=1

∏

i

e−τ Ĥi + O(τ ), (3)

where the Hamiltonian is rewritten as a sum over local
nearest-neighbor terms Ĥ = ∑

i Ĥi and τ = β/M is the time
step. The error can be reduced further to O(τ 2) by reverting
the sequence of applied gates e−τ Ĥi in every other time step,
corresponding to a second-order Trotter-Suzuki decomposi-
tion which will be used here.

Upon absorbing a two-body gate, the bond dimension of
the ansatz grows from D to d2D, which must be truncated
to avoid an exponential growth of the bond dimension. There
exist different truncation schemes to achieve this. In the full
[10] (or fast-full [72]) update approach, the entire wave func-
tion is taken into account to truncate a bond index, which
is optimal but computationally expensive, since it requires a
contraction of the network at each iteration. In contrast, in
the SU approach, the truncation is done by a local singular
value decomposition (SVD) which is not as accurate as the full
update, but computationally substantially cheaper, and thus
we focus on this approach in the following.

The scheme is presented in Fig. 1 for the 3D cubic network,
which is a straightforward generalization of the 2D case [71].
The ansatz defined in Eq. (1) is altered by adding diagonal,
positive-valued matrices λi on the auxiliary bonds which are
obtained from the SVD. In the case of an MPS, absorbing the
singular value matrices adjacent to two tensors connected by
a bond brings the MPS into a canonical form with respect to
that bond, such that the SVD provides an optimal truncation
[86]. In 2D or 3D, there is no canonical form because of
the loops in the tensor network ansatz. Still, absorbing the
singular value matrices adjacent to a bond brings that bond
close to a canonical form (more specifically a quasicanonical
[87,88] or superorthogonal [26] form), and the local SVD
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FIG. 1. One elementary step in the SU imaginary time evolution
algorithm. In (a), a Trotter gate is multiplied onto two neighboring
tensors, including all adjacent singular value matrices λi which are
used as an approximate environment of the bond. In (b), the resulting
tensor is split, and the connecting bond is truncated using an SVD.
In (c), the singular value matrices are reintroduced on the outward
pointing auxiliary bonds by inserting identities λiλ

−1
i . In (d), the λ−1

i

matrices are absorbed, giving the updated tensors.

often yields a truncation with a good accuracy. Note that the
original representation of Eq. (1) can be recovered by absorb-
ing

√
λi on all sides of a tensor. The computational cost of the

SU can be reduced further by splitting off the physical bond
from the tensors using a QR decomposition before absorbing
the Trotter gate [89].

While the SU update is used here to truncate a bond
index within the imaginary time evolution algorithm, we
will make use of the same idea for the contraction of the
3D tensor network in Sec. IV. Furthermore, using the sin-
gular value matrices as effective environments also plays a
key role in the cluster contraction, which we discuss in the
following.

III. CLUSTER CONTRACTION

We will now shift the attention to computing expecta-
tion values of the optimized iPEPS. The first contraction
method that is introduced is the cluster contraction. In this
approach, instead of performing a full contraction of the
network, only a small cluster of the network is contracted
exactly, while the rest of the network is taken into ac-
count only in an approximate way by absorbing the singular
value matrices on the outer legs of the cluster, in a similar
spirit as done in the SU imaginary time evolution algo-
rithm discussed in the previous section. The smallest clusters
are the 1 × 1 × 1 and 1 × 1 × 2 clusters depicted in Fig. 2
which can be used to evaluate one- and two-site opera-
tors respectively. These contractions have a relatively low
computational cost of O(D7) and they were used as an ap-
proximate contraction method before [74,75,78,79]. We note
that these contractions are exact on a Bethe lattice (con-
taining no loops), and have been used frequently in this
context [90–94].

(a) (b)

FIG. 2. Diagrams of the smallest clusters used in the cluster
contraction. In (a), the 1 × 1 × 1 cluster is displayed which is used to
evaluate one-site operators and in (b), the 1 × 1 × 2 cluster is shown
which is used for two-site operators. The black circles represent
singular value matrices, which provide an effective environment,
approximating the rest of the tensor network surrounding the cluster.

While these small clusters have the advantage of having a
low computational cost, the involved contraction error may be
quite substantial because of their small sizes and because they
entirely neglect loops in the network. Furthermore, without
a systematic way of increasing the contraction accuracy it is
hard to estimate the magnitude of the contraction error. For
these reasons, we will extend the cluster contractions to larger
clusters in this work. Adding an additional layer of tensors
around the site(s) on which the operator is measured results
in the 3 × 3 × 3 and 3 × 3 × 4 clusters, which are depicted
in Figs. 3(d) and 3(e). The computational cost of contract-

=

(a)

=

(b)

(c) (d)

(e)

FIG. 3. Cluster contractions for larger clusters. In (a) and (b),
a more compact notation is introduced for graphical clarity. A full
black circle represents λi, while a half circle represents

√
λi. Note

that keeping the tensors separated typically gives a lower compu-
tational cost. In (c), the 2 × 2 × 2 cluster is displayed. In practice
separate diagrams, with the operator inserted on the different bonds
of this cluster, are computed and averaged over. Diagrams (d) and (e)
show the 3 × 3 × 3 and 3 × 3 × 4 clusters, respectively.
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ing these clusters has a high scaling of O(D29), therefore in
practice it can typically only be used for D = 2 (without ap-
proximations). In addition, we consider the 2 × 2 × 2 cluster
shown in Fig. 3(c) with a contraction cost scaling as O(D12),
which we find offers a good trade-off between accuracy and
computational cost.

Cluster contractions are expected to provide reasonable
results for states with short-ranged correlations. Their main
advantage is that they are simple to implement and, for the
smaller clusters, computationally relatively cheap to perform.
They can therefore be used for a quick first analysis of a
model and to identify parameter regions that could be inter-
esting to simulate using more sophisticated methods, such as
the SU + CTMRG contraction method we introduce in the
following.

IV. SU + CTMRG CONTRACTION

In this section, we introduce a method to perform a full
contraction of the infinite 3D network with an accuracy that
can be systematically controlled. The approach is based on a
boundary iPEPS onto which layers of the 3D network (which
can be seen as iPEPO’s) are absorbed, see Fig. 4, in a similar
spirit as done in MPS-MPO (matrix product operator) based
contractions of 2D tensor networks [5]. Methods based on a
boundary iPEPS have been previously developed in the con-
text of 3D classical models [65–70]. While these approaches
are typically based on a direct optimization of the boundary
iPEPS, here we propose a computationally cheaper scheme,
that is applicable also for general 3D tensor networks without
any mirror or rotational symmetries.

The method is based on iterative absorptions of iPEPO
layers onto a boundary iPEPS until convergence is reached.
A single iPEPO layer absorption is performed by splitting
it into a product of two-body gates which are contracted
with the boundary iPEPS, followed by a truncation similar
to the one used in the SU imaginary time evolution algo-
rithm. The method is applied twice in opposite directions to
obtain an upper and a lower boundary iPEPS, representing
the upper and lower half of the 3D network, respectively.
The entire 3D network can then be effectively represented
by a quasi-2D network made of the two boundary iPEPSs
with a bulk iPEPO layer in between. The remaining 3-
layer network is then contracted using CTMRG. Each of
these stages of this algorithm, which we call the SU +
CTMRG contraction, will be discussed in detail in the
following.

A. SU approach for the boundary iPEPS

We will start by explaining how an absorption of a single
iPEPO layer onto the boundary iPEPS is performed. First, the
bulk tensors are decomposed in such a way that the trans-
formed network solely consists of rank-3 tensors. This is done
by performing a sequence of SVDs in the following way [see

(a)

(b)

FIG. 4. To contract the 3D tensor network a 2D boundary iPEPS
is defined. For graphical clarity the bulk 3D iPEPS tensors are repre-
sented in the way shown in (a). The half circles represent

√
λi which

are contracted into the bulk tensors. In (b), a contraction of an iPEPO
layer with the boundary iPEPS is displayed.

also Fig. 5(a)]

blrb f ud
p = bup,lrb f d

=
∑

a1

U(1)
up,a1

s(1)
a1

V∗(1)
lrb f d,a1

=
∑

a1

g(1)
ua1 pM(1)

ra1,lb f d

=
∑

a1a2

g(1)
ua1 pU(2)

ra1,a2
s(2)

a2
V∗(2)

lb f d,a2

= · · · =
=

∑

a1a2a3a4a5

g(1)
ua1 pg(2)

ra1a2
g(3)

la2a3
g(4)

f a3a4
g(5)

ba4d , (4)

where blrb f ud
p is a tensor of the iPEPS network with the square

root of the singular value matrices on the virtual bonds ab-
sorbed into it. At each decomposition step, the square root
of the singular value matrix obtained from the SVD is ab-
sorbed on each side, so we have g( j) = U( j)

√
s( j) and M( j) =√

s( j)V( j)†. Note that the bond dimension in the middle of
each string of rank-3 tensors can become large. In principle
a truncation can be done on the singular value spectrum to
reduce the computational cost. In practice, however, it turns
out that the CTMRG procedure, that is discussed in the next
section, typically gives the dominant contribution, therefore
we do not perform a truncation here.

Figure 5(b) shows an example of the network that is ob-
tained from this decomposition for a bipartite lattice. The
tensors on the two sublattices are split in different orders, such
that the connecting horizontal legs between neighboring pairs
of tensors are properly aligned. By thinking of the pairs of
rank-3 tensors as two-body gates, we can absorb them onto
the boundary iPEPS and perform a truncation in a similar way

205137-4



SIMULATION OF THREE-DIMENSIONAL QUANTUM … PHYSICAL REVIEW B 103, 205137 (2021)

(a)

(b)

U(1)

√
s(1)√

s(1)

V(1)

g(1)

M (1) g(2)

M (2)
g(3)

M (3)

g(4)

g(5)

FIG. 5. In (a), we show the decomposition of a bulk tensor in the
3D iPEPS to rank-3 tensors by sequentially splitting off legs using
an SVD. After each SVD the square root of the singular value matrix
is absorbed on each side (see main text for more details). In (b), the
network of rank-3 tensors that is obtained after the decomposition is
shown for a bipartite cubic lattice.

as in the SU imaginary time evolution algorithm. A single
step of this procedure is shown in detail in Figs. 6(a)–6(d).
Both a gate from the bra- and the ket-layer are contracted
at the same time. Figure 6(e) shows the absorption of the
tensors carrying the physical bond, which does not involve a
truncation. The maximum bond dimension that is used for the
boundary iPEPS is denoted by χb. The iterative contraction
of the iPEPO layers is continued until convergence is reached
in the computed expectation values, which for the benchmark
models that will be discussed later is achieved in less than
ten iterations. Alternatively, the convergence of the boundary
iPEPS singular value matrices can also be used as a conver-
gence criterion. In general, there is no reflection symmetry in
the iPEPS. Therefore a contraction from the opposite direction
(using another boundary iPEPS) is also required with the
mirrored procedure. The upper and lower boundary iPEPS
are initialized by a contraction of the bulk tensors as shown
in Fig. 6(f). The dominant scaling of the boundary iPEPS
contraction is O(χ5

b D8 + χ4
b D10).

B. Three-layer CTMRG

In the first part of the algorithm discussed in the previous
section we explained how to obtain the converged upper and
lower boundary iPEPS which represent the upper and lower
half of the 3D network, respectively. The entire 3D network
can then be represented by the double-layer network made of
the two boundary iPEPS. For the computation of observables
we additionally keep a single bulk iPEPO layer sandwiched

T b
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FIG. 6. In [(a)–(d)], one step of the SU contraction is displayed.
The open circles indicate the singular value matrices λb

i that are
introduced on the boundary iPEPS. In (a), tensors from the bra-
and ket-layer are applied onto the boundary iPEPS tensors as are
the singular value matrices from the neighboring bonds. In (b), an
(iterative) SVD is performed, after which the identities λb

i (λb
i )−1 are

inserted on each external bond in (c). In (d) the (λb
i )−1 are contracted

to obtain the new tensors. In (e), an absorption of the tensors carrying
the physical bonds is shown which does not require a truncation. (f)
shows the initialization of the upper boundary iPEPS tensors which
are obtained from a contraction of the bulk iPEPS tensors. On the top,
two singular value matrices of the bulk tensors, which are indicated
by filled black circles, are used as an effective environment in a sim-
ilar spirit as in the cluster contraction. The half circles indicate that a
square root of the singular value matrix is taken. The initial singular
value matrices of the boundary iPEPS are obtained by combining the
bra- and ket-layer singular value matrices from the bulk tensors in
the plane.

between the two boundary iPEPS, resulting in the three-layer
network shown in Figs. 7(a) and 7(b). In the second part
of the algorithm, this quasi-2D network is contracted using
the CTMRG method which is a common approach for the
contraction of 2D tensor networks [12,51,52].

In the standard CTMRG algorithm [51], the environment
surrounding a central site of an infinite 2D network is approx-
imated by four corner and four edge tensors, each representing
an infinite quadrant and infinite row of tensors, respectively, as
depicted in Fig. 7(b). These environment tensors are obtained
through an iterative scheme in which rows and columns of ten-
sors are absorbed in the environment tensors. In this work, the
directional CTMRG [52], with the renormalization procedure
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=

(a)

(b)

(c)

χc

χb

D

FIG. 7. The 3D network is effectively represented by a three-
layer network, made of the two converged boundary iPEPS with
an iPEPO layer of bulk tensors sandwiched in between, shown in
(a) for one site of the resulting quasi-2D network. This 2D network
is contracted using the CTMRG yielding the corner and edge tensors
surrounding the central site shown in (b), each representing part of
the system as indicated by the shaded regions. In (c), the diagram
corresponding to the expectation value of a one-site operator is
displayed.

from Ref. [12], is used.1 The accuracy of the contraction is
controlled by the bond dimension of the environment tensors,
here denoted by χc. The dominant scaling of this three-
layer CTMRG scheme is O(χ3

c χ4
b D4 + χ2

c χ6
b D6 + χ2

c χ4
b D9),

which makes this the computationally most expensive part of
the SU + CTMRG contraction algorithm.

Once the environment tensors are converged, expectation
values can be evaluated in the standard way, as shown in
Fig. 7(c) for the example of a one-site operator. For two-site
operators, only operators lying within the additional iPEPO
layer can be directly computed. To evaluate two-site op-
erators along the direction orthogonal to the iPEPO layer,
another SU + CTMRG contraction is performed using a ro-
tated iPEPS network.

V. RESULTS

A. Heisenberg model

To benchmark the contraction methods, we first present
results for the spin- 1

2 anti-ferromagnetic Heisenberg model on
the cubic lattice. This model is given by the Hamiltonian

Ĥ = J
∑

〈i, j〉
Ŝi · Ŝ j, (5)

1We note that the QR decomposition in Ref. [12] is not required for
the computation of the projectors [111].

 (a)                              (b)

FIG. 8. Convergence of (a) the energy and (b) the local magnetic
moment m as a function of inverse CTMRG boundary dimension
1/χc, for various D and χb.

where Ŝi are spin-1/2 operators and J > 0. The iPEPS tensors
are obtained using the SU imaginary time evolution algorithm.
We perform simulations for D = 2–4 and, in order to reduce
the computational cost, we use tensors with a U(1) symmetry
[95,96].

We start by analyzing the convergence behavior of the
SU + CTMRG contraction, first as a function of the CTMRG
environment dimension χc, for fixed values of D and χb.
Figure 8 presents results for the energy per site and the average
local magnetic moment m = 1

N

∑N
i=1 |〈Ŝi〉|, where i goes over

all the nonequivalent sites in the ansatz (i.e., N = 2 in our
ansatz with two independent tensors). For both observables,
convergence is achieved at moderate values of χc, although
higher values are required for larger D and χb, as is expected.
In the following, the value of χc is fixed to a sufficiently
large value, such that errors from the CTMRG contraction are
negligible.

We next study the convergence of the SU + CTMRG as
a function of the boundary iPEPS bond dimension, χb, first
focusing on the energy shown in Fig. 9(a). The SU + CTMRG
contractions show a rapid convergence as a function of χb. The
χb required for convergence increases with D, still, even for
the largest D = 4 already a modest χb ∼ 7 results in a very
small contraction error. In the same figure, we also present
data obtained from the cluster contractions. The energy ob-
tained with the smallest 1 × 1 × 2 cluster shows a large
deviation from the SU + CTMRG results already for D = 2,
with only little improvement for higher D. The 2 × 2 × 2
cluster gives a significant improvement over the 1 × 1 × 2
cluster. The 3 × 3 × 4 cluster improves this result further and
shows a remarkable agreement with the SU + CTMRG result
for D = 2. As mentioned in Sec. III, it was not possible to
use this last cluster for higher values of D due to the high
computational cost.

For the local magnetic moment m shown in Fig. 9(b),
similar observations can be made. The most important differ-
ence is that the 2 × 2 × 2 cluster contraction provides a less
significant improvement over the smallest 1 × 1 × 1 cluster.
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 (a)

 (b)

(c) (d)

FIG. 9. The results for (a) the energy and (b) the local magnetic
moment m obtained with the SU + CTMRG method as a function
of the inverse boundary iPEPS dimension 1/χb and the cluster con-
tractions, which are plotted on the vertical axis. The QMC result
extrapolated to the thermodynamic limit is shown by the dashed line.
In (c) and (d), a linear extrapolation based on the effective correlation
length ξD is presented for the energy as a function of 1/ξ 4

D and for
m2 as a function of 1/ξ 2

D, respectively. For comparison, finite size
scaling results from QMC using system sizes L = 6, 8, 10, and 12
are shown.

 (a)                                                                (b)

FIG. 10. The HOTRG results for (a) the energy and (b) the local
magnetic moment m as a function of the inverse bond dimension 1/χ

compared to the SU + CTMRG results as a function of 1/χb.

To obtain an estimate of the energy and m in the exact
infinite D limit, we attempt an extrapolation based on the
effective correlation length ξD, an approach which has been
used also for iPEPS in 2D [97,98]. The main idea is that
ξD plays a similar role as a finite system size [99–102] such
that it can be used to perform a finite size scaling analysis.
The correlation length can be computed from the two leading
eigenvalues of the transfer matrix represented by the edge
tensors in CTMRG [99], and ξD corresponds to the value for
a given D in the χb, χc → ∞ limit.2 We make use of the
finite-size scaling ansatz for the energy and m2 derived in
Ref. [103], where the leading finite-size corrections scale as
1/L4 and 1/L2, respectively.

In Figs. 9(c) and 9(d), we present the iPEPS results for
the energy and m2 in comparison with QMC data, obtained
with the loop algorithm from the ALPS library [104,105] for
system sizes up to L = 12 and at sufficiently low temperatures
(T = 0.005J) such that finite temperature effects are negligi-
ble compared to the error bars. For the energy we find a good
agreement between the extrapolated iPEPS, −0.9024(1), and
QMC result, −0.902325(11). The estimate for m2 obtained
with iPEPS, 0.1826(2), is slightly higher than the QMC value,
0.1786(4), which is most likely due to the local SU optimiza-
tion scheme used here (which typically tends to overestimate
the order parameter). Still, the relative error is only ≈2%, and
we expect that the accuracy can be further improved by using
more accurate optimization schemes.

Finally, in Fig. 10, we compare our SU + CTMRG re-
sults to a contraction of the converged iPEPS tensors using
HOTRG, which was previously proposed as a 3D (and 2D)
contraction method in Ref. [56]. The main idea of HOTRG
is to iteratively coarse-grain the tensor network in all spa-
tial directions where the accuracy is controlled by the bond
dimension χ of the coarse-grained tensors. Here we use a

2The extrapolated values are ξD=2 = 0.489(1), ξD=3 = 0.528(4),
and ξD=4 = 0.81(1).

205137-7



PATRICK C. G. VLAAR AND PHILIPPE CORBOZ PHYSICAL REVIEW B 103, 205137 (2021)

modified approach adapted to the anisotropic case where the
projectors are computed in a similar way as in Ref. [106].
We observe that the convergence of the HOTRG results is
strongly irregular and exhibits several plateaus, in contrast to
the SU + CTMRG results which exhibit a fast and regular
convergence. One possible reason for this behavior is that
the distribution of the singular values obtained in HOTRG
decays only very slowly, much slower than the spectrum in the
SU + CTMRG approach. While there seems to be a tendency
that HOTRG approaches the SU + CTMRG results, it was not
possible to reach high enough χ to fully converge due to the
high computational cost.

B. Bose-Hubbard model

As a second benchmark case we consider the Bose-
Hubbard model defined by the Hamiltonian

Ĥ = −t
∑

〈i, j〉
b̂†

i b̂ j + U

2

∑

i

n̂i(n̂i − 1) − μ
∑

i

n̂i, (6)

with t the hopping amplitude, U the on-site interaction, μ

the chemical potential, b̂†
i (b̂i) the bosonic creation (annihi-

lation) operator, and n̂i = b̂†
i b̂i the number operator. At zero

temperature the model exhibits Mott insulating phases with
integer particle filling for t � U and a superfluid phase (SF)
for t � U [107].

To perform the iPEPS simulations with finite local Hilbert
spaces we introduce a cutoff on the maximum occupation
number on each site. The size of this cutoff is chosen such
that the induced error is negligible. For the simulations of
the n = 1 and n = 2 Mott lobes, a cutoff of nmax = 3 and
nmax = 4 are used, respectively. To obtain the data in one of
the phases, simulations are started deep in this phase and the
converged iPEPS at one datapoint is used as the initial state of
the SU optimization at the next datapoint. For a given value
of D, the phase transition point can be determined by locating
the intersection of the iPEPS energies of the two phases. In
contrast to the Heisenberg case in the previous section, the
U(1) symmetry cannot be exploited here because it is broken
in the superfluid phase. For this reason the maximal bond
dimension we consider here is D = 3. The SU + CTMRG
contractions are performed using χb = 8 and χc = 21, which
are sufficiently large to make the remaining finite χb and χc

errors much smaller than the symbol sizes.
We first consider two selected cuts in the phase diagram

at the tip of the first and second Mott lobe. Figure 11 shows a
comparison between results obtained from the SU + CTMRG
and cluster contractions for the energy, particle number and
the order parameter 〈b†〉 close to the tip of the n = 1 lobe
for fixed μ/U = 0.4 as a function of t/U . For the energy,
the 1 × 1 × 2 cluster shows a large deviation compared to
the other results. The 2 × 2 × 2 cluster gives a significant im-
provement and there is only a slight shift in the location of the
phase transition compared to the SU + CTMRG contraction
(which is mostly due to the small angle at which the energies
of the two phases intersect). For the particle number and the
order parameter, a much smaller improvement is seen when
going from the 1 × 1 × 1 cluster to the 2 × 2 × 2 cluster when
compared to the SU + CTMRG result, as previously observed

 (a)

 (b)

 (c)

FIG. 11. A cut through the phase diagram at the tip of the first
Mott lobe for fixed μ/U = 0.4 as a function of t/U obtained with
D = 3. In (a) the energy of both phases is shown obtained using the
cluster and SU + CTMRG contraction. The inset displays a zoom of
the same results close to where the contractions indicate the phase
transition to take place, marked by arrows. In (b) and (c), the particle
number and order parameter 〈b†〉 of the lowest energy state are
shown, respectively.

for m in the Heisenberg model. Still, the absolute error on
the scale shown in Figs. 11(b) and 11(c) is small. Figure 12
shows results close to the tip of the second Mott lobe at fixed
μ/U = 1.45, for which similar observations can be made.

We note that the jump in the order parameter 〈b†〉 at
the phase transition in the 2 × 2 × 2 cluster and the SU +
CTMRG results seems to indicate that the transition is of
first order, whereas the transition is known to be of second
order. This is most likely an artifact of the SU optimization
scheme used here which, since it is a local update, does not
accurately reproduce the diverging correlation length across a
second order transition. The accuracy of the order parameter
around the transition could be improved using more accurate
optimization schemes [10,72,80,85]. Still, we can neverthe-
less obtain an accurate estimate of the critical point based on
the intersection of the energies when compared to QMC as we
show in the following.

By performing simulations along additional cuts, we
can construct the ground state phase diagram for the first
two Mott lobes shown in Fig. 13. We have restricted these
additional simulations to the cluster contractions, which are
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 (a)

 (b)

 (c)

FIG. 12. Same as in Fig. 11 for a cut through the phase diagram
at the tip of the second Mott lobe with fixed μ/U = 1.45.

computationally substantially cheaper than the SU +
CTMRG method, and, as we have found previously, the
2 × 2 × 2 cluster already provides an estimate, which is
close to the SU + CTMRG result. For comparison, we added
previous results from bosonic dynamical mean-field theory
(B-DMFT) [108], QMC [109], an exact solution on the
Bethe lattice for coordination number z = 6 [110], and the
mean-field result (MF). While the D = 2 phase boundary
only provides a slight improvement over the MF result, the
data obtained for D = 3 with the 2 × 2 × 2 cluster and the
SU + CTMRG contraction show a close agreement with the
QMC results. This demonstrates that already a relatively
small bond dimension is sufficient to obtain the phase
diagram with a remarkable accuracy that is competitive or
even better than B-DMFT. Another observation we can make
is the agreement between the D = 3 results obtained by the
1 × 1 × 2 cluster and the z = 6 Bethe lattice results. This
is because the simulation based on the SU imaginary time
evolution approach combined with the 1 × 1 × 2 contraction
is equivalent to an iPEPS simulation on the Bethe lattice.

VI. SUMMARY AND DISCUSSION

In this paper, we have presented two iPEPS contraction
approaches to study 3D quantum many-body systems. The
cluster contraction provides an approximation to the 3D con-

FIG. 13. Ground state phase diagram of the first two Mott lobes
of the Bose-Hubbard model obtained with the cluster and SU +
CTMRG contraction. For comparison, results from B-DMFT [108],
QMC [109], an exact solution for a Bethe lattice with coordination
number z = 6 [110], and static MF theory are shown.

traction by only contracting a small cluster of tensors exactly
while the rest of the network is taken into account approxi-
mately via the singular values on the boundary bonds of the
cluster. The contraction error for the smallest 1 × 1 × 1 and
1 × 1 × 2 clusters, which have been used in previous studies
[74,75,78,79], can be quite large. A considerable improve-
ment (at least for the energy) is obtained when using the larger
2 × 2 × 2 cluster which is computationally still affordable.
The SU + CTMRG method enables a full contraction of the
3D tensor network by iteratively absorbing iPEPO layers with
a lower and upper boundary iPEPS, and by contracting the
resulting quasi-2D tensor network using CTMRG. The accu-
racy can be systematically controlled by χb and χc, the bond
dimension of the boundary iPEPS and the CTMRG environ-
ment tensors, respectively. A fast convergence as function of
χb and χc is observed, significantly outperforming a HOTRG
contraction for the Heisenberg model. For the Bose-Hubbard
model, we found that already a relatively small D = 3 yields
a phase diagram which is in close agreement with QMC. We
have shown that the combination of the two contraction ap-
proaches provides a practical way to compute a phase diagram
at a reasonable computational cost.

There are various ways in which the accuracy of the meth-
ods can be further improved. For the optimization of the
iPEPS tensors a higher accuracy can be obtained by using
a full [10], or fast-full update [72], which, for each trun-
cation step in the imaginary time evolution, take the entire
wave function into account, in contrast to the local SU up-
date. However, the computational cost of these approaches is
also substantially higher than the SU scheme. Alternatively, a
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cluster update [80–82], which only takes a cluster of tensors
into account to perform a truncation, may provide an optimal
trade-off between accuracy and computational cost. Schemes
based on a direct energy minimization, e.g., based on auto-
matic differentiation [85], may be another interesting option.
The SU + CTMRG contraction itself could in principle also
be further improved by replacing the SU by a full (or cluster)
update scheme, albeit also here at the expense of a higher com-
putational cost. These topics will be explored in future work.

We expect these methods to provide a promising path to-
wards simulating challenging 3D quantum systems, such as,
e.g., the pyrochlore Heisenberg model, layered systems, and
ultra-cold atoms in optical lattices, especially for cases which
are out of reach by QMC due to the negative sign problem.

Finally, we note that these approaches can also be extended
to the finite temperature case or to other types of lattices in a
rather straightforward way, as was done in 2D.
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