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Exact diagonalization study of the anisotropic Heisenberg model related to YbMgGaO4
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Employing exact diagonalization, we systematically study the anisotropic Heisenberg model which is related
to rare-earth triangular-lattice materials. We probe its full 3D phase diagram afresh and identify a large region of
quantum spin liquid (QSL) phase which can extend to the QSL region of the J1–J2 triangular Heisenberg model.
Furthermore, we explore the magnetization curves of different phases and reproduce the 1/3-magnetization
plateau in the quantum spin liquid phase region. More importantly, to study the possible chemical disorders in
real materials, we consider the randomness of exchange interactions and find no spin glass order. And there is
a large region of random-singlet phase which contains strongly random spin networks, dominated by two-spin
singlets, four-spin singlets and other singlet domains. Our comprehensive ED study can give detailed insightful
understanding of the microscopic Hamiltonian related to the YbMgGaO4 and some other related rare-earth
triangular-lattice materials.
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I. INTRODUCTION

Quantum spin liquid (QSL) phase [1] is an exotic quan-
tum phase of matter beyond the Landau-Ginzburg-Wilson
symmetry-breaking paradigm and displays rich physics, like
nonlocal fractional excitations, long-range entanglement and
emergent gauge field. QSLs are more likely to be found
in frustrated spin systems, such as triangular and Kagome
lattices. The geometric frustration and quantum fluctuation
may prevent any magnetic long-range ordering even at zero
temperature.

In recent years, two-dimensional rare-earth-based frus-
trated magnets play an important role and gain considerable
efforts to realize the QSL phase. Among that, YbMgGaO4

[2–13] and rare-earth chalcogenide family NaYbCh2(Ch =
O, S, Se) [14], are perfect triangular layer compounds with
no structural or magnetic transition down to very low temper-
ature. Especially, the broad continuum of magnetic excitation
in the inelastic neutron scattering reveals a possible U (1)
QSL with a spinon Fermi surface [8,15,16]. Unprecedent-
edly, the magnetic excitation in the fully polarized state at
sufficient high field remains very broad in both energy and
wave vector, indicating the possible of disorders caused by the
site-mixing of Mg/Ga, giving rising to the distributions of the
effective spin-1/2 g factors and the magnetic couplings [6]. In
fact, one recent experiment has observed some spin-glass-like
behaviors both in the YbMgGaO4 and its sister compound
YbZnGaO4 [17]. But other experiments seem exclude a true
spin freezing in YbMgGaO4 [10,18].

To understand macroscopic behaviors of these materials,
an easy-plane XXZ Hamiltonian with anisotropic exchange
interactions was proposed to describe the effective spin-1/2
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interactions [3]. This microscopic Hamiltonian was studied
by various numerical and analytical approaches [19–30]. In
this paper, we use exact diagonalization (ED) to study this
anisotropic Heisenberg model afresh. We depict the com-
prehensive 3D phase boundaries using extensive finite-size
scaling. We have further studied the magnetic field effect and
most importantly the bond randomness effect. The random-
singlet phase under bond randomness in the model we studied
had not been revealed before and will provide insightful un-
derstanding of the YbMgGaO4 and other related materials.

II. MODEL AND METHOD

The generic spin Hamiltonian of YbMgGaO4 with the
next-nearest-neighbor exchange interaction on the triangular
lattice reads [3,9]
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∑
〈i, j〉

[
J1Sz

i Sz
j + αJ1

2
(S+

i S−
j + S−

i S+
j )

+ J±±
1 (γi jS

+
i S+

j + γ ∗
i jS

−
i S−

j )

− iJz±
1

2
(γ ∗

i jS
+
i Sz

j − γi jS
−
i Sz

j + 〈i ↔ j〉)

]

+
∑
〈〈i, j〉〉

[
J2Sz

i Sz
j + αJ2

2
(S+

i S−
j + S−

i S+
j )

]

+ μ0μB

∑
i

[
g⊥

(
hxSx

i + hySy
i

) + g‖hzS
z
i

]
,

where J±±
1 and Jz±

1 arise from the strong spin-orbital cou-
pling, γi j = 1, e−i2π/3, ei2π/3 are for the bond along three
principle axes, respectively. In the following calculations,
we set the XXZ anisotropic α = 1.317 [31] and set J1 =
1 as the energy unit. In the bond randomness case, the
interaction strengths Ji j are uniformly distributed in the range

2469-9950/2021/103(20)/205122(16) 205122-1 ©2021 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.205122&domain=pdf&date_stamp=2021-05-13
https://doi.org/10.1103/PhysRevB.103.205122


MUWEI WU, DAO-XIN YAO, AND HAN-QING WU PHYSICAL REVIEW B 103, 205122 (2021)

[Ji j (1 − �), Ji j (1 + �)] which are controlled by �. � = 1
corresponds to the strongest bond randomness case. In the fol-

lowing, we define H⊥ = μ0μBg⊥
√

h2
x + h2

y , H‖ = μ0μBg‖hz

as the magnetic-field strengths to simplify the notations.
To get the phase boundaries, we have defined two kinds of

magnetic order parameters. The first is the square sublattice
magnetization for the 1200 Néel phase [29,32,33],

m2
N = 1

3

3∑
α=1

[
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〈(∑
i∈α

Si

)2〉]
,

where α = 1, 2, 3 represent the three sublattices of the 1200

order. The second is the square sublattice magnetization for
the stripe phases [29,33],

m2
str = 1

6

3∑
v=1
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,

where v = 1, 2, 3 represent three kinds of stripe orders, and
βv = 1, 2 represent the two sublattices of v-kind stripe or-
der. We use the leading linear scaling 1/

√
N to estimate

the magnetic orders in the thermodynamic limit. The finite-
size clusters used in the ED calculations are shown in
Appendix A.

To eliminate other conventional orders in the quantum spin
liquid region, we have also calculated three kinds of structure
factors. The first one is the chiral structure factor

χ (q) = 1

N

∑
i j

e−iqri j 〈χ̂iχ̂ j〉, χ̂i = Ŝi · (
Ŝi+a1 × Ŝi+a2

)
,

where a1 = (a, 0) and a2 = (a/2,
√

3a/2) are the primitive
vectors of triangular lattice and we set the lattice constant a =
1 as the unit length. The second one is the dimer structure
factor

D(q) = 1

3N

∑
i j

∑
pq

e−iqrip, jq [〈B̂ipB̂ jq〉],

B̂ip = ŜiŜi+p − 〈ŜiŜi+p〉,
where i + p means the nearest-neighbor site of i-site along
a1, a2,−a1 + a2 direction for p = 1, 2, 3, respectively. rip, jq

means the displacement between centers of two bonds. The
third one is the spin freezing order parameter

q = 1

N

√∑
i j

〈ŜiŜ j〉2,

which is used to detect the possible spin-glass ordering.

III. PHASE DIAGRAM

The 3D phase diagram is illustrated in Fig. 1. Inside the
dark yellow curve is the 120◦ Néel phase. The region in
between the dark yellow curve and the green curve is a quan-
tum spin liquid (QSL) phase. And the blue curve separates
Stripe-I and Stripe-II phases. These stripe phases are Ising-
like phases that have six degenerate ground states and a finite
excitation gap according to the finite-size energy spectra (see
Appendix C). This degeneracy will be lifted after sponta-
neously Z6 discrete symmetry breaking below a finite critical

FIG. 1. The 3D phase diagram of anisotropic triangular Heisen-
berg model related to YbMgGaO4 in the α = 1.317, J2 − J±±

1 − Jz±
1

parameter space. Four distinct phases, including 120◦ Néel phase,
two stripe phases and a quantum spin liquid phase, are reproduced
by our ED calculations. The magnetic structures of three magnetic
ordered phases in the xy plane are shown inside the phase regions,
and the nonzero Jz±

1 will tilt the spins out of xy plane.

temperature in the thermodynamic limit [26]. For the QSL,
that region is a QSL based on two main reasons: one is
that there are no conventional orders, including 120◦ Néel
order, stripe order, dimer or valence-bond-solid order and
spin-freezing order q (see Fig. 3); another is that this phase can
adiabatically connect to the QSL phase in the J1−J2 triangular
Heisenberg model which can be identified by no any level
crossing or avoided level crossing in the low-energy spectra
and no any discontinuity or divergent tendency in the ground-
state fidelity susceptibility χF (x) = 2[1−F (x)]

N (δx)2 [see Fig. 4(b)],
where the fidelity F (x) = |〈	0(x)|	0(x + δx)〉| measures the
amounts of shared information between two quantum states.
Meanwhile, we do not see any quasidegenerate states in the
QSL region from our finite-size calculations [see Fig. 4(a)].
We conjecture that this QSL would be gapless in the ther-
modynamic limit similar to the J1−J2 triangular Heisenberg
model [27,36–43]. To give more details about this 3D phase
diagram, we plot some slices in Fig. 2. The QSL boundaries
are obtained by the vanishing of two kinds of magnetic or-
ders: 1200 Néel order and stripe order. In Figs. 3(a)–3(c), we
representatively show the linear extrapolations of magnetic
orders along some horizontal paths on the J2 = 0, J±±

1 − Jz±
1

slice. In addition, in Fig. 2, we use the contour plot to
show the frustration parameter f = |
CW|/Tc on each slice,
where 
CW is the negative Curie-Weiss temperature and Tc

is the critical temperature. Here, we take the Tc approxi-
mately as the temperature where the heat capacity gets its
maximum value. Then we can confirm that the QSL region
has a larger frustration parameter, especially after adding the
next-nearest-neighbor J2 interaction. The strong frustration
in these regions prevents the magnetic ordering even at zero
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FIG. 2. Phase diagrams on the slices of (a) J2 = 0, J±±
1 −

Jz±
1 , (b) J2 = 0.05, J±±

1 − Jz±
1 , (c) J2 = 0.1, J±±

1 − Jz±
1 , (d) J2 =

0.125, J±±
1 − Jz±

1 , (e) J2 = 0.3, J±±
1 − Jz±

1 , and (f) Jz±
1 = 0, J2 −

J±±
1 . The color bar shows the strength of the frustration parame-

ter f obtained by full exact diagonalization using 12-site cluster.
The black and blue phase transition points are obtained from linear
extrapolations of finite-size magnetic order parameters, while the
yellow points are obtained by the level crossings of low excited
energy states (see Appendix C). The purple dashed lines are the
classical phase transition lines between three magnetic phases. The
star points A, B, and C shown in (f), (a), and (c) denote some sets
of exchange parameters fitted by experimental data and got from
Ref. [9], Ref. [31], and Ref. [34], respectively, while the hollow star
point A used a different easy-plane anisotropic α ≈ 1.73. Some sets
of exchange parameters are outlined in Ref. [35].

temperature. Under the guidance of the 3D phase diagram,
we compare different sets of exchange parameters obtained
by different research groups. Most of the parameter sets fall
into the stripe phases. We only show three of them which is
within or close to the QSL region, marked with A, B, and
C in Fig. 2. Here we want to mention that the anisotropic
exchange interactions J±±

1 and Jz±
1 are weaker effects from the

electron-spin resonance (ESR) measurements [3]. However,
from our ED calculations, we find that the QSL region with
only nearest-neighbor interactions needs a large Jz±

1 ∼ 0.5J1,
but it would be reduced by adding the next-nearest-neighbor
interaction or decreasing the XXZ anisotropic α, which means
J2 is important to capture spin-liquid-behavior of triangular
materials if one has to neglect the possible chemical disorders
and let α ∼ 1. Compared with previous DMRG result from
Ref. [25], though different α is used, our QSL region in the
J±±

1 − Jz±
1 , J2 = 0 plane is different to the DMRG one which

FIG. 3. Linear extrapolations of the square sublattice magnetiza-
tion for the stripe orders in selective paths which go along (a) Jz±

1 =
0.6 and (b) Jz±

1 = 1.2 horizontal lines in the phase slice of Fig. 2(a).
Extrapolated stripe orders are shown in the insets. When Jz±

1 = 0.6,
there are two phase transition points at around J±±

1c ≈ −0.28 and
J±±

1c ≈ −0.05. While for Jz±
1 = 1.2, the extrapolated stripe order

has a minimum at around J±±
1c ≈ −0.39 which is a signature of

the first-order transition between two stripe phases. And the phase
transition point is nearly the same as the classical one. (c) is the ex-
trapolated magnetic orders along Jz±

1 = 0 horizontal lines. (d) shows
the vanishing extrapolations of chiral, dimer and spin-freezing order
parameters.

is within the cone-like shape of 120◦ Néel ordered phase
region. If we take a line path which connects two QSL regions
in the J±±

1 − Jz±
1 , J2 = 0 and J2 − J±±

1 , Jz±
1 = 0 planes, we

observe that the static spin structure factors S(q) always have

FIG. 4. (a) Low-energy spectrum obtained by the 24a cluster
and (b) fidelity susceptibility of different clusters change with con-
trol parameter x. Here, we take a straight-line path J2 = x, J±±

1 =
1.6x − 0.2, Jz±

1 = −5.6x + 0.7, x ∈ [0, 0.125] in the 3D parameter
space to show the low-energy spectrum and the fidelity susceptibility.
No level crossing or quasidegeneracy has been found by different
clusters. And there is no any peak structure among x ∈ [0.0, 0.125]
in the fidelity susceptibility. The increasing behavior near x = 0.125
only indicates that it is close to the phase transition point between
stripe phase and QSL.
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FIG. 5. (a) Magnetization curves of the quantum spin liquid
phase at J±±

1 = −0.17, Jz±
1 = 0.6, J2 = 0.0 under external magnetic

fields applied perpendicular to the c axis. Combined the results of
different clusters, a “melting” 1/3 magnetization plateau is clearly
shown near H⊥ = 2.5. The inset shows the temperature dependence
of magnetization curves obtained by 12-site cluster. (b) The spin
structure factors S(q) along K → M1 → K ′ high symmetry path in
the Brillouin zone (BZ) under different magnetic fields. With the
increasing magnetic field, the spectral weight shifts from M points in
the zero field to the K points around the plateau and then transfers to
� point in the fully polarized phase. Panels (c) and (d) are the contour
plots of static spin structure factors in the whole BZ at H⊥ = 0 and
2
√

2, respectively. We use the 24b cluster to get those results in
panels (b), (c), and (d).

broad peaks at around M points, not at the K points observed
in Ref. [25] with an inappropriate path which is inside the
120◦ Néel phase.

IV. MAGNETIC FIELD EFFECTS

We have studied the magnetization curves of three mag-
netic ordered phases and the quantum spin liquid phase. Here
in the main text, we only show the magnetization curves at
J±±

1 = −0.17, Jz±
1 = 0.6, J2 = 0.0 of QSL region. When the

magnetic field is applied perpendicular to the c axis, though
there is finite-size effect, we still can observe a clear “melting”
1/3-magnetization plateau [see Fig. 5(a)]. This 1/3-plateau
or “uud” phase is widely observed in the 120◦ Néel phase,
but not in a QSL phase. The nonflatness of this plateau at
zero temperature is due to the out of xy plane anisotropic
interaction Jz±

1 . When the Jz±
1 further increases in the QSL

region, this plateau melts to be a nonlinear rough curve. An-
other contribution to the nonflatness of the plateau without
bond randomness is the temperature. When the temperature
increases, the plateau will further melt to become a rough or
even linear curve, which is shown in the inset of Fig. 5(a). For
the spin structure factor S(q), we can observe that the spectral
weight shifts from M points in the zero field to the K points
in the sufficient strong field around the 1/3-magnetization

FIG. 6. (a) Magnetization curves of the QSL phase at J±±
1 =

−0.17, Jz±
1 = 0.6, J2 = 0.0 under external magnetic field applied

parallel to the c axis. (b) The spin structure factors S(q) along
K → M1 → K ′ high symmetry path in the Brillouin zone (BZ) un-
der different strengths of magnetic field. Panels (c) and (d) are the
contour plots of spin structure factors in the whole BZ at H‖ = 0 and
3, respectively. We use the 24b cluster to get those results in panels
(b), (c), and (d). The intensity of S(K ) at H‖ = 3 is weaker than the
intensity of S(M ) at H‖ = 0.

plateau, and then transfers to the � point in the fully po-
larized region. Interestingly, the recent experiment on the
YbMgGaO4 [34,44] with very low temperature has discov-
ered the nonlinearity of the magnetization curve which may
be a signature of the remnant of 1/3-magnetization plateau.
The DMRG and classical Monte Carlo simulations [34] using
the C set of parameters [see Fig. 2(c)] have reproduced the
nonlinearity of the magnetization curve. Here, our ED method
has reproduced the similar behaviors not only in the C set
of parameters but also in the large region of QSL phase (see
Appendix E). What’s more, adding J2 do not obviously change
the flatness of the plateau, but the interval of the 1/3-plateau
will shrink and disappear, while the 1/2-plateau will appear at
larger J2 [45]. In addition, we have also studied the magnetiza-
tion curves with the magnetic field parallel to the c axis which
can be seen in Fig. 6. The 1/3-plateau seems still visible
at J±±

1 = −0.17, Jz±
1 = 0.6, J2 = 0.0, but has a quite narrow

interval which is due to the easy-plane anisotropy α and the
out of plane anisotropic interactions Jz±

1 .

V. BOND RANDOMNESS EFFECTS

To study the possible chemical disorders in real materials,
like Ga/Mg mixing in YbMgGaO4, we add uniform bond
randomness into the Hamiltonian. Other distributions of the
random exchange interactions do not change the conclusion
qualitatively. For two stripe phases with finite excitation gaps,
these magnetic orders deep into magnetic phases are stable
to the bond randomness and persist up to the strongest ran-
domness � = 1. Surprisingly, at B set of parameters, though
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FIG. 7. (a) Phase diagram under the strongest bond randomness
� = 1 on the J2 = 0, J±±

1 − Jz±
1 slice. The dashed lines are the phase

boundaries in the clean � = 0 case. (b) Linear extrapolations of the
magnetic orders and the average freezing parameter at different sets
of parameters. At least 50 bond-randomness samples have been used
to get the converged average values. (c) Magnetic heat capacities Cm

at Point B obtained by 12 and 16 clusters. We used at least 200 bond-
randomness samples to get the converged Cm here. The inset shows
the magnetic entropy Sm = S0 + ∫ T

0
Cm
T dT . No residual entropy (i.e.,

S0 = 0) is found at low temperature. (d) Histogram of spin domains
with different number of spins obtained by 150 independent random
samples.

the stripe order is still finite [see Fig. 7(b)], the magnetic
heat capacity Cm under the strongest bond randomness [see
Fig. 7(c)] is similar to the experimental results [2,3,5,9,17],
other sets of parameters cannot reproduce the correct shape of
the heat capacity. And the power-law exponents δ are 0.57 and
0.89 for 12 and 16 clusters, respectively. This power-law heat
capacity is due to the nonzero density of low-lying excitations
under bond randomness [46,47]. For the 1200 Néel order, it is
fragile to bond randomness, but it can persist up to a critical
bond randomness strength �c < 1 [29]. So in the strongest
bond randomness � = 1 case, not only the QSL region and
the entire 1200 phase region but also the stripe phase re-
gions which are close to the phase boundaries [see the phase
diagram in Figs. 7(a) and 7(b)] will show nonmagnetic spin-
liquid-like behavior. To detect the possible spin-glass order
induced by the bond randomness, we show the average spin
freezing parameters in Fig. 7(b). They all are extrapolated to
zero. There would be no spin-glass order even in the strongest
bond randomness. This nonmagnetic spin-liquid-like phase in
the � = 1 limit is actually a 2D analog of random-singlet (RS)
phase [46–49].

To describe this phase more clearly, we analyze the distri-
bution of different spin domains under some different random
exchange interaction configurations in Fig. 7(d). In RS phase
region, we find mostly the local two-spin singlets or dimers
(43%), four-spin singlets or resonating dimers (16% for Point
1 and 18% for Point 2) and other larger singlet domains with
even number of spins (resonating dimer domains). However,
it is hard to find distinct orphan spins (0.7% for Point 1
and 0.3% for Point 2) and long-distance two-spin singlets
in RS phase region. In contrast, in stripe phase like the B

FIG. 8. Nearest-neighbor spin correlations 〈SiS j〉 under spe-
cific bond-randomness configurations at [(a1)–(a4)] Point 2 and
[(b1)–(b4)] Point B, respectively. Some distinct orphan spins, two-
spin singlets and other singlet clusters are marked by dotted boxes.

set of parameters, the fraction of orphan spins (6%) becomes
significant. Furthermore, the spin domains with odd numbers
of spins also become nonnegligible. These domains with odd
number of sites (including the orphan spins) will contribute
to the Curie-law ∝ 1/T of magnetic susceptibility at low
temperature. More significantly, larger domains with stripe
order contribute to the nonzero average magnetic order un-
der the bond randomness. However, the finite temperature
would further fragment the stripe ordered domains making
it hard to be detected in experiment. In order to build an
intuition of the random spin networks, in Fig. 8, we repre-
sentatively show the nearest-neighbor spin correlations 〈SiS j〉
under specific bond-randomness configurations at Point 2 and
Point B, respectively. We can see the formations of orphan
spins (marked by green arrows), two-spin singlets (marked by
dotted oval box), four-spin singlets (resonating two types of
singlet pairs marked by yellow and purple oval box) and other
larger spin domains. Here we set the criterion of two spins
belong to the same domain as the spin correlation between
them is lower than −0.25 (see Ref. [47] for more details).
The singlet domains under bond randomness can help to clar-
ify the continuous low-energy excitation and the absence of
spinon contribution to thermal conductivity [7,10,17]. And
the last not the least, for the magnetization curve, the 1/3-
magnetization plateau will further melt by the randomness of
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exchange interactions and g-factors [32], similar to the tem-
perature effect. There would be no distinct 1/3-magnetization
plateau under the strongest bond randomness [44].

VI. SUMMARY AND DISCUSSION

In summary, we have used extensive finite-size scalings
with ED to get the entire phase diagram in the 3D parameter
space. Besides two gapped stripe phases and 120◦ Néel phase,
there is a large QSL region extending to the QSL phase of
the J1−J2 triangular Heisenberg model. After applying ex-
ternal magnetic fields, a 1/3-magnetization plateau can be
observed at large region of QSL phase when the magnetic
field is perpendicular to the c axis. Most importantly, in the
strongest bond randomness case, numerical result shows a
large region of spin-liquid-like phase which is a 2D analog of
random-singlet phase. It contains two-spin singlets, four-spin
singlets and other larger spin singlets which have not been
unveiled in the model we studied. In addition, our 3D phase
diagram with different XXZ anisotropy (see Appendix G) can
also help to understand the QSL like behavior in AYbCh2 (A
= Na and Cs, Ch = O, S, Se) [14,16,50–66], Na2BaCo(PO4)2

[67–69].
Both YbMgGaO4 and NaYbCh2 share the same space

symmetry group R3̄m and the perfect triangular magnetic
layers which consist of Yb3+ ions. Recent experiments
[14,50,52,55,57,58] have revealed that the interlayer Yb-Yb
distance in NaYbO2 and NaYbS2 is shorter than YbMgGaO4,
which means the interlayer interactions may be relevant in
the low temperature exchange model. A more complicated
exchange Hamiltonian with the same in-plane part as the
YbMgGaO4 and compasslike interlayer exchange interactions
has been proposed to understand macroscopic behaviors of
these materials [see Ref. [58] for more details]. In addition,
we still need to caution about the possible randomness effects
on NaYbCh2, such as Na sites occupied by the Yb ions in
NaYbSe2 [16]. All of these issues, including the interlayer
interactions and magnetic impurities between Yb layers, need
further study.
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APPENDIX A: FINITE-SIZE CLUSTERS

In this paper, we mainly use Lanczos exact diagonalization
to get the 3D phase diagram and the low-energy spectrum.
Meanwhile, we also employ full exact diagonalization to
study the finite-temperature properties, such as heat capacity
and magnetic susceptibility. To reduce the computational cost,
we have used translation symmetry to do block diagonaliza-
tion. The largest system size in the Lanczos calculations is 32
with the subspace of the largest block up to 0.13 billion.

FIG. 9. Finite-size clusters used in the ED calculations. a1 =
(a, 0) and a2 = (a/2,

√
3a/2) are primitive vectors of the triangular

lattice. The 12 cluster with C3 symmetry has been used to do the full
exact diagonalization and calculate the frustration parameter.

Ten clusters are mainly used in our ED calculations which
are shown in Fig. 9, denoted as 12, 12b, 15, 16, 18, 21, 24a,
24b, 24c and 32, respectively. The 12, 16, 24a, 24b, and 32
clusters have three M momentum points which are significant
for the stripe phases. These three-momentum points de-
note as M1 = 1

2 b2, M2 = 1
2 (b1 + b2), M3 = 1

2 b1, where b1 =
( 2π

a ,− 2π√
3a

), b2 = (0, 4π√
3a

) are primitive lattice vectors in re-
ciprocal space, a = 1 is the lattice constant. Among these
five clusters with even number of lattice site, the 12 and 24b
clusters also contain two K points, K1 = 1

3 b1 + 2
3 b2, K2 =

2
3 b1 + 1

3 b2. The K points are important for 120◦ Néel phase
and the 1/3-magnetization plateau phase or “uud” phase. So
we use the 12, 15, 18, 21, 24b, and 24c clusters which contain
K points to do the linear extrapolations of 120◦ Néel order
and to study the 1/3-magnetization plateau. In the extrap-
olation of the spin freezing order parameters, we also use
12b cluster.

Here, we want to mention that three M momentum points
are nonequivalent in the 24a, 24b and 32 clusters which do
not respect the C3 rotation symmetry. Therefore, there may
be only one M point which has a broad peak in the spin
structure factor S(q) of QSL region [see Fig. 5(c), Fig. 6(c)
in the main text, and Fig. 29(b1)–29(b4)]. We should see the
diffuse magnetic scattering at around all three M points when
we use the clusters which have equivalent M points, such as
16 [see Fig. 29(a1)–29(a4)] and 36 clusters.

APPENDIX B: CONVENTIONAL ORDERS

We have representatively shown the linear extrapolations
of 120◦ Néel order and the stripe orders in the main text.
Here, we want to show more details about the extrapolations,
which can be seen in Figs. 10 and 11. The magnetic order
parameters (square root of the extrapolated results) obtained
from Figs. 10(a1) and 10(a2), 10(b1) and 10(b2) are shown
in Figs. 10(a3) and 10(b3), respectively. Here, we mention
that the stripe phases are Ising-like phases which have strong
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FIG. 10. Linear extrapolations of the square sublattice magneti-
zation for [(a1)–(b1)] the 1200 Néel phase and [(a2)–(b2)] the stripe
phases. (a3) and (b3) are the extrapolated magnetic order parameters
along Jz±

1 = 0 horizontal lines in Figs. 2(a) and 2(b) of the main text,
respectively. The 1200 Néel phase (blue, square) is sandwiched by
two stripe phases (red, circle) at J2 = 0. While at J2 = 0.05, the QSL
phase extends to the Jz±

1 = 0.0 region.

magnetic orders and weaker quantum fluctuations. Therefore,
the linear extrapolations of magnetic orders are good enough
to identify the phase boundaries. The extrapolated results will
not change much when using some larger system sizes.

FIG. 11. Linear extrapolations of the square sublattice magneti-
zation for (a) the 1200 Néel phase and (b) the stripe phases along
J±±

1 = 0 horizontal lines in Fig. 2(f) of the main text. The inset of
(b) is the extrapolated magnetic order parameters. The QSL phase
is sandwiched between the 1200 Néel phase (blue, square) and the
stripe phase (red, circle).

FIG. 12. The contour plot of (a1, a2) chiral structure factor χ (q)
and [(b1), (b2)] dimer structure factor D(q) obtained by 24a and
24b cluster at J2 = 0, J±±

1 = −0.2, Jz±
1 = 0.7. The black lines are

the Brillouin zone edge of the original triangular lattice and the red
dash line in [(b1), (b2)] is the Brillouin zone edge of the new kagome
lattice.

To eliminate other conventional orders in the nonmagnetic
phase region, we have also calculated the chiral and dimer
structure factors. In our finite-size calculations, we find the
peak positions of χ (q) and D(q) vary between different clus-
ters, which can be seen in Fig. 12. So we use X to represent
the wave vector where the peak is in Fig. 3(d) of the main
text. We get the vanishing order parameters of these two con-
ventional ordering using linear extrapolations. Therefore, the
large region of nonmagnetic phase in the 3D parameter space
(see Figs. 1 and 2) has no 120◦ Néel order, stripe orders, chiral
order, dimer order and spin-freezing order [see Fig. 3(d)], and
it is a quantum spin liquid phase.

APPENDIX C: STRIPE-I AND STRIPE-II PHASES

We have calculated the low-energy spectra of different
phases and find that there are six degenerate ground states
in Stripe-I and Stripe-II phases, as shown in Fig. 13. These
six degenerate ground states are in the translation invariant
momentum sectors �, M1, M2, M3. Three of them are in the �

sector, while the other three distribute into three M sectors.
We can use finite-size scaling of energy gaps to verify the
degeneracy in the thermodynamic limit which is shown in
Fig. 14.

Previous classical Monte Carlo study from Ref. [26] has
shown that there are six basic spin-orbital-lock stripe config-
urations which differentiate by three choices of the principal
lattice directions that stripes run along and two spin orienta-
tions within each stripe. For Jz±

1 = 0, in the stripe-I phase,
the spins lay in the xy plane and point perpendicular to the
stripes (see Fig. 1), while in the stripe-II phase, the spins
also lay in the xy plane but point along the principal axes
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FIG. 13. Low-energy spectra of 24a cluster with nearest-
neighbor anisotropic interactions (J2 = 0). There are six degenerate
ground states and a finite excitation gap in the stripe-I and stripe-II
phase regions. The “inverse V-shape” in the low-energy spectra is
more clear when Jz±

1 becomes larger. And the tip of “inverse V-
shape” can be used to identify the direct (first-order) phase transition
points between two stripe phases on different slices [see the yellow
triangular point in Fig. 2 of the main text].

±a1,±a2,∓a1 ± a2 (see Fig. 1). The nonzero Jz±
1 will tilt the

spins out of xy plane by an angle with the z axis.

APPENDIX D: FRUSTRATION PARAMETER

The frustration parameter is defined as f = |
CW|/Tc,
where 
CW is the negative Curie-Weiss temperature and Tc

is the critical temperature. We take the Tc approximately as
the temperature Tm where the magnetic heat capacity gets its
maximum value. Actually, Tc ≈ Tm works well in the stripe-I
and stripe-II phases. However, in quantum spin liquid phase
region, Tc is zero. In fact, the frustration parameter should be
diverge. And the heat capacity still has a broad maximum at
finite T . In the 120◦ Néel phase, the J±±

1 and Jz±
1 interactions

break the U (1) continuous symmetry of the XXZ model.
Especially, the Jz±

1 interaction would tilt the spins out of xy
plane. Then whether the 120◦ Néel phase has a gap and a

FIG. 14. (a) The third-order polynomial extrapolations of (a) the
finite-size interval of the six ground-state manifolds (GSM) and
(b) the excitation gap above the GSM at J±±

1 = 0.6, Jz±
1 = 0, J2 = 0

[see Fig. 13(a)].

FIG. 15. (a) Magnetic heat capacity and (b) uniform magnetic
susceptibility obtained by full exact diagonalization using 12 and
16 clusters. For 12 cluster, Tm ≈ 1.08, 
CW ≈ −1.70, f ≈ 1.57. For
16 cluster, Tm ≈ 0.95, 
CW ≈ −1.70, f ≈ 1.79. We take the Boltz-
mann constant kB = 1 in drawing these two figures and use the B set
of parameters to perform the calculations. Two prominent peaks are
displayed in the heat capacity. The first peak in the low temperature
comes from the finite-size gap of ground-state manifold (GSM). This
peak will shift to zero temperature when the system size goes to
infinite. The second peak reflects the finite excitation gap above the
GSM. This peak will diverge when the system size goes to infinity,
which indicates a spontaneously Z6 symmetry breaking.

finite critical temperature are still unclear, which need further
study in the future. In any case, we can expect that Tc should
be less than the Tm. Therefore, the frustration parameter in the
120◦ Néel phase is underestimate. Even though, using Tc ≈ Tm

may not correctly estimate the actual frustration parameter.
We still can use this approximation to compare the frustration
of different phase regions in the 3D parameter space. As we
have shown in the Fig. 2 of the main text, the nonmagnetic
quantum spin liquid region has a larger frustration parameter
compared to other magnetic ordered phase regions, that is
consistent with phase boundaries obtained by extrapolations
of magnetic orders.

Here, we take the B set of parameters [see Fig. 2(a) in
the main text] to representatively show the calculation of
frustration parameter. The origin data of heat capacity and
uniform magnetic susceptibility are shown in Fig. 15. These
two observations are calculated by the following equations.

Cm = 1

NkBT 2
(〈H2〉 − 〈H〉2),

χ = 1

NkBT

(〈
M2

z

〉 − 〈Mz〉2
)
.

APPENDIX E: MAGNETIZATION CURVES

In this sector, we want to show more magnetization curves
at different phases, including 120◦ Néel phase, Stripe-I phase,
and quantum spin liquid phase. The magnetization curves with
some sets of parameters in the quantum spin liquid region
are representatively shown in Fig. 16. In Figs. 16(a1) and
16(a2), since the out-of-plane interaction Jz±

1 = 0.8 is large, it
seems that the 1/3-magnetization plateau is already melted to
be invisible, especially for the curve obtained by 24b cluster.
And a more linear curve (in the thermodynamic limit) is
observed when applying the field parallel to the c axis. While
for Figs. 16(b1) and 16(c1), the Jz±

1 interaction is small or
zero, so we can reproduce flat 1/3-magnetization plateaux.
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FIG. 16. Magnetization curves of the QSL phase at different
sets of parameters under the external magnetic fields. [(a1)–(c1)]
The magnetic fields are perpendicular to the c axis. [(a2)–(c2)] The
magnetic fields are parallel to the c axis. The set of parameters used
in (b1) and (b2) corresponds to C point in Fig. 2(c) of the main text.

We have also calculated the magnetization curves of 120◦
Néel phase and Stripe-I phase in Fig. 17. In the 120◦ Néel
phase, the 1/3-magnetization plateau is clearly seen. The non-
flatness depends on the Jz±

1 interaction. In the Stripe-I phase,
there is no 1/3-magnetization plateau induced by two kinds of
magnetic fields.

To show the effects of different exchange interactions, like
J±±

1 , Jz±
1 , J2, on the 1/3-magnetization plateau, we use 24b

cluster to show the change of magnetic curves with these
parameters, which are shown in Fig. 18. When J±±

1 , Jz±
1 , J2

are small and the system is in 120◦ Néel phase, the 1/3-
magnetization plateau is flat. In the quantum spin liquid phase
region with large Jz±

1 > 0.5, the 1/3-magnetization plateau
is melted to nonlinear rough curve, see Fig. 18(a1). When
we increase J±±

1 and keep Jz±
1 = 0, the flatness of plateau

is nearly unchanged. After J±±
1 > 0.2 which drives system

into Stripe-I phase, the plateau quickly melts to a linear curve,
see Fig. 18(b1). For the J1−J2 XXZ model, in the 120◦ Néel
and the QSL phase regions, the 1/3-magnetization plateau is
flat and has nonzero width �H⊥ in the thermodynamic limit
[see the inset of Fig. 18(c1)]. When J2 > 0.175, the system
is in the stripe phase with threefold ground-state degeneracy,
the 1/3-magnetization plateau disappears [see the inset of
Fig. 18(c1)]. Instead, a 1/2-magnetization plateau appears.

FIG. 17. Magnetization curves at different sets of parameters
under external magnetic fields. [(a1)–(b1)] The magnetic fields are
perpendicular to the c axis. [(a2)–(b2)] The magnetic fields are par-
allel to the c axis. (a1) and (a2) are for the 120◦ Néel phase. (b1) and
(b2) are for the stripe-I phase.

To verify the 1/3-magnetization plateau phase is a uud
phase. We have calculated the energy spectrum and the
spin correlation functions at J±±

1 = −0.17, Jz±
1 = 0.6, J2 =

0.0, H⊥ = 1.8
√

2, H‖ = 0, see Fig. 19. From the low-energy
spectrum, we find threefold quasidegenerate ground states.
Through finite-size scalings, we can observe the exact de-
generacy (before spontaneously Z3 symmetry breaking) and
a finite-energy gap above the ground-state manifold. And we
show the real-space spin correlation functions of these three
ground states in Fig. 20, the uud structure can be clearly seen.

APPENDIX F: VII: BOND RANDOMNESS EFFECTS

To simulate chemical disorders in YbMgGaO4, we have
introduced bond randomness into the Hamiltonian. And
there are four sets of parameters have been frequently
used to do the calculations, J±±

1 = 0.0, Jz±
1 = 0.2, J2 =

0.0 (Point 1); J±±
1 = −0.2, Jz±

1 = 0.7, J2 = 0.0 (Point 2);
J±±

1 = −0.35, Jz±
1 = 0.6, J2 = 0.0 (Point 3); and J±±

1 =
0.341, Jz±

1 = 0.598, J2 = 0.0 (Point B). These four sets of
parameters have been marked in Fig. 7(a) of the main text.
For the 1200 Néel phase, the strongest randomness at � = 1
can eliminate this magnetic order, which can be seen in
Fig. 7(b) of the main text. For most of the stripe-phase region,
the stripe orders are stable against the bond randomness and
cannot be eliminated even in the strongest bond-randomness
case, as can be seen in Fig. 7(b) of the main text. And for
QSL phases, both in the clean case and the strongest bond
randomness limit, the vanishing of the average spin freezing
order parameter [shown in Fig. 3(d) and Fig. 7(b) of the main
text] indicates the absence of spin-glass order. To confirm the
convergence, we show different order parameters changing
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FIG. 18. Finite-size magnetization curves obtained by 24b clus-
ter along different paths in the 3D parameter space. [(a1)–(c1)] The
magnetic fields are perpendicular to the c axis. [(a2)–(c2)] The mag-
netic fields are parallel to the c axis. The inset of (c1) shows linear
extrapolations of the 1/3-plateau-width as functions of 1/N .

with the number of random samples in Fig. 21(d). We are
confident that using at least 20 bond-randomness samples is
able to get reliable randomly averaged order parameters.

Using linear extrapolations of the stripe order parameter
shown in Figs. 21(a)–21(c), we obtain the phase diagram un-

FIG. 19. (a) Finite-size gap of the ground-state manifold as
a function of 1/N . The red dashed line is a guide to the
eye. This gap will be zero when N → ∞. (b) Linear extrap-
olation of the excitation gap above the ground-state manifold.
The finite extrapolated value indicates a finite excitation gap.
We take J±±

1 = −0.17, Jz±
1 = 0.6, J2 = 0.0, H⊥ = 1.8

√
2, H‖ = 0

which corresponds to 1/3-magnetization plateau phase or uud phase
region in the ED calculation [see Fig. 5(a) of the main text].

FIG. 20. Three components of the spin correlation func-
tions at J±±

1 = −0.17, Jz±
1 = 0.6, J2 = 0.0, H⊥ = 1.8

√
2, H‖ = 0

[see Fig. 5(a) in the main text].

der the strongest bond randomness � = 1.0, which is shown
in Fig. 7(a) of the main text. In the nonmagnetic spin-liquid-
like (SLL) phase region, we also show the average spin
freezing order parameter to rule out the spin glass phase.
This SLL phase is actually a 2D analog of random-singlet
(RS) phase. To see more clear about this phase, we plot the
real-space spin correlations under some representative bond
randomness configurations, which are shown in Fig. 8 of the
main text and Fig. 22.

In the RS phase, we can find some random distributions
of nearest-neighbor two-spin singlets, four-spin singlets and
other larger singlet domains. If two nearest-neighbor spins
form an exact singlet, then the spin correlation between these
two spins is equal to −0.75. However, due to the geometry

FIG. 21. The linear extrapolations of the square sublattice mag-
netization for the stripe order parameters in selective paths which
go along (a) Jz±

1 = 0.0, (b) Jz±
1 = 0.6, and (c) Jz±

1 = 1.2 horizontal
lines in Fig. 7(a) of the main text. Panel (d) shows the change of three
order parameters with the increasing of random samples.
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FIG. 22. The nearest-neighbor spin correlations for different random configurations under the strongest bond-randomness � = 1.0 at Point
2 [see Fig. 7(a) in the main text]. Some distinct two-spin singlets and other singlet clusters are marked by dotted box.

frustration and competition between nearest-neighbor bonds
sharing one of the same lattice site, two nearest-neighbor
spins can approximately form a local singlet if their cor-
relation is close to −0.75. In Fig. 8 of the main text and
Fig. 22, we representatively show the two-spin singlets (or
dimers) which are marked by the dotted oval boxes. For
four nearest-neighbor spins forming a (plaquette) singlet, the
spin correlations between diagonal sites [red solid and red
dashed lines in Fig. 23(a)] are equal to 0.25 which represents
ferromagnetic correlation, that will contribute to the nonzero
fraction of ferromagnetic correlations in the histogram of
Figs. 23(a) and 23(b). Similarly, we have also found six-spin
singlets which are representatively shown in Fig. 8(a2) of the
main text and Fig. 22(d). Other larger singlet domains can
also be found. But how do we define a spin domain? For
two spins with their correlation larger than −0.25, they are
disentangled in the SU (2) limit [47]. Therefore, we can set
the criterion of two spins belonging to the same domain as
the spin correlation between them is less than −0.25 (see
more details in Ref. [47]). In Fig. 7(d) of the main text,
we show the histogram of different spin domains in the RS
phase. The dominant contributions are the two-spin singlets
and other larger singlet domains with even number of spins.
In Figs. 23(a) and 23(b), we show the distribution of nearest-
neighbor spin correlations to see more details from another
aspect. As we known, if two nearest-neighbor spins form a
nearly singlet, then the spin correlations of other ten nearest-
neighbor bonds sharing one of these two spins in the triangular
lattice will be very weak. Therefore, unlike the 1D bipartite

Heisenberg chain, due to the large coordination number and
the geometry frustration of triangular lattice, the percentage
of singlet bonds in all nearest-neighbor bonds will be small,

FIG. 23. Histograms of nearest-neighbor and next-nearest-
neighbor spin correlations at [(a), (b)] Point 2 and [(c), (d)] Point B
under the strongest bond randomness limit � = 1.0. We use 24b
cluster and 153 bond-randomness samples to get those histogram.
The inset of (a) is the nearest-neighbor and next-nearest-neighbor
spin correlations of a four-spin singlet. If four-spins form an ex-
act singlet (plaquette singlet), the nearest-neighbor spin correlations
with blue lines would be −0.5, while spin correlations with red solid
and dashed lines are 0.25.
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FIG. 24. Distributions of spin domains as functions of � at
(a) Point 2 and (b) Point B. We use 24b cluster and at least 100
bond-randomness samples to get these distributions.

as can be seen in Fig. 23(a). In the formation of four-spin
singlet, the spin correlations of diagonal nearest-neighbor and
next-nearest-neighbor bonds (for triangular lattice) are 0.25
which contributes to the nonzero fraction of ferromagnetic
correlations in Figs. 23(a) and 23(b).

In the Stripe-I phase, take B set of parameters (Point B)
as example, we show the histogram of nearest-neighbor and
next-nearest-neighbor spin correlations in Figs. 23(c) and
23(d), respectively. The bond randomness cannot fully de-
stroy the stripe order. Therefore, we can see a large fraction
of antiferromagnetic correlation (〈SiS j〉 ∼ −0.25) and ferro-
magnetic correlation (〈SiS j〉 ∼ 0.25) in the nearest-neighbor
and the next-nearest-neighbor spin correlations.

To show how the bond randomness strength affects the
ground state, we show the distribution of spin domains as
a function of � in Fig. 24. At Point B which is shown in
Fig. 24(b), in the weak bond randomness regime with � �
0.5, because of the large excitation gap, nearly all the spins
are in one domain with stripe ordering. With the increasing
of the randomness, say � � 0.5, large domains are gradually
broken into some smaller domains, especially like the two-
spin singlets or dimers. While at Point 2 without any magnetic
ordering in the clean case, spins can easily form some small
singlet domains even under weak bond randomness (� =
0.2) [shown in Fig. 24(a)]. Interestingly, spins prefer to form
four-spin singlets or resonating dimers when � < 0.5 instead
of two-spin singlets or dimers which dominate the case of
stronger randomness (� � 0.5). For the orphan or isolated
spin, its fraction is nonnegligible when � < 0.5 (4.8% at
� = 0.2 and 3.0% at � = 0.4) and then drops to below 1%
when � � 0.5.

The above discussions focus on ground-state properties at
zero temperature. Here, we want to discuss the bond ran-
domness effects at finite temperature. Figure 25(a) shows the
magnetic heat capacity Cm of B set of parameters which have
also been shown in Fig. 7(c) of the main text. And we have
used sufficient random samples to make the power-law expo-
nent δ converged, which can be seen in the inset of Fig. 25(a).

In the strong randomness case, the finite-size effect is
actually not severe. So the 12 cluster is able to capture the
main physics in the strongest bond-randomness limit. In this
limit, the heat capacity has a broad peak, and this peak will
not diverge with the increasing system size. That means even
though the ground state of the system has residual stripe
order, but it may be hard to probe this order at finite tempera-

FIG. 25. (a) The magnetic heat capacities Cm obtained by 12 and
16 clusters in the strongest bond randomness limit � = 1 for the
B set of parameters: i.e., J±±

1 /J1 = 0.34, Jz±
1 /J1 = 0.6, J2/J1 = 0,

and we use J1 = 0.164 meV [31] to do the ED calculations. For
the 16 cluster, we employ Lanczos method to calculate the heat
capacity at low temperature. The restriction of Boltzmann factor
e−(Emax−E0 )/kBT < 10−12 has been used to determine the upper-bound
temperature below which the calculated Cm is trustable. The inset
shows the change of exponent δ obtained by power-law fitting the
Cm curve from T = 0.05 K to T = 0.25 K with the increasing of the
number of samples. [(b)–(d)] Magnetic heat capacities Cm obtained
by 12 cluster in the strongest bond randomness limit � = 1 for other
three sets of parameters fitting by the experiments. We use J1 =
(b) 0.126 meV [9], (c) 0.1515 meV, and (d) 0.1495 meV [35] to show
all the data. We have used at least 600 bond-randomness samples for
12 cluster and at least 220 bond-randomness samples for 16 cluster
to get the averaged Cm(T ). The insets show the magnetic entropy
Sm = ∫ T

0 Cm/T dT .

ture. Actually, previous classical Monte Carlo simulation from
Ref. [26] has shown the similar behavior in the heat capacity.
In the clean case, there is a single critical temperature with
slowly diverging heat capacity. In the randomness case, this
transition is removed by fragmenting the system into spin
domains.

We have also calculated the heat capacity with other sets
of parameters (especially for the sets of parameters fitting by
different research groups or within the QSL phase region)
under the strongest bond randomness. However, none of those
can reproduce nearly the same heat capacity as the experi-
mental one, which are show in Figs. 25 and 26. In the clean
limit, whether we can get the same heat capacity as the ex-
perimental one using some sets of parameters is still an open
question. Recently, a finite-temperature Lanczos methods
with improved accuracy has successfully applied to Kitaev-
Heisenberg model on Kagome and triangular lattices [70],
which would be a great help to study the finite-temperature
properties of the model related to YbMgGaO4 in future.

APPENDIX G: XXZ ANISOTROPIC EFFECTS

To see how the XXZ (or easy-plane) anisotropic α affects
the phase diagram, we use fidelity susceptibility of 24a cluster
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FIG. 26. Magnetic heat capacities Cm obtained by 12 cluster in
the strongest bond randomness limit � = 1. Here, we use J1 =
0.164 meV to show all the data. And we have used at least 600
bond-randomness samples to get the averaged Cm(T ). The insets
show the magnetic entropy Sm = ∫ T

0 Cm/T dT .

to get the 120◦ Néel phase boundaries under different α,
and use the linear extrapolations of the stripe order (mainly
using 16 and 24a clusters) to get the phase boundaries of
stripe phases. Then we obtain some phase diagrams under
different α which are shown in Fig. 27. When α decreases,
the (deformed) 120◦ Néel phase and the QSL phase regions
shrink. Especially for the QSL phase, at α = 0.5, this phase
region is too small to identify. Therefore, αc ∼ 0.5 is a approx-
imate critical value where the QSL disappears. In the limit of
α = 0, the 120◦ Néel phase region will quickly vanish [see
Fig. 28(b)]. When α is large, both of the 120◦ Néel phase
and the QSL phase seem to extend to larger areas. Please
remind that we have taken J1 = 1 (actually Jzz

1 = 1) as the
energy unit. If we take J±

1 = 1 as the new energy unit, then
the area of QSL phase region may decrease to a finite constant
when we increase α from 1 to larger values. In the limit
α = ∞ or Jzz

1 = Jzz
2 = 0, unlike the α = 0 limit, the quantum

spin liquid phase will survive [71]. Compared with previous
DMRG study from Ref. [24] and Ref. [25], our QSL regions
are more naturally located between three magnetic ordered
phases due to the order-by-disorder effect and extend to the
J±±

1 axis in the J2 − J±±
1 , Jz±

1 = 0 plane.

APPENDIX H: STATIC AND DYNAMICAL SPIN
STRUCTURE FACTOR

The inelastic neutron scattering experiment of YbMgGaO4

has revealed a broad low-energy excitation maxima at the M
point and the concentrated spectral weight at the boundary of
Brillouin zone. Here we show the contour plots of the static
spin structure factors of the QSL region in Fig. 29. We take a
straight-line path J2 = x, J±±

1 = 1.6x − 0.2, Jz±
1 = −5.6x +

0.7, x ∈ [0, 0.125] in the 3D parameter space to show the
static spin structure factors of QSL phase. The broad peaks at
the M points signature short-range stripelike spin correlations
in the QSL phase.

FIG. 27. The phase diagrams with different easy-plane
anisotropic α. [(a1)–(c1)] are the phase diagrams on the
J2 = 0, J±±

1 − Jz±
1 plane. [(a2)–(c2)] are the phase diagrams

on the Jz±
1 = 0, J2 − J±±

1 slice. The blue phase transition points are
obtained from linear extrapolations of the stripe order parameters,
while the black ones are obtained from the peak position of fidelity
susceptibility using 24a cluster. The purple dashed lines are the
classical phase transition lines between two stripe phases, and the
yellow points in (a1) are obtained by the level crossings of low
excited energy states using 24a cluster.

We also calculate the dynamical spin structure which can
be studied by inelastic neutron scattering (INS) or x-ray Ra-
man scattering in experiment. The dynamical spin structure
factor in the QSL region can be computed by continued

FIG. 28. (a) The fidelity susceptibilities as functions of J±±
1 un-

der different XXZ anisotropic α and along the J±±
1 axis. (b) The

fidelity susceptibilities as functions of J2 under different XXZ
anisotropic α and along the J2 axis. When α < 0.5, the phase tran-
sition point J2,c starts to drop quickly. Here, we use 24a cluster to
perform the calculations.
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FIG. 29. Spin structure factors at different x. x specifies
the exchange interactions J2 = x, J±±

1 = 1.6x − 0.2, Jz±
1 = −5.6x +

0.7, x ∈ [0, 0.125]. [(a1)–(a4)] are obtained by 16 cluster, while (b1–
b4) are obtained by 24b cluster.

fraction expansion,

Stot (q, ω) = Sxx(q, ω) + Syy(q, ω) + Szz(q, ω),

Sαα (q, ω) =
∑

n

{∣∣〈ψn|Ŝα
q |ψ0〉

∣∣2
δ[ω − (En − E0)]

}

= − 1

π
lim
η→0

Im

⎡
⎢⎢⎣ 〈ψ0|

(
Ŝα

q

)†
Ŝα

q |ψ0〉

z−a0−
b2

1

z−a1−
b2

2
z−a2···

⎤
⎥⎥⎦,

where α = x, y, z label the spin indices, z = ω + iη + E0,
ai and bi+1 are the diagonal and subdiagonal elements of
the tridiagonal Hamiltonian matrix obtained by the Lanczos
method with initial vector Ŝα

q |ψ0〉. Here, we show the ED
results using 24b cluster in Fig. 30. At J±±

1 = −0.17, Jz±
1 =

0.6, J2 = 0.0, though there are finite-size effects, we still can
observe that the low-energy maxima are located at M points.

FIG. 30. The dynamical spin structure factors of the QSL phase
at two K points and three M points using different sets of parameters.
The XXZ anisotropic α is set to be 1.317. Three M points are not
equivalent in 24b cluster which we use here to do the calculations.
The parameters we choose for panel (a) are J±±

1 = −0.17, Jz±
1 =

0.6, J2 = 0.0. And panel (b) uses the C set of parameters which is
shown in Fig. 2(c) of the main text. The Lorentz broadening factor
we use is η = 0.05.

And the maxima at K points are at higher energy. It seems that
our ED calculations are consistent with the inelastic neutron
scattering measurements of YbMgGaO4 [8,9]. While using
the C set of parameters, the maxima in K and M points
are nearly at the same energy. It can be easy to understand
this phenomenon. Starting from 120◦ Néel phase to the QSL
phase, and then to a stripe phase, the spectral weight would
transfer from K points to the M points.

APPENDIX I: EXCHANGE PARAMETERS

In Table I, we list three sets of exchange parameters fitted
by experimental data and got from Ref. [9], Ref. [31], and
Ref. [34], respectively. A set of parameters was used to cal-
culate the specific heat in Fig. 25(b). C set of parameters was
used to calculate the magnetization curves in Figs. 16(b1) and
16(b2). B set of parameters was used to calculate the specific
heat in Fig. 25(a) and Fig. 7(c) of the main text. In Appendix,
we also use it to show the frustration parameter in Fig. 15
of Appendix D, the magnetization curves in Figs. 17(b1)
and 17(b2), the square sublattice magnetization for Stripe-I
phase in Fig. 21(d), the histograms of spin correlations in
Figs. 23(c) and 23(d), the distribution of spin domains with
different number of spins changing with � in Fig. 24(b) and
the nearest-neighbor spin correlations for different random
configurations in Figs. 8(b1)–8(b4) of the main text.

TABLE I. Three sets of exchange parameters get from Ref. [9],
Ref. [31], and Ref. [34], respectively.

A B C

J (meV) 0.126 0.164 0.164
Jzz

1 1 1 1
J±

1 1.73 1.317 1.317
J±±

1 0.103 0.341 0
Jz±

1 0 0.598 0.13
J2/J1 0.22 0 0.1
Jzz

2 0.22 0 0.1
J±

2 0.381 0 0.132
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