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Fabry-Pérot resonant vortices and magnetoconductance in topological insulator constrictions with
magnetic barriers
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The edge states of two-dimensional time-reversal topological insulators support a perfect helical conductance
on wide ribbons due to the absence of backscattering. Here, we study the changes in the transport properties
of topological insulator nanoribbons by introducing a constriction along the ribbon. This setup allows the edge
states to hybridize, leading to reflections at the ends of the constriction. We find that the electronic states running
along one edge can be reflected back along the opposite edge multiple times, giving rise to Fabry-Pérot resonant
vortices within the constriction with well-defined conductance peaks. We show that magnetic barriers allow one
to manipulate these peaks and obtain significant changes in the system spin-resolved magnetoconductance.
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I. INTRODUCTION

The edge states of two-dimensional (2D) topological in-
sulators (TIs) promote a helical dynamics around the crystal,
which is dictated by massless Dirac-like Hamiltonians [1–8].
Consequently, time-reversal symmetry enforces the absence
of backscattering, since a change in direction requires a spin
flip. The quantized conductance of these 1D channels has been
observed in HgTe quantum wells [9,10], including an anoma-
lous 0.5 plateau possibly due to strong correlations [11], while
the corresponding Dirac spectrum has been directly measured
by ARPES [12–16]. The spin-momentum locking of these
states leads to promising spintronic applications [17–22]. For
this purpose, it is interesting to open and manipulate a gap
in the Dirac spectrum [16], either magnetically [23–25] or
due to hybridization of edge/surface states in narrow systems
[23,24,26–30].

The use of different kinds of barriers and constric-
tions is the basis of the proposals of edge state Fabry-
Pérot inteferometers [27,29,31–37], spin filters [24,38], and
Majorana fermion non-Abelian inteferometers [39,40]. Re-
cent experimental progress on proximity coupling magnetism
to topological insulator systems [41] supports the feasibility
of engineering magnetic barriers. It is also reassuring that
Fabry-Pérot resonances have been experimentally observed
in TI systems [25,40,42]. Additionally, the TI spectrum can
be simulated in photonic crystals to mimic these features
[43–46].

In this paper we investigate the formation of Fabry-Pérot
resonances in the transport properties of narrow quasi-1D
constrictions of TIs described by the BHZ model [2]. We
consider a geometry similar to that in the recent experiment
in Ref. [11], but with a narrow enough channel to induce
hybridization of the edge states within the constriction (see
Fig. 1). Consequently, reflections occur at both ends of the
constriction, as it interfaces wider massless regions. The latter

give rise to Fabry-Pérot resonances (FPRs) seen as conduction
peaks [see Fig 1(d)]. Interestingly, the reflection processes
are associated with interedge scattering processes, yielding n
current vortices within the constriction for the nth FPR. We
show how to manipulate these large FPR-driven conductance
modulations by introducing one or two barriers defined by
electrostatic (scalar) or magnetic contacts along the constric-
tion, as shown in the insets in Fig. 1(a). We find that a scalar
contact simply shifts the peaks in energy, but its displacement
depends on the intensity of the current vortex under the con-
tact, which has n − 1 destructive interference nodes within the
constriction. Magnetic contacts split the FPR peaks as they
hybridize into opposite spin polarizations. For the case of two
barriers, the contacts can be set with parallel (P) or antiparallel
(AP) magnetizations. For the P configuration the peaks split
and polarize, while for the AP configuration it remains a single
nonpolarized peak. As the peaks shift in energy when changed
from the P to the AP configuration, the system shows large
magnetoconductance variations.

The paper is organized as follows. In Sec. II we present
the model Hamiltonian and discuss the system geometry. In
addition, we introduce a simple 1D model, whose analytical
solution serves as a guide for our discussion. In Sec. III, we
study the main features of the Fabry-Pérot-induced current
vortices and how to control the spin-resolved conductance by
introducing magnetic barriers in the constriction. All codes
used in the numerical analysis of this work are available in
the Supplemental Material [47]. We present our conclusions
in Sec. IV.

II. MODEL AND PARAMETERS

We study the charge and spin transport properties of a two-
probe 2D TI constriction of length Lc and transverse width Wc

[see Fig. 1(a)]. Semi-infinite leads of width W� are attached
to the ends of the constriction. We consider that a small bias
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FIG. 1. (a) Sketch of the TI constriction indicating its lengths and
widths and the path of the helical edge states. The configuration with
one or two barriers of length Lb is also shown. (b) At the leads W�

is large and the spectrum is massless, while (c) at the constriction a
hybridization gap � opens if Wc ∼ ξ (penetration depth). In (b) and
(c) the shaded regions mark the bulk bands, and the black (red) lines
are the nanoribbon dispersion from the 2D BHZ (1D simplified)
model. (d) The Fabry-Pérot resonant peaks in G for the 2D and
1D models (analytical and numerical cases) match at low energies.
(e) Spin-up component of the current densities within the constric-
tion showing vortices at the first and second conduction peaks. The
quantization index n is indicated next to each peak.

drives a net current flowing from the left L (source) to the right
R (drain) lead.

For both the constriction and the leads, the TI is described
by a 4 × 4 BHZ Hamiltonian [2],

H (kx, ky) =
(

h(k) 0
0 h∗(−k)

)
, (1)

where h(k) = k · τ + (m − βk2)τz, k = (kx, ky), the Pauli ma-
trices τ = (τx, τy, τz ) act on the orbitals, and the 2 × 2 blocks
of H (kx, ky) refer to the spin-up and -down subspaces. In order
to emphasize the generality of our results and keep the nota-
tion compact, the block Hamiltonian h(k) of the BHZ model
[2] is written in a dimensionless form. This is done by express-
ing the energy in units of the BHZ gap M, thus m = M/|M| =
±1, and using the penetration length ξ = A/|M| as the length
scale, yielding β = |M|B/A2. For HgTe quantum wells the
BHZ parameters (e.g., A ≈ 375 meV nm, M ≈ −10 meV, and
B ≈ −1120 meV nm2) [2,9] give β ≈ −0.1. The usefulness
of writing the BHZ model in a dimensionless form will be-
come clear in Sec. III A, where we address specific properties
of different materials. The small value of |β| guarantees that
the bulk model is dominated by the gap and k-linear terms,
while the k2 term regularizes the lattice [48,49]. Time-reversal
symmetry assures that pairs of helical states with opposite spin
counter-propagate, that is, the spin-up (spin-down) current
[red (blue) in Fig. 1(a)] flows clockwise (anticlockwise) along
the system edges.

For a semi-infinite TI layer, the helical states are expo-
nentially localized at the system edge. The penetration depth
[50,51] near the Dirac point (ε, kx ∼ 0) is ξ ≈ 1 (recall that

A/|M| is our length unit). We set W� � ξ to ensure that
states localized at opposite lead edges do not hybridize, thus
yielding a gapless band structure, as shown in Fig. 1(b). In
distinction, we consider Wc � ξ leading to a gap opening at
the constriction region [see Fig. 1(c)]. The hybridization gap
at kx = 0 is � ∝ e−Wc/ξ [52]. A finite � is essential for the
emergence of Fabry-Pérot resonances, since, for sufficiently
low energies, � �= 0 implies different carrier velocities (v =
h̄−1∂ε/∂kx) for the leads and the constriction.

To manipulate the FPR peaks, we also consider external
top gates and/or magnetic contacts placed along the constric-
tion, as shown in the insets in Fig. 1(a). The corresponding
Hamiltonian term acting on the contact region is

Hν = V0σν ⊗ τ0, (2)

where V0 defines the coupling intensity and ν = {0, x, y, z},
with τ0 and σ0 being the identities in orbital and spin spaces.
Thus, a top gate (scalar) contact corresponds to ν = 0 and
magnetic contacts to ν = {x, y, z}, depending on the magneti-
zation direction. Here we discuss only the ν = {0, x, z} cases,
since the ν = x and ν = y cases are qualitatively equivalent.

We calculate the Landauer conductance G as a function
of the chemical potential μ to characterize the Fabry-Pérot
resonances. At zero temperature Gσ,σ ′ (μ) = (e2/h)Tσ,σ ′ (μ),
while for finite T ,

Gσ,σ ′ (μ) = e2

h

∫
dε

(
−∂ f

∂ε

)
Tσ,σ ′ (ε), (3)

where f (ε) = [1 + e(ε−μ)/kBT ]−1 is the Fermi-Dirac distribu-
tion, and the indexes (σ, σ ′) indicate the spin components
injected at the source and collected at the drain, respectively.
By solving the system scattering matrix, one obtains the
transmission Tσ,σ ′ (ε) [53], as well as the spin-resolved local
density of states and the electronic current density [54,55].

Next we present a simplified 1D model for the edge states,
and later the full 2D model using the BHZ Hamiltonian,
Eq. (1). By default, unless otherwise specified, we set our ge-
ometric parameters (in units of A/|M|) to Wc = 1.5, W� = 4,
Lc = 15, and Lb = 1 (see Fig. 1). These imply hybridization
gaps of �c ≈ 0.4 and �� ≈ 0.02 
 �c (in units of |M|)
within the constriction and leads, respectively.

A. Simplified 1D model

To develop some insight into the main results, let us first
analyze a simplified 1D model for the edge states given by the
Hamiltonian

H1D = δ(σ0 ⊗ τz ) + α(σz ⊗ τx )kx. (4)

Here the basis is defined at kx = 0 as the symmetric |S, σ 〉
and antisymmetric |A, σ 〉 combinations of edge states from
opposite edges and with the same spin σ . These correspond to
the hybridized edge states at kx = 0 with a hybridization gap
2|δ|. The Pauli matrices τν and σν act on the orbital (A/S)
and spin subspaces, respectively. The velocity term is α ≈
A/|M| = 1. In line with Figs. 1(b) and 1(c), we set δ = 0 in the
leads and δ = � in the constriction. The finite � is extracted
from the numerical solution of the 2D model described later.
The dashed red lines in Figs. 1(b) and 1(c) show the energy
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FIG. 2. Total conductance G at T = 0 (a) for a fixed Lc with a
varying mass gap � and (b) for a fixed � with a varying Lc. (c) G for
finite T showing the peaks smearing into a plateau as kBT increases.
Dashed black lines represent our default parameters in the paper. The
number next to a peak indicates its index n.

dispersion of this 1D model in perfect agreement with the 2D
model.

The simplicity of the model allows us to calculate the S
matrix analytically and write the transmission coefficient per
spin channel [diagonal blocks of Eq. (4)] as

Tσ,σ (ε) = 2(ε2 − �2)

2ε2 − �2(1 + cos(θ ))
, (5)

with θ = (2Lc/α)
√

ε2 − �2. Solving for Tσ,σ (ε) = 1, we find
that the resonant peaks occur at the energies

ε±
n = ±

√( α

Lc
nπ

)2
+ �2, (6)

which is simply the quantization of the energy dispersion
of H1D with kx → kn = nπ/Lc, where n = 1, 2, 3, . . . . The
expression above shows that the resonant peaks are restricted
to energies above the hybridization gap, i.e., |ε±

n | > |�|.
Assuming that isolated peaks have a Gaussian-like shape,
a reasonable approximation except for the peak tails, their
broadening γ can be taken from a series expansion of T (ε)
for ε ≈ ε±

n , yielding for Lc � 1

γn ≈ 1√
2

( α

Lc

)3(nπ

�

)2
. (7)

The simple expressions for ε±
n and γn allow us to find

model parameters to obtain isolated FPR peaks. For a given
fixed �, Eq. (6) shows that a large peak spacing requires a
large α/Lc, while a small broadening γn is favored by a small
α/Lc. The broadening γn decreases also for increasing values
of �, but a large � shifts the FPR to larger energies εn, and the
gap is |�| < 1, since it is bounded by the bulk gap |m| = 1.
Therefore, to get well-defined isolated FPR peaks one needs
to balance these parameters [see Figs. 2(a) and 2(b)]. For

large Lc the peaks are pronounced and concentrated at low
energies, while for small Lc the peaks shift to larger energies
and are suppressed. This occurs because at higher energies
the effects of the hybridization gap vanish as the dispersion
approaches k-linear behavior and the transmission becomes
dominated by Klein tunneling [56,57]. Similar effects occur
for small �. For our default set of parameters, presented in
the previous section, we find γ1 = 0.01 and ε±

2 − ε±
1 = 0.12,

which presents clear peaks in Fig. 2 (dashed black lines).

B. Two-dimensional model

Study of the transport properties of the BHZ model [2]
in the 2D constriction geometry shown in Fig. 1 requires
numerical calculations. We compute the system conductance,
local density of states, and current densities by implementing
the BHZ Hamiltonian [2], Eq. (1), in Kwant [54] using the
finite differences approach on a square lattice, with lattice
constant a = 0.2 (for more details see, for instance, Ref. [35]).
The codes developed for these calculations are available in
the Supplemental Material [47]. The default set of parameters,
presented above, is chosen to yield a large hybridization gap
in the constriction region and well-defined peaks in G. Thus,
since the penetration depth is ξ = 1, we choose W� = 4 to
guarantee a vanishing hybridization at the leads and Wc = 1.5
to give an hybridization gap � = 0.4 at the constriction. The
constriction length is chosen as Lc = 15 to result in well-
defined FPR peaks at low energies.

III. RESULTS

The results for the zero-temperature conductance obtained
via Kwant [54] simulations match well the 1D simplified
model for energy ranges |ε| � |m| = 1, as shown in Fig. 1(d).
For larger energies, extra channels are injected by the leads
into the constriction and deviations from the 1D model are
expected. Since our focus is on the low-energy peaks, we
can assume that the conductances obtained by both models
always match.

At finite temperatures the conductance peaks are smeared,
and G tends towards a plateau shape [see Fig. 2(c)]. Isolated
resolved FPR peaks, which require �εn ≡ |ε±

n+1 − ε±
n | �

kBT , demand an appropriate choice of Lc and �. For our
default set of parameters �ε1 ≈ 0.12 and γ1 ≈ 0.01. Indeed,
Fig. 2(c) shows that these FPR peaks would be clearly visible
for kBT � 0.01. Here, we neglect detrimental effects due to
random spin-flip scattering processes and disorder [27,29,30],
which are likely to reduce the conductance peaks but hardly
qualitatively affect our results.

A. Energy and length scales in real materials

To translate our dimensionless parameters into real mate-
rials let us first consider HgTe/CdTe quantum wells and a
monolayer of GaBiCl2 [58], which are quite extreme cases of
the parameters. First, for HgTe/CdTe quantum wells the bulk
gap is M ≈ −10 meV [2], and the penetration depth is ξ ≈ 35
nm. Therefore, for Wc ≈ 52.5 nm and Lc = 525 nm, � ≈
4 meV, �ε1 ≈ 1.2 meV, and γ1 ≈ 0.1 meV, which tells us
that the FPR peaks would be visible for T � 1 K. In contrast,
GaBiCl2 has the much larger gap of M ≈ −600 meV, and
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FIG. 3. Current density (arrows) and spin σz polarization [red
(blue) for spin-up (spin-down)] across the constriction for the n = 1
(left) and n = 2 (right) FPR peaks in Fig. 2 (dashed lines). The spin-
up and -down channels show vortices rotating in opposite directions
due to the helical nature of the TI. (c, f) Adding both spin channels
yields linear spin-polarized flow along the edges for both n = 1
and n = 2.

consequently, the much shorter penetration depth ξ ≈ 2 nm.
For these energy and length scales, the FPR peaks in GaBiCl2
are clearly resolved for T � 70 K. In summary, the small bulk
gap in HgTe/CdTe quantum wells leads to the requirement
of low temperatures, while the short ξ in GaBiCl2 requires
challenging narrow constrictions.

Therefore, the best platforms for experimental realization
are those materials with an intermediate topological gap,
which balances the parameters between the extreme cases dis-
cussed above. Fortunately, mid- and large-gap TIs have been
intensively studied in 2D materials [51,58–64] and there are
several suitable candidates. To keep the discussion general, all
results presented here are set in the general notation presented
in Sec. II and the results are qualitatively valid for all 2D TI
materials with the appropriate parameters as reported above.

B. No barriers: Vortex formation

The FPR peaks in G are associated with current vortices, as
shown in Fig. 3. The vortex formation is equivalent to that of
stationary waves on a string or the resonant modes on a dou-
ble barrier resonant-tunneling diode [65]. The difference is
that here forward- and backward-moving electrons run along
opposite edges of the constriction, leading to the formation
of current vortices. The reflections occur at the ends of the
constriction, since the hybridization gap � enforces that the
velocity of the eigenstates at the constriction is smaller than at
the leads, h̄|v| = |∂ε/∂k| < α. The number n of vortices for
each spin channel is set by the nodes of destructive interfer-
ence between the forward- and the backward-moving waves.
The nth peak in G carries n vortices, which also correspond to
the quantization of kn = 2π/λn → λn = 2Lc/n.

Since, in a TI, electrons with opposite spins run in oppo-
site directions at each edge, spin-up and -down modes form
vortices circulating clockwise (spin-up) and counterclockwise
(spin-down), respectively. If the system is time reversal sym-
metric, these vortices cancel each other in the total current
density and electron flow becomes similar to that of a standard

FIG. 4. Energy spectrum of hybridized edge states within the
barrier region with intensity V0 = 0.3 for (a) a scalar (ν = 0) contact
and for magnetic barriers polarized along (b) ν = x and (c) ν = z.
(d–f) Conductance G(μ) for a constriction with a single barrier
corresponding to type ν in (a)–(c). The dashed gray line shows G(μ)
for a constriction without barriers for reference. In (c) and (f) the
color code indicates spin σz polarization [red (blue) for spin-up (spin-
down)], while in (b) it indicates the σx polarization [yellow for the
expectation value 〈σx〉 ≈ +1 and blue for 〈σx〉 ≈ −1]. The G peaks
in (e) do not have a well-defined polarization since [H, σx] �= 0.

TI system, as shown in Figs. 3(c) and 3(f). To isolate a vortex,
one needs to break the spin degeneracy. This can be achieved
(i) by injecting a spin-polarized current, (ii) by applying an
external magnetic field along z, or (iii) by applying a magnetic
barrier that induces a field through a proximity effect, as
shown below.

C. Single barrier: Peak splitting

The effects of a single barrier on the FPR peaks can be
qualitatively understood as a perturbation. For instance, if
a single and narrow barrier (width Lb = 1 and V0 = 0.3) is
placed at the center of the constriction, it matches a destructive
interference node of the n = 2 FPR peak [see Figs. 3(d) and
3(e)] and does not affect this peak (or other even-n peaks),
as shown in Figs. 4(d)–4(f). For the other peaks, the effect
depends on the type of barrier. Hereafter let us focus on the
first n = 1 peak, since it shows the effects more clearly. As
the broadening γn increases with n and the peak spacing is
almost constant, FPR peaks with a larger n tend to overlap.

An electrostatic barrier (scalar, ν = 0) modifies the system
conductance in a trivial way: It rigid shifts the local band
structure of the constriction [see Fig. 4(a)], shifting the FPR
peak as well [Fig. 4(d)]. The resulting current density (not
shown here) is the same as in the case of no barriers. More
interesting is the effect of a magnetic barrier polarized along
ν = z: It creates a local Zeeman field that splits the bands [see
Fig. 4(c)]. Hence, the n = 1 FP conductance peak splits into
spin-up and -down resonances, indicated by n = 1′ and 1′′ in
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FIG. 5. Current density (arrows) and spin σx polarization across a
constriction with a single ν = x barrier at the center (shaded region).
The left (right) panels correspond to the first (second) G peak in
Fig. 4(e), with the source injecting only spin-up and -down channels
on top and their sum at the bottom. Near the barrier the current is
approximately σx polarized, but it loses polarization as it approaches
the leads.

Fig. 4(f). In this case, due to the breaking of spin degeneracy,
the current vortices do appear in the total current density.

For a magnetic barrier polarized along ν = x, the
local bands hybridize with spin polarization 〈σx〉 ≈ ±1,
as shown in Fig. 4(b). The conductance peaks in
Fig. 4(e) do not have well-defined polarization, since
the current flows through regions with and with-
out barriers along the constriction and [H, σx] �= 0.
Consequently, the relative phase between the spin-up and
the spin-down components on electrons arriving at the drain
strongly depends on the current path and oscillates along the
(σx, σy) directions. In this case the vortex is destroyed by
the hybridization and reflections at the barrier (see Fig. 5).
Interestingly, around the barriers the current becomes spin σx

polarized with opposite polarizations for the first and second
G peaks, which is a consequence of the hybridization of the
bands imposed by the barrier [Figs. 4(b) and 4(e)]. However,
the current density loses this polarization as it approaches the
leads, where the eigenstates are σz quantized.

D. Two barriers: Magnetoconductance

We consider now a setup with two barriers placed within
the constriction. The corresponding Hamiltonian consists of
two terms like Hν in Eq. (2) with V0 → V1 and V0 → V2 set
in “parallel” (P; V2 = V1) or “antiparallel” (AP; V2 = −V1)
configurations. For this setup we set V0 = 0.2. The barriers
are placed at 1/3 and 2/3 of the constriction length, as shown
in the inset in Fig. 1. These positions match with the nodes of
the n = 3 FPR, thus barely affecting the third G peak, n = 3.
As above, we focus the discussion on the first peak.

In all cases the P configuration only enhances either the
peak shifts (ν = {0, z}) or the hybridization (ν = x) already
seen in the single-barrier case (cf. Fig. 4 and Fig. 6). In the AP
configuration the peaks do not split, but only slightly shift and

FIG. 6. Conductance G for the case of two magnetic barriers in
the P and AP configurations polarized along (a) ν = x and (b) ν =
z. Dashed gray lines show G without barriers as a reference. The
color code in (b) indicates the spin σz polarization. (c, d) The lower
panels show the magnetoconductance δG [see Eq. (8)] for different
temperatures for ν matching (a) and (b).

weaken due to reflections induced by the magnetic barriers, as
shown in Fig. 6.

The large conductance difference between the P and the AP
magnetic barrier configurations leads to a nontrivial magneto-
conductance, which we define as

δGν (μ) =
∣∣∣∣Gν

P(μ) − Gν
AP(μ)

Gν
P(μ) + Gν

AP(μ)

∣∣∣∣, (8)

where Gν
P and Gν

AP are the total conductances for the P and
AP configurations of the double-barrier of type ν = {x, z}. As
shown in Fig. 6, at low temperatures δG reaches large values
over broad ranges of μ. In Figs. 6(a) and 6(b) the FPR peak
of the AP configurations lies within the hybridized peaks of
the P configuration, yielding a strong magnetoconductance,
δG ∼ 0.6 [Figs. 6(c) and 6(d)], with a large peak-to-valley
ratio of ∼1.5:0.5 at zero temperature. At higher temperatures
δG is reduced but remains ∼0.25 at kBT = 0.03. Interest-
ingly, while an increase in kBT lowers δG, it also broadens
the peaks, making the overall effect more robust against
uncertainties in μ.

The current densities for the double-barrier case polarized
along ν = z are shown in Fig. 7. In the P configuration the
current densities correspond to the peaks n = 1′ and 1′′, while
those for AP barriers represent the n = 1 single peak [see
Fig. 6(b)]. For the n = 1′ P peak [Figs. 7(a)–7(c)] the spin-
down component forms a resonant vortex, while the spin-up
component is reflected at the barriers, leading to a total current
with a spin-down polarized vortex. For the n = 1′′ P peak
[Figs. 7(d)–7(f)] the opposite spin component dominates since
the peaks correspond to a local Zeeman splitting within the
barriers. However, due to its higher energy, the reflection
of the spin-down channel in Fig. 7(d) is not as intense as
that of the spin-up channel, shown in Fig 7(b). For the AP
configuration, depicted in Figs. 7(g)–7(i), the local Zeeman
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FIG. 7. Current density (arrows) and spin σz polarization across two ν = z barriers (shaded regions centered at x = ±2.5). (a–c) In the first
G peak in Fig. 6(b) for the P configuration, the spin-down (blue) channel is resonant, while the spin-up (red) channel reflects at the barrier,
leading to a total current with a net spin-down polarization. (d–f) The second peak in the P configuration has the opposite spin polarization.
(g–i) In the AP configuration, the spin-down channel reflects on the second barrier and the resonant vortex forms in the first section of the
constriction, while the spin-up resonance occurs in the second half.

splitting of each barrier is reversed, with the first (second) bar-
rier concentrating a spin-down (spin-up) resonant vortex. The
total current density shown in Fig. 7(i) favors the spin-down
polarization of the first barrier, since the spin-up channel par-
tially reflects on the first barrier before forming the resonant
vortex near the second barrier.

E. Vortex detection

Here, we propose an indirect strategy to assess the local
current densities analyzed in this paper by invoking a 2D
counterpart of the topological magnetoelectric effect [66–68],
that is, the current vortices induce a magnetic field perpen-
dicular to the constriction plane that can be experimentally
measured.

Let us first discuss the case where the currents are spin
polarized, due, for instance, to the injection by ferromagnetic
terminals. In this case, for μ values corresponding to the nth
conductance peak one expects n vortices within the constric-
tion, as shown in Fig. 3. At the center of each vortex, we can
estimate the magnetic field using the Biot-Savart law for an
elliptical current loop, which gives [69]

Bz = μI

πb
E

(
1 − (b/a)2

)
, (9)

where a and b are the lengths of the ellipse semimajor and
semiminor axes, I is the current, μ is the magnetic perme-
ability, and E (. . . ) is the complete elliptic integral of the
second kind. For the n = 1 vortex [e.g., in Fig. 3(a)] we
have a = Lc/2 and b = Wc/2. Assuming a typical I = 1 μA,
μ = μ0 (vacuum permeability), and for the parameters stated
in Sec. III A, we estimate Bz ≈ 0.27 mT for GaBiCl2 and
Bz = 0.015 mT for HgTe. For other G peaks with n > 1, each
vortex now has a major semiaxis a = Lc/2n and the estimates
for Bz slightly increase. More importantly, Bz will be modu-

lated across the constriction, being maximum at the center of
each vortex. Its position dependence allows one, in principle,
to reconstruct the local current profile. In contrast, for the
non-spin-polarized injection, as in Figs. 3(c) and 3(f), the
magnetic field at the center of the constriction is expected to
be Bz = 0. Therefore, both the intensity and the modulation of
the field along the constriction are signatures of the successful
injection of spin-polarized currents.

For nonpolarized spin injection, one can introduce mag-
netic barriers in the constriction to generate spin-polarized
vortex currents. See, for instance, Fig. 7. Using the ideas
described above, the current profiles can be obtained
from B(x, y).

IV. CONCLUSIONS

We have investigated the characteristics of the conductance
across TI constrictions, which show Fabry-Pérot resonances
due to the hybridization of edge states and reflections at the
ends of the constriction. The dynamics of a packet moving
forward along one edge and reflecting through the opposite
edge leads to vortices in the current density. These current
vortices induce out-of-plane magnetic fields B = Bzêz, which
we identify as a 2D counterpart of the magnetoelectric effect
[66–68]. The modulation of Bz along the constriction, being
maximum at the center of each of the n vortices, is a signature
of successful injection of a spin-polarized current, and it might
be useful in the design of magnetic memories [70]. We show
that to get well-defined FPR peaks it is desirable to have
a topological gap larger than the temperature and an edge
state penetration depth within the range of lithographically
producing the sample constriction. Since the gap and ξ are
inversely proportional to each other, it is best to work with
intermediate-gap TI materials. The proposal might also serve
as an interesting magnetoconducance device if two magnetic
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barriers (produced, for instance, via proximity effect) are able
to switch between parallel and antiparallel configurations.

The model and results discussed here were obtained us-
ing the single-particle picture, as is standard for most 2D
TI materials. Interestingly, recent experimental data [11] on
a quantum point contact made by lateral constrictions in
HgTe/CdTe quantum wells suggest that electronic interac-
tions can lead to a 0.5 anomaly. This experimental finding,
which resembles the 0.7 anomaly observed in ordinary
semiconductor quantum point contacts, is not well understood

yet. In distinction, the constrictions considered in this pa-
per are much narrower and much longer than the quantum
point contact in Ref. [11] and are more similar to mesoscopic
semiconductor quantum wires, which are nicely understood in
terms of the single-particle picture.
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