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Expectation value of the edge Majorana fermion in an interacting fermion chain
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The expectation value of the edge Majorana operator is calculated for the one-dimensional model of spinless
fermions with nearest-neighbor interactions and with open boundary conditions. The consideration is performed
for the regime of the topological insulator (gapped bulk excitations and edge modes inside the gap), and
for the normal metal regime (gapless bulk excitations). We show that the expectation value of the edge
Majorana operator can be formed by two contributions, from the bulk states, and from the localized edge
modes.
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I. INTRODUCTION

Majorana fermions [1], especially Majorana edge states,
are of great interest for researchers past years. Kitaev has
proposed to use those states as a topological qubit [2]. The
latter is a two-level system (the Dirac fermion), composed of
two Majoranas, situated, e.g., at opposite edges of a fermionic
chain. By construction, the topological qubit is more stable
than the standard bulk fermion, because local noises perturb
only parts of that composite qubit. Local interactions cannot
yield decoherence because they cannot distinguish between
the computational basis states, constituting the topological
protection of qubit operations. Since that time, a number of
scenarios of existent Majorana edge modes in real systems
were proposed, and many experiments, see, e.g., Refs. [3–6],
reported the observation of Majorana zero modes.

To be distinguishable from other eigenstates, Majorana
edge modes must have energies lying inside the gap of bulk
states. This is why, in the most of studies connected with
Majorana edge modes, the system of fermions with pairing
was used. Naturally, we discuss only edge Majorana modes,
not, e.g., Andreev bound states, which can exist inside the
gap of a superconducting system also. The important property
of the edge Majorana modes is that, unlike, e.g., Andreev
states, they have zero energy, i.e., they are bound at the
Fermi energy. The pairing yields the gap for bulk states, and
Majorana edge modes exist (according to the special con-
ditions for the parameters of the system, see Refs. [2,7,8])
with their energies inside that gap. In fact, Majorana edge
modes in that case are the manifestation of the topological
superconductivity. Topological qubits due to the mentioned
topological protection are expected to have long coherence
times, growing exponentially with the distance between Ma-
joranas, permitting manipulation with them and reading the
information from them, however without a strong effect of the
randomly fluctuating environment, for the recent reviews see,
e.g., Refs. [9–11].

In this contribution we consider a different situation: We
study edge Majorana states in the gapped fermionic system
without pairing, however, with interactions between fermions,
which causes the gap for bulk eigenstates, but with the gap-
less edge states, i.e., the topological insulator instead of the
topological superconductor of previous propositions [2,7,8].
As the main subject of our study, we consider the one-
dimensional system of spinless fermions with open boundary
conditions. The advantage of the proposed model is the
possibility of obtaining exact results, because the model is
integrable. Unlike previous work where interactions in the
spinless fermion chains with pairing were considered [12–18],
here we study systems without pairing. To govern the state
of the edge Majorana fermions, for example, for manipu-
lating topological qubits the gates (which are in quantum
mechanics local unitary transformations) acting on the edge
Majorana modes, are used. Notice that only Clifford gates
(e.g., Hadamard or phase ones) can be implemented directly
to a single topological qubit [19], while other important gates,
e.g., CNOT gates imply the involvement of additional topo-
logical qubits. One needs to know, among other things, how
the expectation value of those edge Majorana fermions de-
pends on external governing parameters and the parameters of
the system. In quantum computation it is important to initial-
ize the register of the qubit in the well-defined state. One of the
possibilities of such an initialization of the topological qubit
based on the Majorana edge operators, forming the Majorana
zero mode, is the application of local fields to edge Majorana
operators. For that purpose the knowledge of the expectation
values of the edge Majorana operators is highly desirable. For
the standard Kitaev chain (noninteractiong spinless fermions
with pairing), such a program was realized [20]. Possible
realizations of the proposed model situation is also discussed.

II. CONSIDERED SYSTEM

Let us study the properties of the interacting spinless
fermion chain with open boundaries, the Hamiltonian of
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which has the form

H =
L−1∑
j=1

(
−μ

[
n j − 1

2

]
− t (a†

j a j+1 + H.c.)

+V

[
n j − 1

2

][
n j+1 − 1

2

])
+ h(a†

1 + a1)

−μ

[
nL − 1

2

]
, (1)

where a†
j (a j) creates (destroys) a spinless fermion at the site

j, n j = a†
j a j , t is the hopping integral, μ � 0 is the chemical

potential, V denotes the nearest-neighbor interaction, and L
is the number of sites of the chain. The Lagrange multiplier
h � 0 is introduced to describe the expectation value of the
edge Majorana fermion, see below. It can be considered also
as the external governing parameter. One can replace [2] 2L
Dirac operators a†

j and a j by 2L Majorana ones, cn, as

c2 j−1 = a j + a†
j , c2 j = −ia j + ia†

j , (2)

with j = 1, . . . , L (c†
j = c j). Majorana operators satisfy the

fermion commutation relations c jcm + cmc j = 2δ j,m j, m =
1, . . . , 2L. Using the Majorana representation for the inter-
acting case V �= 0 we obtain (nj − (1/2) = (i/2)c2 j−1c2 j) the
expression for the Hamiltonian

H = i

2

L−1∑
j=1

(
−μc2 j−1c2 j + t (c2 jc2 j+1 − c2 j−1c2 j+2)

+ iV

2
c2 j−1c2 jc2 j+1c2 j+2

)
− i

2
μc2L−1c2L + hc1 . (3)

Then from the basics of quantum mechanics it is clear that the
expectation value of the edge Majorana operator 〈c1〉 is the
derivative of the free energy of the system with the Hamilto-
nian (3) with respect to h.

Kitaev has pointed out for the spinless fermion chain that
for the formation of Dirac operators, the pair of Majorana op-
erator can be related to the same site of the original lattice (i.e.,
to the indices 2 j and 2 j − 1, see above), or to the neighboring
sites of the original lattice

ã j = 1
2 (c2 j + ic2 j+1), ã†

j = 1
2 (c2 j − ic2 j+1). (4)

In that representation the Majorana operators c1 and c2L re-
main unpaired. Kitaev has shown that for finite L in the
noninteracting chain V = 0 for 2|t | > |μ| and nonzero pairing
amplitude the system possesses two ground states with expo-
nentially small energy difference between them and different
fermionic parities P = ∏

j (−ic2 j−1c2 j ) ≡ ∏
j (2n j − 1). Both

states have the same bulk properties, however, different edge
ones. One of these phases can be transformed into the other
one and vice versa by the permutation of Majorana operators.
The mentioned two Majorana operators can be bonded into
a boundary mode, constituting the phase coherence between
two edges. Boundary modes are localized at either edge of
the chain with zero energy for L → ∞. In the absence of
interactions V = 0 without pairing the condition 2|t | > |μ|
just defines the region of a normal metal. In this case there
are no boundary states. For the case without pairing, however

with nonzero interaction V and h = 0, i.e., for free edges, we
have shown recently that for the case V � 2|t | � 0 there can
exist Majorana edge localized modes inside the gap of bulk
eigenstates [21]. There are also two degenerate ground states,
i.e., the situation is similar to the one of the Majorana edge
states of the open chain of noninteracting spinless fermions
with pairing, considered by Kitaev.

III. EXACT SOLUTION

In this contribution our aim is to find the expectation
value of Majorana edge operator c1 (the consideration of the
operator c2L can be performed in a similar, however, more
complicated way). For simplicity reasons we limit ourselves
with the case μ = 0.

To find the exact quantum mechanical solution of the sys-
tem with the Hamiltomian (1) we can use the quantum inverse
scattering method (or the algebraic Bethe ansatz) [22]. Using
the Jordan-Wigner transformation [23] c2 j−1 = σ x

j

∏ j−1
k=1 σ z

k ,

c2 j = σ
y
j

∏ j−1
k=1 σ z

k , with σ
x,y,z
j being the Pauli matrices, the

Hamiltonian (1) can be exactly rewritten as

H =
L−1∑
j=1

[
1

2

(
J
(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) + Jzσ
z
j σ

z
j+1

)]
+ hσ x

1 ,

(5)

with J = −t and Jz = V/2. Notice that the static properties of
the system with the Hamiltonian (5) are the same for J → −J
[24], hence in what follows we consider |t | instead of ±t . In
the framework of the algebraic Bethe ansatz one can show
[25] that the Hamiltonian (5) is the derivative of the logarithm
of the transfer matrix τ (u) with respect to the spectral param-
eter u, where

τ (u) = Tr0[K+(u)L0L(u)L0L−1(u) · · · L01(u)

× K−(u)L01(u)L02(u) · · · L0L(u)]. (6)

Here 0 denotes the auxiliary subspace, the L operator can be
written as

L0 j = 1

2 sinh(η)

[
sinh(u + η)

(
1 + σ z

j σ
z
0

)

+ sinh(u)
(
1 − σ z

j σ
z
0

)] + 1

2

(
σ x

j σ
x
0 + σ

y
j σ

y
0

)
, (7)

were cosh(η) = V/2|t |. It satisfies the Yang-Baxter equation
[26,27]

L12(u − v)L13(u − w)L23(v − w)

= L23(v − w)L13(u − w)L12(u − v). (8)

The reflection matrices K±(u) can be written as a 2 × 2 matrix
in the auxiliary subspace with the coefficients

K−
11 = K−

22 = 2|t | sinh(η) cosh(u)

h
, K−

12 = K−
21 = sinh(2u),

K+
11 = K+

22 = 2 cosh(u + η), K+
12 = K+

21 = 0. (9)

The reflection matrices satisfy the reflection equations [25,28]

L12(u − v)K−
1 (u)L21(u + v)K−

2 (v)

= K−
2 (v)L12(u + v)K−

1 (u)L21(u − v),

L12(v − u)K+
1 (u)L21(−u − v − 2)K+

2 (v)

= K+
2 (v)L12(−u − v − 2)K+

1 (u)L21(v − u). (10)
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As usual for Bethe ansatz integrable models, each eigen-
value and eigenfunction of the Hamiltonian Eqs. (1), (3),
and (5) is parametrized by the set of quantum numbers,
called rapidities, uj , with j = 1, . . . , M, where M is related
to the total charge (total number) of spinless fermions (or to
the z-projection of the total spin moment of the chain in the
spin representation). Let us consider first the strong repulsion
between spinless fermions V > 2|t |. The case V = 2|t | is
related to the isotropic spin-1/2 chain, and the behavior of the
expectation value of the boundary spin was studied in detail in
Ref. [29]. The rapidities uj satisfy the Bethe ansatz equations

M∏
m=1,

m �= j

sinh[(iu j − ium + 2η)/2]

sinh[(iu j − ium − 2η)/2]

sinh[(iu j + ium + 2η)/2]

sinh[(iu j + ium − 2η)/2]

= −
[

cosh[(iu j + η)/2]

cosh[(iu j − η)/2]

]2L[
sinh[(iu j − η)/2]

sinh[(iu j + η)/2]

]2

× cosh[(iu j + η)/2 + α]

cosh[(iu j − η)/2 − α]
, (11)

where sinh(α) = |t | sinh(η)/h, with the eigenvalue of the
Hamiltonian

E = V (L − 1)

2
− |t | sinh(η) coth(α)

+ 2|t |
M∑

j=1

sinh2(η)

cosh(η) + cos(u j )
. (12)

For μ = 0 the number M is equal to L/2 (half filling).
We consider the thermodynamic limit L → ∞, M → ∞

with their ratio M/L finite. We use the standard technique of
the Bethe ansatz [22]. In the main, in the L−1 approximation,
the ground state corresponds to only real u j being the roots of
Eqs. (11). Due to nonzero V there exist many other solutions
to Eqs. (11), namely bound states (called strings) [22], which
are related to complex values of roots u j . However, none of
those solutions of Bethe ansatz equations (11) have negative
energies, and, therefore, do not contribute to the ground state
formation [30,31]. To remind the reader, the ground state of
any fermionic system is formed by the total filling of the
Fermi sea: All eigenstates with negative energies have the
filling factor 1, while for eigenstates with positive energies
the filling factor is 0. Excitations of fermion systems are
related to holes for eigenstates with negative energies and/or
filling of eigenstates with positive energies. For V > 2|t | bulk
excitation with the rapidity u with respect to the ground state
is the hole in the distribution of real rapidities uj , which form
the Fermi sea (i.e., which have negative energies)

eh(u) =
∞∑

n=−∞

|t | sinh(η)e−inu

cosh(nη)
, (13)

with the quasimomentum p = −i ln(cosh[(iu +
η)/2]/ cosh[(iu − η)/2] and the fractional charge −1/2
with respect to the ground state. One can see that the state
has a gap. According to Ref. [32] physical excitations of
the integrable one-dimemsional system can carry only even
number of holes, so the physical bulk excitation is the pair
of holes. Energies of physical excitations have to be larger

than the gap value. So, in the regime V > 2|t | at μ = 0 the
Hamiltonian (1) or (3) describes the one-dimensional Mott
insulator.

For the chain with open boundaries there can exist ad-
ditional solutions, see, e.g., Refs [33–38] to Bethe ansatz
equations, which can appear due to free boundaries them-
selves, or due to nonzero boundary potential h. Those
solutions are localized at each boundary. Their eigenfunctions
decay exponentially with the distance from the edge. De-
pending on the value of the boundary potential, those modes,
totally analogous to Majorana edge states of the noninteract-
ing spinless fermion chain with pairing [2], can have negative
or positive energies. For example, the energy of the boundary
localized state is zero for α > η/2 (in particular for α → ∞,
i.e., for the free boundary h = 0 [21]), and for −η/2 < α <

η/2 the energy of the edge localized state is

eb = |t | sinh2(η)

sinh(2(α + η)) sinh(α)

+ |t | sinh(η)
∞∑

n=−∞

e−2η|n| cosh((2α + η)n)

cosh(ηn)
. (14)

Those boundary localized states carry charge ±1/2, depend-
ing of the value of h. Physical eigenstates should carry integer
charge [32]. Hence, boundary localized states can exist in
pairs, or one boundary state with an additional bulk hole state,
to keep the charge integer. Unlike the situation for noninteract-
ing fermions with pairing [2], for the interacting fermion chain
there can exist not only simple localized boundary states,
but also localized boundary strings [21,35,36]. However, it is
possible to show that their energies are either zero for strings
with an even number of poles, or their energies are equal to eb

for boundary strings with an odd number of poles.
For h = 0 boundary localized states have zero energy in

the limit L → ∞ [21]. In that sense they are totally analogous
to Majorana zero modes of the noninteractiong chain with
pairing [2], because they carry zero energy (for the infinite
chain) being inside the gap for bulk excitations, the Dirac
operator of the localized state is formed by the Majorana
fermions from both edges of the chain, and the ground state is
doubly degenerate [21].

IV. RESULTS FOR THE EXPECTATION VALUE

Now we determine the ground state expectation value of
the edge Majorana operator 〈c1〉 as the derivative of the h-
dependent part of the ground state energy of the chain 〈c1〉 =
∂E (h)/∂h, where

E (h) =
√

h2 + (|t | sinh(η))2 − |t | sinh(η)
∞∑

n=−∞

e−|n|(2α+η)

cosh(nη)
.

(15)

The latter, obviously, is defined by the finite size correction
to the ground state energy [22]. We stress that depending on
the value of h (keeping the ground state half-filling value M =
L/2) both bulk states and localized states contribute to E (h),
and, hence, determine the expectation value 〈c1〉, similar to
the case of the chain of noninteracting spinless fermions with
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FIG. 1. The ground state expectation value of the edge Majorana
fermion as a function of h for the topological insulator with |t | = 1
and η = 1 (black solid line); η = 2 (red dashed line).

pairing [20]. We get

〈c1〉 = h

sinh(η)
√

h2 + (|t | sinh(η))2

+ 2|t |2 sinh2(η)

h
√

h2 + (|t | sinh(η))2

∞∑
n=1

nx(2|n|+1)e−|n|η)

cosh(nη)
, (16)

where x = h/[|t | sinh(η) +
√

(|t | sinh(η))2 + h2]. We can see
that the expectation value 〈c1〉 is zero at h = 0 and reaches 1
only at h → ∞: In the presence of the last term in Eqs. (1)
and (3) the total number of fermions [the z projection of the
total spin of the spin chain (5)] is not conserved. The ground
state behavior of the expectation value of the edge Majorana
operator is illustrated for |t | = 1 and η = 1 and η = 2 in
Fig. 1. We can also determine the derivative of the expectation
value 〈c1〉 with respect to h, χ = ∂〈c1〉/∂h, which plays the
role of the local edge susceptibility of the chain [29,35]. It is
finite for h = 0, and decays monotonously to zero at h → ∞.
The ground state behavior of the local susceptibility of the
edge Majorana fermion is shown in Fig. 2. It turns out, that
depending on the value of h, the edge localized modes and
bulk eigenstates can both contribute to the values of 〈c1〉 and
χ , similar to the case of noninteracting spinless fermions with
pairing [20].

In the case of 0 < V < 2|t | (it is related to imaginary η

and α) analogous analysis of the Bethe ansatz solution shows
that bulk excitations are gapless, i.e., the model describes
the metallic situation. Localized boundary states can have
negative energies only for h �= 0. For free edges h = 0 there
are no Majorana zero edge modes in the metallic case [21,36].
Figure 3 shows the ground state behavior of the expectation
value 〈c1〉 for that case. The behavior of the expectation value
is reminiscent of the one for the topological insulator case
V > 2|t |. Similar behavior persists for the weak attraction

FIG. 2. The ground state local susceptibility χ of the expectation
value of the edge Majorana fermion as a function of h. Parameters
are the same as in Fig. 1.

−|t | < V < 0. However for the strong attraction V < −|t |,
the ground state for free open boundaries corresponds to M =
0, and there are no boundary edge modes. We see that the
dependences of 〈c0〉 and χ on h are similar for the metallic
and insulator situations of the interacting fermion chain as
well as for the one obtained for the expectation value and
the local susceptibility for the one-dimensional topological
superconductor [20], and in all cases the contribution to 〈c0〉

FIG. 3. The ground state expectation value of the edge Majorana
operator 〈c1〉 as a function of h for the metallic case |t | = 1, η = iπ/4
(the solid black line) and η = iπ/3 (the dashed red line).
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comes from both boundary bound states and bulk states. In all
cases the expectation value is zero at h = 0, and monotoni-
cally grows with h till the nominal value reached at h → ∞.
The latter feature is related to the fact that the total number
of fermions is not conserved for h �= 0. The differences be-
tween the behaviors of the expectation value in the mentioned
models is only quantitative.

Using the thermodynamic Bethe ansatz technique [22] it
is possible to show that for high temperatures T � |t |,V , the
expectation value of the Majorana edge operator is

〈c1〉 = h

T
. (17)

At low temperatures we have to distinguish two cases. For
V > 2|t |, in the topological insulator case, at low temperatures
only exponentially small in T corrections to the expecta-
tion value of the edge Majorana operator exist. As for the
metallic case, −2|t | < V < 2|t |, the nonzero temperature cor-
rections to the ground state energy can be calculated in the
framework of the Luttinger liquid (or conformal field theory)
approach [22]. Such an approach produces h-independent part
of the low-temperature correction to the ground state energy
[39].

One can realize one-dimensional spinless fermions as the
spin-polarized interacting electron system (which is described
by fermions with only one spin projection), using a quantum
wire patterned in a semiconductor quantum well [40] with
the device put on top of a ferromagnetic insulator to provide
for the spin polarization of electrons [41]. Depending on the
applied homogeneous (electrostatic) potential the system can
be turned to the insulator phase. Then the application of the

local electric field acting on the edge electric dipole of the wire
can be described by h. The other realization of the model can
be performed in the spin-imbalanced ultracold gases of atoms
confined to one-dimensional traps (tubes) [42]. Tubes can be
regarded as isolated if the confinement by the laser beams is
strong enough to suppress tunneling between tubes. The scat-
tering between atoms under transverse harmonic confinement
is subject to a confinement-induced Feshbach-type resonance
[43]. Then the strength of the interaction between fermions
can be varied by the fine tuning of that resonance [44]. Again,
the local electric field acting on the dipole at the edge of the
tube yields h. The considered model can also be realized in the
chain of coupled cavities with strong in-cavity photon-photon
interaction (photons being in resonance with cavities) in the
cavity quantum electrodynamics [45]. The multiplier h is then
related to the interaction of the edge cavity with light. All
these cases can be used to manufacture a topological qubit
based on the boundary bound state for the open fermion chain.

V. SUMMARY

In summary, we have studied the model of the one-
dimensional topological insulator, in which edge Majorana
zero modes exist together with gapped bulk excitations. For
that situation we have calculated analytically, using the exact
integrability of the problem, the expectation value of the edge
Majorana operator. Several realizations of the proposed model
have been discussed.
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