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We study the stability of topological crystalline superconductors in the symmetry class DIIIR and in two-
dimensional space when perturbed by quartic contact interactions. It is known that no less than eight copies of
helical pairs of Majorana edge modes can be gapped out by an appropriate interaction without spontaneously
breaking any one of the protecting symmetries. Hence, the noninteracting classification Z reduces to Z8 when
these interactions are present. It is also known that the stability when there are less than eight modes can be
understood in terms of the presence of topological obstructions in the low-energy bosonic effective theories,
which prevent opening of a gap. Here, we investigate the stability of the edge theories with four, two, and one
edge modes, respectively. We give an analytical derivation of the topological term for the first case, because
of which the edge theory remains gapless. For two edge modes, we employ bosonization methods to derive
an effective bosonic action. When gapped, this bosonic theory is necessarily associated to the spontaneous
symmetry breaking of either one of time-reversal or reflection symmetry whenever translation symmetry remains
on the boundary. For one edge mode, stability is explicitly established in the Majorana representation of the edge
theory.
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I. INTRODUCTION

Topological phases of matter have attracted ever-growing
attention since the discovery of the integer quantum Hall
effect in 1980 [1]. One way of understanding such phases
of matter is that, in the space of gapped Hamiltonians with
certain symmetries, there exist equivalence classes labeled by
topological invariants. Two Hamiltonians with distinct topo-
logical invariants are topologically inequivalent since they
cannot be smoothly deformed into one another without a dis-
continuous change of the topological invariant. In particular,
a gap-closing phase transition must occur under a parametric
change between two topologically distinct phases when the
phase transition is continuous. If such phases of matter are
short-range entangled (as opposed to long-range entangled),
they are called symmetry protected topological (SPT) phases.
A central theme in the study of topological matter is the
classification of SPT phases.

SPT phases of noninteracting fermionic systems, which are
examples of fermionic SPT (FSPT) phases, with nonspatial
symmetries are well understood and described by the tenfold
way [2–4]. Such phases are classified according to the spatial
dimension of the physical system and the absence or presence
of local nonspatial symmetries, namely, time-reversal (TR),
particle hole (PH), chiral, and their combinations. The dis-
tinctive property of these phases is that they are gapped with a

nondegenerate ground state when imposing periodic boundary
conditions, while they support gapless boundary states on
their boundaries when imposing open boundary conditions
[5]. This property is often caricatured by stating the simulta-
neous existence of a gap in the bulk and of gapless boundary
states.

A natural extension when classifying FSPT phases is the
inclusion of spatial symmetries which are relevant to crys-
talline materials. It has been shown that spatial symmetries
such as reflection/inversion, point-group, and space-group
symmetries can modify the topological classification or lead
to distinct phases [6–19]. Moreover, the particular case of
reflection symmetry shows that the algebra between spa-
tial and nonspatial symmetries also affects the classification
[9,14,18,19]. There exist 27 symmetry classes with reflection
symmetries as opposed to 10 Altland-Zirnbauer symmetry
classes [9].

Prior to the seminal papers in Refs. [4,20,21], it was
believed that the FSPT classification was robust to symmetry-
preserving local interactions. However, Fidkowski and Kitaev
showed that the noninteracting boundary theory with eight
zero modes for the symmetry class BDI in one-dimensional
space is unstable to local and symmetry-preserving interac-
tions by constructing such an interaction and showing that
the interacting theory is adiabatically connected to a gapped
boundary theory without any spontaneous breaking of the
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protecting symmetry. Hence, the noninteracting classification
by group Z reduces to the classification by group Z8 in the
presence of local interactions compatible with the BDI sym-
metry class in one-dimensional space. Following this work,
effects of interactions have also been an important extension
of the classification of noninteracting FSPT phases when local
symmetry-preserving interactions are present. These effects
have been investigated in Refs. [22–35].

In particular, Morimoto et al. in Ref. [28] illustrated how
the topological classification for all tenfold symmetry classes
and spatial dimensions can change by symmetry-preserving
quartic contact interactions. They found that the noninter-
acting classification in terms of group Z2 is always stable
to symmetry-preserving quartic contact interactions, while
that with group Z is only stable in even spatial dimensions.
For symmetry classes with the Z invariant in odd space di-
mensions, there is a breakdown to ZN with some positive
integer N . The method employed to show the breakdown
relies on the presence or absence of topological obstructions
in the low-energy bosonic theories describing ν copies of
boundary states. These bosonic theories arise when one de-
couples the quartic interactions with a Hubbard-Stratonovich
transformation by introducing dynamical (mass) fields and
one integrates over the fermionic degrees of freedom in
the path-integral description of quantum mechanics. The
low-energy sector is then described by a nonlinear sigma
model (NLSM) whose target space might support topolog-
ical obstructions. When a local topological obstruction is
present, it is conjectured in Ref. [28] that the ground state
in the thermodynamic limit either remains gapless or be-
comes gapped with spontaneous (discrete) symmetry breaking
[36]. A topological obstruction is present whenever at least
one of the homotopy groups πl (SN(ν)−1) is nontrivial [37],
where l = 0, . . . , d + 1, d is the spatial dimension of the
system, SN(ν)−1 is the (N(ν) − 1)-dimensional sphere, and
N(ν) is the maximum number of pairwise anticommuting
dynamical mass matrices for the ν boundary modes (the up-
per bound on l is here dictated by locality). The number
N(ν) grows with the number of boundary modes ν (with
plateaus when 2n−1 < ν < 2n for some integer n). Once the
inequality N(ν) − 1 > d + 1 is satisfied, all homotopy groups
πl (SN(ν)−1) with l = 0, . . . , d + 1 vanish so no topologi-
cal obstructions compatible with locality are present. The
smallest number of boundary modes νmin for which locality
prevents the presence of a topological obstruction is conjec-
tured in Ref. [28] to determine the breakdown pattern, i.e.,
the Z classification is reduced to the cyclic group Z mod
νmin = Zνmin .

This strategy relying on the presence or absence of
topological obstructions in NLSMs to study the effects of
interactions on FSPT phases has also been applied to the
crystalline topological phases. Song and Schnyder in Ref. [35]
have shown the patterns for the breakdown of the noninteract-
ing FSPT classification for all crystalline symmetry classes
with reflection or twofold rotation symmetries by quartic con-
tact interactions.

In this paper, we focus on TR symmetric two-dimensional
crystalline topological superconductors. They realize the
FSPT phase DIII. In addition to TR symmetry (TRS), we
impose reflection symmetry (RS) and denote with DIIIR a

superconducting phase protected by TRS, RS, and translation
symmetry (TS). The noninteracting FSPT of symmetry class
DIII in two spatial dimensions has a Z2 group structure. The
noninteracting FSPT of symmetry class DIIIR in two spatial
dimensions has a Z group structure when reflection has a
unitary Hermitian representation that anticommutes with the
representations of both reversal of time and the interchange of
particles and holes [9,22,38].

The interacting classification of the FSPT symmetry class
DIIIR in two-dimensional space was first obtained in Ref.
[22] by showing that no less than eight copies of the gapless
edge theory can be gapped without spontaneous breaking
of the protecting symmetries by local interactions. Hence,
local and symmetry-preserving interactions reduce the non-
interacting classification with group Z to the one with group
Z8. The same result was later obtained in Refs. [28,35] by
showing on general grounds the possibility for the existence
of topological obstructions in the NLSM description of the
edge theory using homotopy arguments. However, it remains
open to (i) explicitly construct these topological obstructions
in the low-energy theory and to (ii) explicitly show how the
gapless edge modes remain stable in the presence of local and
symmetry-preserving interactions because of the topological
obstructions.

We start from an FSPT symmetry class DIIIR in two
spatial dimensions and aim to derive its low-energy bosonic
action along one of its connected boundaries explicitly. The
fermionic edge theory is described by ν copies of helical
Majorana fields. If interactions are absent, this edge theory
cannot be gapped, whatever the value of ν ∈ Z. If quartic
contact interactions are present, Table I implies the existence
of a topological obstruction when ν = 1, another one when
ν = 2, 3, and the last one when ν = 4, 5, 6, 7. The goal of this
paper is to construct explicitly these topological obstructions.
To achieve this end, it is sufficient to start from an interacting
boundary Hamiltonian for ν = 1, ν = 2, and ν = 4 copies of
relativistic helical Majorana fields, respectively [28].

There are three possibilities when local interactions that
preserve the TRS, RS and TS are included: (i) the edge theory
remains gapless, (ii) the edge theory is gapped but some of
the protecting symmetries are spontaneously broken, and (iii)
the edge theory is gapped without any symmetry breaking.
We call the edge theory unstable against the given interactions
when the last scenario is realized, otherwise we say that it is
stable.

Out of three cases (ν = 1, 2, 4) considered, we derive
the topological obstruction (i.e., the topological term in the
NLSM) for ν = 4 case explicitly via the gradient expansion
of a fermionic determinant. We identify N(4) = 4 possible
quartic interactions which leads to the nontrivial homotopy
group π3(S3) = Z. The corresponding term is of the Wess-
Zumino (WZ) type, as is indicated by line D = 4 and column
4 from Table I. It is expected that NLSM action supplemented
with an appropriate WZ term is equivalent to an action for
fermions in (1+1) dimensions at criticality [39]. Hence, the
edge theory remains stable.

For the remaining two cases, the method of gradient ex-
pansion turns out to be difficult to apply. We identify N(2) =
2 and N(1) = 1 interaction channels for two and one edge
modes, respectively. In the former case, π1(S1) = Z implies
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TABLE I. Reduction from Z to Z8 due to interactions for the
topologically equivalent classes of the two-dimensional topological
superconductors protected by time-reversal, reflection, and transla-
tion symmetries (DIIIR). If Vν denotes the space of ν×ν normalized
dynamical Dirac mass matrices on a boundary invariant under both
reflection and translation, then the limit ν → ∞ of these spaces is
the classifying space R1 [28]. The second column shows the stable
Dth homotopy groups of the classifying space R1. The third column
gives the number ν of copies of boundary (Dirac) fermions for which
a topological obstruction is permissible. The fourth column gives
the type of topological obstruction that prevents the gapping of the
boundary (Dirac) fermions. We note that for D = 7, even though the
π7(R1) is nonvanishing, there is no topological obstruction that is
compatible with locality. The topological obstruction for ν = 2 is
also present when ν = 3 and the topological obstruction for ν = 4 is
also present when ν = 5, 6, 7.

D πD(R1) ν Topological obstruction

0 Z2 1 Domain wall
1 Z2 2 Vortex
2 0
3 Z 4 WZ term
4 0
5 0
6 0
7 Z 8 None

the existence of vortex configurations of the NLSM bosonic
field, as indicated by line D = 1 and column 4 from Table I. In
the latter case, π0(S0) = Z2 implies the existence of domain-
wall configurations, as indicated by line D = 0 and column
4 from Table I. However, vortex configurations invalidate
the gradient expansion by being singular at the vortex core
and domain-wall configurations necessarily bind zero energy
modes, which leads to vanishing fermionic determinants.

For the ν = 2 case, we follow an alternative approach by
adopting bosonization techniques. The low-energy edge the-
ory turns out to be described by a sine-Gordon action. Such
a theory is not necessarily gapless; however, we demonstrate
that any twofold degenerate and translation-invariant gapped
ground state spontaneously breaks either the TRS or the RS.
This analysis is then supplemented by considering interac-
tions that, prior to bosonization, are local momonials in certain
fermionic bilinears of arbitrary order (i.e., not necessarily of
quadratic order). We find that spontaneous symmetry breaking
of either the TRS or RS always occurs when the interaction
is strong and of even order, while these protecting symmetries
are not broken but TS is explicitly broken when the interaction
is strong and of odd order. In the latter case, there are no
protected delocalized edge states within the bulk gap, but there
are “corner” states on the boundary within the bulk gap.

For the case of ν = 1, we consider smooth interpolations
between certain mass profiles and show the existence of two
topological sectors distinguished by a Z2 invariant. The exis-
tence of these two topological sectors is closely related to a
global Z2 anomaly.

The paper is organized as follows. In Sec. II, we define the
boundary Hamiltonian for ν-edge modes and the symmetries

of the class DIIIR. The subsequent sections discusses the
cases ν = 4, 2, 1, respectively. We conclude with Sec. VI.

II. DEFINITIONS AND SYMMETRIES

We describe the one-dimensional boundary of a two-
dimensional crystalline topological superconductor with the
Hamiltonian

Ĥbd ..= Ĥ0 + Ĥint, (2.1a)

Ĥ0 ≡
∫

dx χ̂†H0χ̂

..=
∫

dx χ̂†(σ3 ⊗ 1ν i∂x )χ̂ , (2.1b)

Ĥint ..= −
∫

dx λ2
N(ν)∑
l=1

(χ̂† βl χ̂ )2. (2.1c)

The Hamiltonian Ĥ0 describes ν pairs of left- and right-
moving quantum Majorana fields. The components χ̂a and χ̂†

a
with a = 1, . . . , 2ν of the quantum-fields and their adjoints
obey the equal-time algebra

{χ̂a(x), χ̂a′ (x′)} = δaa′ δ(x − x′), (2.2a)

with all other anticommutators vanishing, and we impose the
Majorana condition

χ̂† = χ̂T. (2.2b)

The Hamiltonian Ĥint encodes the quartic contact interactions
with coupling constant λ2 between the ν different flavors. The
matrix 1ν is the identity matrix in flavor space. The label
l = 1, . . . , N(ν) enumerates all 2ν×2ν Hermitian matrices
such that (i) they square to the identity β2

l = 12ν , (ii) any
pair (βl , βl ′ ) anticommutes pairwise as well as with σ3 ⊗ 1ν ,
and (iii) each βl is odd under complex conjugation. The first
two conditions restrict the N(ν) interaction channels to the
squares of bilinears that are not competing Dirac mass terms.
The last condition follows from imposing a Majorana condi-
tion on the fermionic quantum fields as we do now. Had we
demanded instead of (iii) that each βl is even under complex
conjugation, the bilinear χ̂† βl χ̂ would then vanish because of
the Majorana condition. We emphasize that N(ν) is constant
when 2n−1 < ν < 2n for some integer n. This means that
the target space corresponding to the normalized dynamical
Dirac masses does not change when 2n−1 < ν < 2n for some
integer n.

Following Refs. [9,22], we define the PH, TR, and reflec-
tion transformations,

Cbd,ν ..= 12 ⊗ 1ν K, (2.3a)

Tbd,ν ..= iσ2 ⊗ 1ν K, (2.3b)

Rbd,ν ..= iσ2 ⊗ 1ν, (2.3c)

where σ are the Pauli matrices and K denotes complex conju-
gation. They satisfy the defining conditions of the symmetry
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class DIIIR, i.e.,

C2
bd,ν = +1, T 2

bd,ν = −1, R2
bd,ν = −1, (2.4)

with the algebra

[Cbd,ν ,Rbd,ν] = 0, [Tbd,ν ,Rbd,ν] = 0. (2.5)

Had we chosen the Hermitian representation for the reflec-
tion transformation (2.3c), i.e., Rbd,ν = σ2 ⊗ 1ν , it would
anticommute with both PH and TR transformations. This
is consistent with the definition of DIIIR in Ref. [9]. The
anti-Hermitian representation (2.3c) is chosen since the trans-
formation law is then covariant with respect to the Majorana
condition (2.2b). Moreover, we demand that transformations
(2.3) are (spectral) symmetries of the single-particle Hamilto-
nian (2.1b)

Cbd,ν H0(x) C−1
bd,ν = −H0(x), (2.6a)

Tbd,ν H0(x) T −1
bd,ν = +H0(x), (2.6b)

Rbd,ν H0(−x)R−1
bd,ν = +H0(x). (2.6c)

When the conditions (2.6) are satisfied and we impose invari-
ance under TS,

T̂ (x′) Ĥbd T̂ −1(x′) = Ĥbd, ∀ x′ ∈ R, (2.7)

where T̂ (x′) is the operator that implements the translation
by x′, then Hamiltonian (2.1b) cannot be gapped by adding
bilinears of the fermionic fields for any ν = 1, 2, 3, . . . [9].
In this case, the noninteracting classification for the class
DIIIR is Z. However, bilinears that are odd under reflection
are allowed if they are multiplied by a (smooth) function of
x, a space-dependent mass, that is odd under x → −x and
must thus vanish at the origin x = 0. Such a mass gaps the
single-particle spectrum except for a mid-gap bound state
whose envelope decays exponentially fast away from x = 0.
Any such mass breaks TS and the origin can be thought of
as a point defect or a “corner” along the one-dimensional
boundary at which the mass term must change sign if it is to
respect reflection symmetry. In the presence of such a space-
dependent mass, the noninteracting classification reduces to
that of the symmetry class DIII, i.e., Z2 [9,22,40].

Alternatively, we can write down the partition function

Zbd ..=
∫

D[χ ] e−Sbd , (2.8a)

Sbd ..=
∫

dτdx Lbd, (2.8b)

Lbd ..= χ†(∂τ + σ3 ⊗ 1ν i∂x )χ − λ2
N(ν)∑
l=1

(χ† βl χ )2, (2.8c)

where the action is defined on (1+1)-dimensional Euclidean
space-time. The integration variables are the components of
the Grassmann-valued spinor χ , as χ† is linearly constrained
to χ through the Majorana condition (2.2b). The interaction

terms can be decoupled via Hubbard-Stratonovich transfor-
mation. The partition function (2.8) then takes the form

Zbd = const ×
∫

D[χ ]
∫

D
[
φβl

]
e−S′

bd , (2.9a)

S′
bd =

∫
dτdx L′

bd, (2.9b)

L′
bd = χ†

(
∂τ + H(dyn)

bd

)
χ + 1

(2λ)2

N(ν)∑
l=1

φ2
l , (2.9c)

H(dyn)
bd

..= +σ3 ⊗ 1ν i∂x +
N(ν)∑
l=1

βl φl . (2.9d)

We have thereby defined the dynamical single-particle bound-
ary Hamiltonian H(dyn)

bd . Conditions (2.6) on H(dyn)
bd can be met

as follows. PHS imposes that

K βl K−1 = β∗
l = −βl , l = 1, . . . , N(ν) (2.10)

for any βl Hermitian 2ν×2ν matrix. Hence, imposing the
Majorana condition trivially satisfies the PHS. Once the max-
imum number of βl matrices that are compatible with PHS
is found, the symmetry requirements coming from TRS and
RS can be satisfied by imposing that φl is either odd or even
under time-reversal and reflection. From now on, we shall use
the shorthand notation for the 4n, 2n×2n Hermitian matrices

Xμ1μ2...μn
..= σ (1)

μ1
⊗ σ (2)

μ2
⊗ σ (3)

μ3
⊗ · · · ⊗ σ (n)

μn
,(

Xμ1μ2...μn

)2 = 12n , μ j = 0, 1, 2, 3, (2.11)

where σ
( j)
0 is 12, σ

( j) are the associated Pauli matrices and
n ∈ Z is related to ν by the relation 2n−1 = ν.

The partition function (2.9) is quadratic in Grassmann
variables, which therefore can be integrated out to yield an
effective action of bosonic fields φβl , provided the Majorana
Pfaffian is nonvanishing. This effective theory is described by
the partition function

Z =
∫

D[φ] δ(φ2 − φ̄2)e− ∫
d2x 1

g (∂μφ)2+�[φ]
, (2.12)

where φ̄2 > 0 is a real-valued constant, φ is a N(ν)-
dimensional vector field that is normalized through the
nonlinear constraint imposed by the δ function, and the sym-
bol �[φ] signifies the existence of a topological obstruction.
In other words, the presence of the symbol �[φ] implies that
the effective action associated to the partition function (2.12)
is not merely that of a NLSM. Due to the nonlinear constraint
imposed on N(ν) bosonic fields, the target space in Eq. (2.12)
is the unit sphere SN(ν)−1. The symbol �[φ] is present in
Eq. (2.12) whenever one of the homotopy groups,

π0(SN(ν)−1),

π1(SN(ν)−1),

π2(SN(ν)−1),

· · ·
πd+1(SN(ν)−1), (2.13)

is nontrivial [37]. (The upper bound d + 1 is imposed as
topological obstructions corresponding to higher homotopy
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groups modify the equations of motions in a nonlocal way
[28].) Such topological obstructions are expected to prevent
gapping out the edge modes. If no such topological obstruc-
tions exists, the low-energy effective theory is described by
no more than a NLSM action. For space-time dimension two,
the action then flows to the strong coupling g → ∞ stable
fixed point [41]. This is the quantum disordered phase that
describes a gapped phase of matter that is symmetric under
all protecting symmetries. The original ν gapless edge modes
have been gapped by the interactions without any of the
preserving symmetries being spontaneously broken. Hence,
the noninteracting gapless edge theory is smoothly connected
to a strongly interacting gapped edge theory upon switching
on local symmetry-preserving interactions. The presence of
the topological obstruction manifests itself by modifying the
renormalization group (RG) flow and preventing the flow to
the strong coupling limit g → ∞.

III. THE CASE ν = 4

The set (2.11) with n = 3 has the 64 elements {Xμρσ }
with μ, ρ, σ = 0, . . . , 3. This set spans the space of 8×8
Hermitian matrices. For ν = 4, there are at most N(4) = 4 in-
teraction channels allowed by the symmetry conditions (2.6),
each of which is labeled by the Hermitian 8×8 matrix βl . We
consider the parametrization

Hdyn
bd (τ, x) ..= β0 i∂x +

4∑
l=1

βl φl (τ, x) (3.1a)

of the dynamical boundary single-particle Hamiltonian, where
without loss of generality, we make the choice

β0 ..= X300, (3.1b)

β1 ..= X210, (3.1c)

β2 ..= X230, (3.1d)

β3 ..= X222, (3.1e)

β4 ..= X102 = −X300 X210 X230 X222. (3.1f)

The choice {β1, β2, β3, β4} is not unique but this lack of
uniqueness does not affect the subsequent analysis. We define
the corresponding partition function

Zbd ..=
∫

D[χ ]
∫

D[�] e−Sbd , (3.2a)

Sbd ..=
∫

d2x

[
χ̄ (iγμ∂μ + �)χ + 1

(2λ)2
�†�

]
, (3.2b)

where, following Ref. [42], we have introduced the notations

χ̄ ..= χ†(−iγ0), (3.2c)

γ0 ..= β4 = X102, (3.2d)

γ1 ..= iβ4 β0 = X202, (3.2e)

γ5 ..= γ0 γ1 = iβ0 = iX300, (3.2f)

ϒ1 ..= − X312, (3.2g)

ϒ2 ..= − X332, (3.2h)

ϒ3 ..= − X320, (3.2i)

ϒ4 ..= +iX000, (3.2j)

and have defined the matrix-valued field

�(x) ..= |φ(x)|
4∑

l=1

nl (x) ϒl , (3.2k)

φ(x) ..= |φ(x)| n(x) ∈ R4, n2(x) = 1, (3.2l)

that parametrizes the dynamical mass profile. We denote
the imaginary time and space coordinates by x = (x0, x1) ≡
(τ, x). With the choice of the representation made in Eqs.
(3.2), the identities

{γμ, γν} = 2δμν, {γμ,ϒl} = 2δ4l ϒl γμ, (3.3a)

hold for any μ, ν = 0, 1 and l = 1, 2, 3, 4. Performing the
Grassmann integration on the partition function (3.2) delivers
the bosonic and local effective action

Zeff ..=
∫

D[�]e−Seff [�], (3.4a)

Seff [�] ..= −1

2
Tr [lnD�] + 1

32λ2
Tr[�†�], (3.4b)

D� ..= iγμ ∂μ + �. (3.4c)

Here, the trace Tr is understood to be over both a plane-wave
basis and 8×8 matrices. The local effective action (3.4b) can
be written in closed form to any finite order of a gradient
expansion [37] as we now sketch.

The solution �̄ to the saddle-point equation

δSeff

δ�
= 0 (3.5a)

is

�̄ = φ̄

4∑
ι=1

n̄ιϒι, (3.5b)

where
4∑

ι=1

n̄2
ι = 1, φ̄2 ..= (

e
1

8πλ2 − 1
)−1

�2. (3.5c)

Here, � is the UV cutoff introduced to regularize the integra-
tion over momenta. The direction of the saddle-point solution
n̄ is arbitrary.

Next, we first consider the change δSeff [�] of effective
action (3.4) when � is varied to � + δ�,

δSeff [�] = Seff [� + δ�] − Seff [�], (3.6)

which is to be expanded around the saddle-point solution (3.5)
in powers of 1/φ̄2. Taking the limit φ̄2 → ∞ kills all but a
finite number of terms on the right-hand side of Eq. (3.6).
Integration over δ� then delivers two terms. The first term
is

SNLSM =
∫

d2x
1

2g
(∂μn)2, g = π. (3.7)

This is the action of the O(4)-NLSM in two-dimensional
Euclidean space-time with the bare coupling constant g = π .
The second term is

� = 2iπ

3!Area(S3)

∫
d3x̃ εμνρ εabcd (∂μña) (∂ν ñb) (∂ρ ñc) ñd .

(3.8)
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Indeed, imposing the nonlinear constraint n2(x) = 1 compact-
ifies the target space of the O(4)-NLSM to the three-sphere
S3. This sphere has the nontrivial homotopy group π3(S3) =
Z. It is then meaningful following Witten [39] to intro-
duce an auxiliary coordinate u ∈ [0, 1] and to extend the
domain of definition of the field n(x) from R2 to R2×[0, 1],
n(x) → ñ(x, u), d2x → d2x du ≡ d3x̃ such that the bound-
ary conditions n̄(x, 0) = n0 for some arbitrary direction n0

and ñ(x, 1) = n(x) are satisfied. This is the WZ [39,43–45]
term for the O(4)-NLSM in two-dimensional Euclidean space-
time. This term is not local in the action but its effect on
the equations of motion is local. However, this term modifies
nonperturbatively the RG flow obeyed by the coupling g. In
fact, in the presence of the WZ term, the beta function of g has
been conjectured to vanish at the value gc = π that defines a
critical point with conformal symmetry [37,39].

The interaction that we chose has an O(4) symmetry. This
symmetry is not sacred. For example, we could have intro-
duced four dimensionless couplings λl with l = 1, . . . , 4, one
for each dynamical mass βl in Eqs. (3.1). By treating each dy-
namical mass βl as independent Hubbard-Stratonovich fields
and integrating over these fields, the interaction is the sum of
four quartic contact interactions, each of which is weighted by
the multiplicative factor (2λl )−2. This interacting theory can
be bosonized with the help of Abelian bosonization rules. The
stability analysis then proceeds along the same line as what is
done in Sec. IV B with the same conclusions. The boundary
theory is gapped if and only if the protecting symmetries
(2.6) or (2.7) are spontaneously broken. One may repeat this
exercise with ν = 6 and reach the same conclusion, a gap is
necessarily associated with the spontaneous symmetry break-
ing of the TRS or RS. It is only when ν is an integer multiple
of the number 8 that a gap delivers a nondegenerate ground
state.

IV. THE CASE ν = 2

The set (2.11) with n = 2 has the 16 elements {Xμρ} with
μ, ρ = 0, . . . , 3. This set spans the space of 4×4 Hermitian
matrices. For ν = 2, there are at most N(2) = 2 interaction
channels allowed by the symmetry conditions (2.6), each of
which is labeled by the Hermitian 4×4 matrix βl . We consider
the parametrization

H(dyn)
bd (τ, x) ..= β0 i∂x +

2∑
l=1

βl φl (τ, x) (4.1a)

of the dynamical boundary single-particle Hamiltonian. Fol-
lowing the same steps as in Sec. III, we impose the nonlinear
constraint:

φ2
1 (τ, x) + φ2

2 (τ, x) = φ̄2. (4.2)

This condition compactifies the target space of the effec-
tive bosonic and local theory to the circle S1. However,
the nontrivial fundamental group π1(S1) = Z implies the
existence of a topological obstruction. This topological ob-
struction takes the form of point defects when the vector
(φ1(τ, x), φ2(τ, x)) accommodates vortex configurations in
(1 + 1)-dimensional space-time. A vortex configuration is
singular at the vortex core where its gradient is ill-defined.

Direct application of the gradient expansion method employed
in Sec. III is thus invalid. To circumvent this difficulty, we
choose the method of Abelian bosonization to derive an effec-
tive local bosonic action.

A. Abelian bosonization

We start from

Ĥbd ..=
∫

dx

{
χ̂†X30i∂xχ̂ −

2∑
l=1

λ2
l (χ̂† βl χ̂ )2

}
, (4.3)

i.e., we do not impose the O(2) symmetry resulting from
demanding that λ2

1 = λ2
2 = λ2 as is done in Hamiltonian (2.1).

Imposing symmetry conditions (2.6a) leads to the identifica-
tion of two possible sets {βl}:

Ba = {X12, X20}, Bb = {X21, X23}. (4.4)

Choosing set Ba in Eq. (4.3) defines Ĥbd a. Choosing set Bb in
Eq. (4.3) defines Ĥbd b. We will perform the subsequent anal-
ysis for both Ĥbd a and Ĥbd b in parallel. With the convention

χ̂† = (
χ̂1

L, χ̂2
L, χ̂1

R, χ̂2
R

)
, (4.5a)

Hamiltonians Ĥbd a and Ĥbd b are given by

Ĥbd a ..=
∫

dx
{
χ̂†X30i∂xχ̂

− λ2
1,a(χ̂†X12χ̂ )2 − λ2

2,a(χ̂†X20χ̂ )2} (4.5b)

and

Ĥbd b ..=
∫

dx
{
χ̂† X30 i∂x χ̂

− λ2
1,b(χ̂† X21 χ̂ )2 − λ2

2,b(χ̂† X23 χ̂ )2
}
, (4.5c)

respectively. This Majorana representation is not well suited
for Abelian bosonization. Instead of it, we define the right-
moving complex fermion fields

ψ̂
†
R

..= χ̂1
R − iχ̂2

R√
2

, ψ̂R ..= χ̂1
R + iχ̂2

R√
2

, (4.6a)

the left-moving complex fermion fields

ψ̂
†
L

..= χ̂1
L − iχ̂2

L√
2

, ψ̂L ..= χ̂1
L + iχ̂2

L√
2

, (4.6b)

and the complex fermion basis

�̂† = (ψ̂†
L ψ̂

†
R ψ̂L ψ̂R). (4.6c)

In the basis (4.6c), we find the complex fermion represen-
tation

Ĥbd a ..=
∫

dx
{
�̂† X03 i∂x �̂

− λ2
1,a(�̂† X31 �̂ )2 − λ2

2,a(�̂† X02 �̂ )2
}

(4.7a)

and

Ĥbd b ..=
∫

dx
{
�̂†X03 i∂x �̂

− λ2
1,b(�̂† X22 �̂ )2 − λ2

2,b(�̂† X12 �̂ )2
}
. (4.7b)
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The change of basis (4.6) causes a permutation among the
matrices Xμρ with μ, ρ = 0, 1, 2, 3. Hamiltonians (4.7a) or
(4.7b) are to be normal ordered by using point-splitting and
Wick’s theorem. These normal-ordered Hamiltonians are then
bosonized by using the identities

ψ̂
†
R(x) =.. η̂R

e−iϕ̂R (x)

√
2πε

, ψ̂
†
L(x) =.. η̂L

e+iϕ̂L (x)

√
2πε

, (4.8a)

where ε is a short-distance cutoff. Hereby, we defined the
chiral bosonic fields that obey the algebra

[ϕ̂R(x), ϕ̂R(x′)] = −[ϕ̂L(x), ϕ̂L(x′)]

= iπ sgn(x − x′), (4.8b)

[ϕ̂R(x), ϕ̂L(x′)] = 0, (4.8c)

and Klein factors η̂R/L that obey the algebra

{η̂R, η̂R} = {η̂L, η̂L} = 2, {η̂R, η̂L} = 0. (4.8d)

Hamiltonian (4.7a) has the bosonic representation

Ĥbd a =
∫

dx

{
1

2π
[(∂xϕ̂L)2 + (∂xϕ̂R)2]

+
(
λ2

1,a + λ2
2,a

)
π2

(∂xϕ̂L + ∂xϕ̂R)2

+ 2
(
λ2

1,a − λ2
2,a

)
π2ε2

cos (2 ϕ̂L + 2 ϕ̂R)

}
. (4.9a)

Hamiltonian (4.7b) has the bosonic representation

Ĥbd b =
∫

dx

{
1

2π
[(∂xϕ̂L)2 + (∂xϕ̂R)2]

+
(
λ2

1,b + λ2
2,b

)
π2

(∂xϕ̂L − ∂xϕ̂R)2

+ 2
(
λ2

1,b − λ2
2,b

)
π2ε2

cos (2 ϕ̂L − 2 ϕ̂R)

}
. (4.9b)

In Hamiltonians (4.9), we have removed the Klein factors
by diagonalizing the operator iη̂Rη̂L and choosing the eigen-
value +1 sector in the Klein Hilbert space. The difference
between the two sets Ba and Bb in (4.4) manifests itself as
the sign with which ϕ̂R enters Hamiltonians (4.9a) and (4.9b),
respectively. In Hamiltonian (4.9a), the cosine results from
the squares of the backward-scattering term ∝ ψ̂

†
Rψ̂L + H.c.

In Hamiltonian (4.9b), the cosine results from the squares
of the backward-pairing terms ∝ ψ̂

†
Rψ̂

†
L + H.c. In the O(2)

symmetric case that is defined by the condition

λ2
1,m = λ2

2,m, m = a, b, (4.10)

both cosine interactions vanish and the theory remains gap-
less. Away from the O(2) symmetric point, the minima of
the cosines are two-fold degenerate. If the cosines dominate
over the kinetic energy, they open a gap with a two-fold
degenerate manifold of ground states. Since the dependence
on interaction strengths have the same form in Hamiltonians
(4.9a) and (4.9b), the boundaries in the corresponding phase
diagrams are identical. However, the phases they separate

can be different whenever they break spontaneously distinct
symmetries.

The transformation [46]

ϕ̂L → +ϕ̂L, ϕ̂R → −ϕ̂R (4.11)

that interchanges Hamiltonians (4.9a) and (4.9b) is nothing
but the transformation that interchanges the pair of dual fields

φ̂(x) ..= 1√
4π

[ϕ̂L(x) + ϕ̂R(x)], (4.12a)

θ̂ (x) ..= 1√
4π

[ϕ̂L(x) − ϕ̂R(x)], (4.12b)

that satisfy the algebra

[φ̂(x), θ̂ (x′)] = i

2
sgn(x′ − x) (4.12c)

with all other commutators vanishing. If one trades the Hamil-
tonian representation for the Lagrangian representation, one
obtains the pair of actions

Sa ..=
∫

d2x

{
1

2ga

(∂μφ)2 + κacos(
√

16πφ)

}
, (4.13a)

Sb ..=
∫

d2x

{
1

2gb

(∂μθ )2 + κbcos(
√

16πθ )

}
, (4.13b)

where φ and θ are dual scalar fields satisfying either

∂μφ = i ga εμν∂νθ, (4.13c)

with μ = 0, 1, (x0, x1) = (vaτ, x), or

∂μφ = i gb εμν∂νθ, (4.13d)

with μ = 0, 1, (x0, x1) = (vbτ, x), respectively. The coupling
constants are given by

2

va

= ga ..= 1√
1 + 4

λ2
1,a+λ2

2,a

π

, (4.13e)

2

vb

= gb ..= 1√
1 + 4

λ2
1,b+λ2

2,b

π

, (4.13f)

whereas the effective interaction strengths are

κa ..= 4

π2ε2

√
1 + 4

λ2
1,a + λ2

2,a

π

(
λ2

1,a − λ2
2,a

)
, (4.13g)

κb ..= 4

π2ε2

√
1 + 4

λ2
1,b + λ2

2,b

π

(
λ2

1,b − λ2
2,b

)
. (4.13h)

The two actions (4.13a) and (4.13b) are exchanged if one
performs the interchanges λ2

i,a ↔ λ2
i,b with i = 1, 2 and φ ↔

θ . The interaction strengths (4.13g) and (4.13h) change
signs depending on whether λ2

1,m > λ2
2,m or λ2

1,m < λ2
2,m, with

m = a, b.
Before proceeding, we determine how the symmetries de-

fined in Eqs. (2.3) act on the bosonic fields. The actions of the
symmetry transformations on the complex fermionic fields are
deduced from their actions on the Majorana fields and given
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by

Û †
C

(
ψ̂L(τ, x)
ψ̂R(τ, x)

)
ÛC =

(
ψ̂L(τ, x)
ψ̂R(τ, x)

)
, (4.14a)

Û †
T

(
ψ̂L(τ, x)
ψ̂R(τ, x)

)
ÛT =

( +ψ̂
†
R(τ, x)

−ψ̂
†
L(τ, x)

)
, (4.14b)

Û †
R

(
ψ̂L(τ, x)
ψ̂R(τ, x)

)
ÛR =

( +ψ̂R(τ,−x)
−ψ̂L(τ,−x)

)
, (4.14c)

where ÛC, ÛT, and ÛR are PH, reversal of time, and reflection
transformations at the many-body level. The operator ÛT is
defined to be antiunitary, whereas operators ÛC and ÛR are
chosen to be unitary. We note that the PHS is represented by
the identity, whereas the TRS involves a PH transformation
[47]. These transformation laws together with Eqs. (4.8a)
imply the transformation laws

Û †
C

(
ϕ̂L(τ, x)
ϕ̂R(τ, x)

)
ÛC =

(
ϕ̂L(τ, x)
ϕ̂R(τ, x)

)
, (4.15a)

Û †
T

(
ϕ̂L(τ, x)
ϕ̂R(τ, x)

)
ÛT =

( −ϕ̂R(τ, x)
−ϕ̂L(τ, x) + π

)
, (4.15b)

Û †
R

(
ϕ̂L(τ, x)
ϕ̂R(τ, x)

)
ÛR =

(−ϕ̂R(τ,−x)
−ϕ̂L(τ,−x)

)
. (4.15c)

We note that in deriving transformation rules (4.15), one must
take care of the transformation rules on the Klein factors as
well. Demanding the invariance of the operator iη̂Rη̂L, we find
the transformation rules

Û †
T

(
η̂L
η̂R

)
ÛT =

( +η̂R+η̂L

)
, (4.16a)

Û †
R

(
η̂L
η̂R

)
ÛR =

( +η̂R−η̂L

)
. (4.16b)

The corresponding transformation rules for the bosonic pair
of dual fields are then found to be

Û †
C

(
φ̂(τ, x)
θ̂ (τ, x)

)
ÛC =

(
φ̂(τ, x)
θ̂ (τ, x)

)
, (4.17a)

Û †
T

(
φ̂(τ, x)
θ̂ (τ, x)

)
ÛT =

(−φ̂(τ, x) + √
π/2

+θ̂ (τ, x) − √
π/2

)
, (4.17b)

Û †
R

(
φ̂(τ, x)
θ̂ (τ, x)

)
ÛR =

( −φ̂(τ,−x)
+θ̂ (τ,−x)

)
. (4.17c)

Alternatively, the transformations (4.17) can also be deduced
from applying the many-body symmetry transformations on
the components of the fermionic two-current.

Equipped with the transformation rules (4.17), we explore
the phase diagram corresponding to the actions (4.13). For
both actions, the corresponding cosine term has the scaling
dimension

�m ..= 4√
1 + 4

λ2
1,m+λ2

2,m

π

, m = a, b. (4.18)

Therefore, the cosine terms are IR irrelevant when λ2
1,m +

λ2
2,m < 3π/4 and the theory remains critical. Increasing the

interaction strengths makes the cosines relevant, in which case
the fields θ and φ are pinned to the minima of the correspond-
ing cosine terms in the ground state.

FIG. 1. Phase diagram for the edge theories defined by the ac-
tions (4.13a) (m = a) in panel (a) and (4.13b) (m = b) in panel
(b) as a function of the interaction strengths λ2

i,m with i = 1, 2 and
m = a, b. Along the blue line, O(2) symmetry holds and both cosine
interactions vanish. Along the red line, both cosine interactions are
marginal.

Each cosine has four extrema, two of which become min-
ima depending on the difference λ2

1,m − λ2
2,m being positive

or negative. In particular, when this difference is zero, both
cosines vanish and the low-energy effective theory is that of
a free scalar field, i.e., it also remains critical. This is the
O(2)-symmetric line in the parameter space. Away from this
line, we observe twofold ground-state degeneracy due to the
two minima of the cosine.

For action (4.13a) with λ2
1,a > λ2

2,a, the two ground states
are φ = √

π/4 and φ = 3
√

π/4. The transformation rules
(4.17) then imply that RS is spontaneously broken. Con-
versely, when λ2

1,a < λ2
2,a, the ground states correspond to

φ = 0 and φ = √
π/2, which implies that TRS is sponta-

neously broken.
For action (4.13b), the transformation rules (4.17) imply

that RS always holds, whereas TRS is broken whenever there
are two ground states separated by a shift of θ̂ by

√
π/2. This

is realized by the cosine interaction in (4.13b).
In Fig. 1, we plot the phase diagrams for both actions

(4.13a) (m = a) and (4.13b) (m = b) as functions of the in-
teraction strengths λ2

1,m and λ2
2,m, respectively. For given m =

a, b, we define the red line in Fig. 1 by

λ2
1,m + λ2

2,m = 3π/4 ⇐⇒ �m = 2 (4.19)

and the blue line in Fig. 1 by

λ2
1,m = λ2

2,m. (4.20)

Below the red line (4.19), the cosine interactions are irrelevant
as their scaling dimensions are larger than 2. Each point in
coupling space is then a critical phase with algebraic corre-
lation functions characterized by scaling exponents that are
smooth functions of the couplings λ2

1,m and λ2
2,m. The free

Dirac point is defined by the origin λ2
1,m = λ2

2,m = 0 of cou-
pling space. Above the red line (4.19), the cosine interactions
are relevant as their scaling dimensions are smaller than 2.
Each point in coupling space then belongs to a gapped phase,
unless the couplings multiplying the cosine interactions van-
ish, as they do along the blue line (4.20). Each gapped phase is
associated with a pattern of spontaneous symmetry breaking.
When λ2

1,a < λ2
2,a (λ2

1,a > λ2
2,a), TRS (RS) is spontaneously

broken as follows from minimizing the cosine interaction.
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When λ2
1,b �= λ2

2,b, TRS is spontaneously broken as follows
again from minimizing the cosine interaction. Along the blue
line (4.20), O(2) symmetry holds and both cosine interac-
tions vanish. Along the red line, both cosine interactions are
marginal.

Abelian bosonization reveals that when quartic contact in-
teractions compatible with the DIIIR symmetries are added,
gap opening necessarily breaks one of the defining symme-
tries. Therefore, the ν = 2 edge theory remains stable in the
presence of interactions in the sense that it may only be
gapped by interactions if any one of the protecting symme-
tries is either explicitly or spontaneously broken. We will
next consider a generic family of symmetry-preserving cosine
interactions and demonstrate that any interaction that gaps the
edge theory must necessarily break spontaneously one of the
protecting symmetries. We also discuss the effect of breaking
of TS.

B. Haldane criterion

In Sec. IV A, we bosonized Hamiltonians (4.7). They are of
the sine-Gordon type. In light of this result, one may consider
a family of bosonic Hamiltonians with generic cosine interac-
tions. These interactions can gap some, most, or all bosonic
degrees of freedom. How many bosonic degrees of freedom
remain gapless is determined using the so-called Haldane
stability criterion [48]. Doing so in a manner compliant with
imposing the protecting symmetries, we are going to recover
the cosine potentials (4.9).

We consider the Hamiltonian

Ĥ ..= Ĥ0 + Ĥint, (4.21a)

which consists of the free Hamiltonian

Ĥ0 ..=
∫

dx
1

4π
(∂x�̂

T )(x)V (∂x�̂)(x), (4.21b)

that describes free chiral bosonic fields and the interaction

Ĥint ..= −
∫

dx
∑
T ∈H

hT (x) :cos(T T K �̂(x) + αT (x)) :

(4.21c)

that encodes a countable set of local fermionic interactions
describing many-body umklapp processes that we shall call
tunneling processes and hence label with the symbol T . The
components of the field �̂ obey the commutation relations

[�̂i(x), �̂ j (x
′)] = −iπ

[
K−1

i j sgn(x − x′)
]
, (4.21d)

where K is a 2×2, integer valued, symmetric, and invertible
matrix. The static functions

hT (x) � 0, 0 � αT (x) < 2π (4.21e)

encode the possibility that TS is broken on the edge. The
matrix V is a 2×2 symmetric and positive definite matrix. The
two-dimensional tunneling vectors T are chosen from a set H,
that we will specify later.

Our aim is to compare Hamiltonian (4.21a) with Hamil-
tonian (4.9a) or Hamiltonian (4.9b) and use the Haldane
criterion to identify some minimal sets of tunneling vectors H
that would gap the chiral bosonic fields �̂ if the functions hT
were large. By comparing the free Hamiltonian (4.21b) with

(4.9), we define the fields

�̂(x) ..= (ϕ̂L(x) ϕ̂R(x))T
, (4.22a)

the universal data

Q ..=
(

1
1

)
, K ..=

(+1 0
0 −1

)
, (4.22b)

and the nonuniversal data

V ..=
(

v u
u v

)
, 0 < v ∈ R, 0 � u ∈ R. (4.22c)

With the universal data (4.22b), the algebra (4.21d) reduces
to the algebra (4.8b). The two-dimensional vector Q is the
charge vector. The explicit dependence of the positive cou-
plings u and v on the couplings λ2

i,m, i = 1, 2, m = a, b from
Hamiltonian (4.9a) will not be needed in the following.

The minimal set of tunneling vectors H is defined as fol-
lows. We first construct the maximal Haldane set

L ..= {T ∈ Z2 | T T K T ′ = T ′T K T = 0,∀T ′ ∈ L}, (4.23)

i.e., the set of elements in Z2 = Z × Z such that the bilinear
form T T K T ′ vanishes for any pair T and T ′ from L. This
constraint is the compatibility condition of the Haldane cri-
terion. With it, there is no competition between any pair of
cosine interaction entering Ĥint. The vectors T ∈ L form a
lattice since, for any pair T, T ′ ∈ L, the linear combination
n T + n′ T ′ with n, n′ ∈ Z also satisfies the compatibility con-
dition. We then define the minimal set of tunneling vectors as
the subset H ⊂ L such that elements T ∈ H constitutes the
primitive cell of the lattice L which is compatible with the
symmetry requirements of class DIIIR.

The Haldane criterion then asserts that the Hamiltonian
(4.21c) for a given H removes 2 × |H|-chiral bosonic fields
from gapless degrees of freedom by pinning them (the nota-
tion |H| denotes the cardinality of the set H). In our case,
Hamiltonian (4.21a) consists of only a single pair of chiral
bosonic fields. Therefore, it is enough to find the single tun-
neling vector making up H to remove all gapless degrees of
freedom.

For a general tunneling vector T = (m, n) of integers
m, n ∈ Z, the Haldane compatibility condition implies that
there are two solutions, n = m and n = −m. Therefore, there
exists two disjoint sets of lattices L generated by the primitive
cells

Ha ..= {
(+na − na)T ∣∣ na to be determined

}
, (4.24a)

Hb ..= {
(+nb + nb)T ∣∣ nb to be determined

}
. (4.24b)

The integers na and nb are not yet determined. To determine
how integers na and nb are constrained, we define the pair of
interactions

Ĥint a ..=
∫

dx ha(x) :cos(na[ϕ̂L + ϕ̂R](x) + αa(x)) : (4.25a)

and

Ĥint b ..=
∫

dx hb(x) :cos(nb[ϕ̂L − ϕ̂R](x) + αb(x)) :,

(4.25b)

corresponding to the minimal sets (4.24a) and (4.24b), re-
spectively, on which we shall impose the symmetries under

205121-9



AKSOY, CHEN, RYU, FURUSAKI, AND MUDRY PHYSICAL REVIEW B 103, 205121 (2021)

the transformations defined in Eq. (4.17). Observe that, in the
strong coupling limit

4π sup{ha(x)} � max{u, v} (4.26a)

[recall that ha(x) � 0 for any x and u and v are defined in
the velocity matrix (4.22c)], the linear combinations ϕ̂L(x) ±
ϕ̂R(x) of the chiral fields are pinned to the minima of the
cosine potentials, namely, either

na[ϕ̂L(x) + ϕ̂R(x)] = 2πk + π − αa(x) (4.26b)

or

nb[ϕ̂L(x) − ϕ̂R(x)] = 2πk + π − αb(x), (4.26c)

respectively, for some integer k ∈ Z.

1. Symmetry constraints on Hamiltonian (4.25a)

PHS is trivially satisfied by construction. Imposing TRS by
using the transformation rule (4.15b) leads to the constraint

αa(x) = −αa(x) − naπ mod 2π, (4.27a)

which implies

αa(x) = la π − naπ

2
mod 2π, la = 0, 1, (4.27b)

since αa(x) ∈ [0, 2π ). Imposing RS by using the transforma-
tion rule (4.15c) leads to the constraint

ha(−x) = ha(x), αa(−x) = −αa(x) mod 2π. (4.28)

Combining TRS and RS implies that

ha(x) = ha(−x) (4.29a)

and

αa(x) =
[

fa(|x|) − na

2

]
π sgn(x) mod 2π, (4.29b)

where fa(x) is any function such that

fa : [0,∞) → {la : la = 0, 1}. (4.29c)

We note that for any even na, assuming that fa(|x|) is con-
stant, the discontinuity at x = 0 of αa(x) is an even multiple
of 2π so the solution to Eqs. (4.29b) and (4.29c) can be
chosen independent of x. This is not the case for odd na as
na π sgn(x)/2 mod 2π changes by π mod 2π across x = 0. A
set of minima for the interaction (4.25a) compatible with TRS
and RS that are labeled by the integers la and na are thus given
by

na[ϕ̂L(x) + ϕ̂R(x)] +
(

la − na

2

)
π sgn(x) = π, (4.29d)

where the right-hand side is defined modulo 2π . Here, to
minimize the cost in kinetic energy arising from discontinu-
ities, we restrict discontinuities to occur only at x = 0 and
demand that h(x) vanishes smoothly at x = 0 if the argument
of the cosine is discontinuous at x = 0. From now on, we only
consider the cases na = 1 and na = 2.

When na = 1, the minima (4.29d) simplify to

ϕ̂L(x) + ϕ̂R(x) = π + (1/2 − la )π sgn(x) mod 2π

=
{π

2 sgn(−x), if la = 0
π
2 sgn(x), if la = 1.

(4.30)

One verifies that

[ϕ̂L(x) + ϕ̂R(x)]′ =
{π

2 sgn(−x), if la = 0
π
2 sgn(x), if la = 1,

(4.31)

where the prime over the operators on the left-hand side is
a short-hand notation for their image under either reversal
of time or the reflection as defined by Eq. (4.15). There-
fore, for a given phase profile specified by la, there exists
a unique gapped ground state for the bosonic interaction
Ĥint a that is invariant under the action of either TRS or RS.
When na = 1 and the competition between the kinetic en-
ergy and the interaction (4.25a) results in the opening of a
spectral gap (with a midgap bound state) on the edge, TRS
and RS are neither broken explicitly nor spontaneously, while
TS is explicitly broken. As announced below Eqs. (2.6) by
making use of the bulk-edge correspondence, the noninter-
acting topological classification Z of symmetry class DIIIR
in (2+1)-dimensional space-time reduces to the topological
classification Z2 of symmetry class DIII when a RS compliant
breaking of TS is allowed [9,22], since Ĥint a with na = 1 is
nothing but a fermionic mass term in the complex fermion
representation. The midgap states bound at the reflection sym-
metric points are protected by the actions of TRS and RS and
cannot be gapped. Such protected corner modes are nothing
but the signature of a second-order SPT phase induced by the
spatially varying mass term. Indeed, it has been shown in Ref.
[49] that a two-dimensional superconductor in the symmetry
class DIII with RS but no TS along the boundary is an example
of a second-order SPT phase [50].

When na = 2, the minima (4.29d) simplify to

2[ϕ̂L(x) + ϕ̂R(x)] = π + (1 − la )π sgn(x) mod 2π. (4.32a)

Because

π sgn(x) = π mod 2π, −π = π mod 2π, (4.32b)

one may write

2[ϕ̂L(x) + ϕ̂R(x)] = π la, mod 2π. (4.32c)

We conclude that

ϕ̂L(x) + ϕ̂R(x) =

⎧⎪⎨⎪⎩
0, if la = 0
π, if la = 0
π/2, if la = 1
3π/2, if la = 1.

(4.33a)

One verifies that

[ϕ̂L(x) + ϕ̂R(x)]TRS =

⎧⎪⎨⎪⎩
π, if la = 0
0, if la = 0
π/2, if la = 1
3π/2, if la = 1

(4.33b)

and

[ϕ̂L(x) + ϕ̂R(x)]RS =

⎧⎪⎨⎪⎩
0, if la = 0
π, if la = 0
3π/2, if la = 1
π/2, if la = 1,

(4.33c)

where the subscripts TRS and RS are short-hand notations
for the image of the minima under reversal of time and space
inversion, respectively. There are two crucial differences be-
tween the cases na = 1 and na = 2. The minima (4.33a)
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transform in a nontrivial way under the actions of TRS and
RS. For each choice la, two minima are exchanged under the
action of either reversal of time or space inversion. Further-
more, the compactness of the chiral fields and the choice na =
2 conspire in such a way that they minimize the interaction
Ĥint a without breaking the TS.

The cosine in the interaction Ĥint a with na = 2 is identical
to the cosine in Hamiltonian (4.9a). The coupling h(x) � 0
breaks TS in the interaction Ĥint a when it is not a constant
function of x, unlike the coupling that multiplies the cosine
in Hamiltonian (4.9a). The two choices for la in Eq. (4.33a)
correspond to fixing the overall sign of the interaction Ĥint a
with na = 2 when evaluated at its translation symmetric min-
ima. In other words, the two choices for la in Eq. (4.33a) with
na = 2 correspond to choosing which two translation symmet-
ric extrema of the cosine term are the minima. Furthermore,
from the transformation rules (4.33b) and (4.33c), we observe
that the same patterns for spontaneous symmetry-breaking
patterns as with Hamiltonian (4.9a). When la = 0, TRS is
spontaneously broken, whereas RS is protected. When la =
1, RS is spontaneously broken, whereas TRS is protected.
Hence, even though the interaction (4.25a) breaks TS when
h(x) is not a constant function of x, it shares with Hamiltonian
(4.9a) the same phase diagram.

Finally, we note that the sign function that interpolates
between any two translation symmetric minima of the inter-
action Ĥint a also minimizes Ĥint a. One verifies that this sign
function respects TRS and RS but breaks TS. Unlike the trans-
lation symmetric minima of the interaction Ĥint a, this sign
function costs kinetic energy. The competition between the
kinetic and interaction terms results in a compromise by which
the singularity of the sign function is smoothed. The outcome
is a soliton that keeps TRS and RS but breaks TS. This soliton
is a gapped excitation that can be interpreted as a pair of
helical Majorana modes localized in the region where the
soliton energy density is nonvanishing and whose existence
is protected by TRS and RS in the Majorana representation of
the boundary theory.

2. Symmetry constraints on Hamiltonian (4.25b)

PHS is again satisfied trivially by construction. Imposing
TRS by using the transformation rule (4.17b) leads to the
constraint

nb = 2m, m ∈ Z, (4.34a)

i.e., nb is an even integer. Imposing RS by using the transfor-
mation rule (4.17c) leads to the pair of constraints

hb(−x) = hb(x), αb(−x) = αb(x). (4.34b)

A set of minima is given by

nb[ϕ̂L(x) − ϕ̂R(x)] + π lb = π, mod 2π, (4.35)

where lb = 0, 1. We only consider the case nb = 2 and con-
clude that

ϕ̂L(x) − ϕ̂R(x) =

⎧⎪⎨⎪⎩
π/2, if lb = 0
3π/2, if lb = 0
0, if lb = 1
π, if lb = 1.

(4.36)

One verifies that

[ϕ̂L(x) − ϕ̂R(x)]TRS =

⎧⎪⎨⎪⎩
3π/2, if lb = 0
π/2, if lb = 0
π, if lb = 1
0, if lb = 1.

(4.37)

The four translation symmetric minima (4.36) are invariant
under the action of RS. On the other hand, under the action
of TRS, two translation symmetric minima corresponding to
each lb are exchanged. Therefore, RS is always protected by
the interaction Ĥint b with nb = 2, whereas TRS is sponta-
neously broken by its minima. The argument of the cosine in
Ĥint b with nb = 2 is identical to that of the cosine in Hamilto-
nian (4.9b). Hence, both Hamiltonians obey the same pattern
of symmetry breaking. Finally, even though the interaction
(4.25b) breaks TS when h(x) is not a constant function of
x, it shares with Hamiltonian (4.9b) the same phase diagram
(Fig. 1).

V. THE CASE ν = 1

For the ν = 1 case, the boundary theory consists of a sin-
gle helical pair of Majorana fields. In this case, as we shall
explain, it is not possible to employ the gradient expansion
method used in Sec. III. Instead, we proceed in two steps.
First, we establish that there are two topological sectors in the
effective bosonic theory for the boundary. Second, we write
down the dominant quartic interaction which we treat within
the mean-field approximation.

A. Existence of two topological sectors

The set (2.11) with n = 1 has the 4 elements (Xμ ≡ σμ

with μ = 0, · · · 3). For ν = 1, there is at most N(1) = 1 in-
teraction channel allowed by the symmetry conditions (2.6).
Therefore, there is a unique parametrization

H(dyn)
bd (τ, x) ..= β0 i∂x + β1 φ (τ, x), (5.1)

β0 ..= X3 ≡ σ3, β1 ..= X2 ≡ σ2 (5.2)

of the dynamical boundary single-particle Hamiltonian. If we
impose the nonlinear constraint

φ2(τ, x) ≡ φ̄2 (5.3)

for some given real-valued number φ̄, the target manifold is
then nothing but two points ±1 with the only nonvanishing
homotopy group π0(S0) = Z2.

When the hard nonlinear constraint (5.3) is strictly im-
posed, all configurations of φ(τ, x) other than the constant
field φ(τ, x) = ±φ̄ must be discontinuous at the space-time
points where φ(τ, x) switches between +φ̄ and −φ̄. The gra-
dient of φ(τ, x) is then ill-defined at singular points and zero
everywhere else. If we relax the condition (5.3) by imposing
the nonlinear constraint asymptotically,

lim
τ→±∞ φ2(τ, x) ≡ φ̄2, (5.4)

then smooth deformations of these singular configurations are
admissible. However, the continuous function φ(τ, x) then
necessarily takes the value zero along at least one time slice
in (1 + 1)-dimensional space-time, which binds zero modes in
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the spectrum. This prevents employing the gradient expansion
approach outlined in Sec. III since the Pfaffian obtained by
integrating out real-valued Grassmann fields,

Zbd ∝
∫

D[φ]
∫

D[χ ] e− ∫
d2x χ̄(iγμ∂μ−iφ)χ

∝
∫

D[φ] Pf[iσ2 D[φ]], (5.5a)

vanishes due to zero eigenvalues of the kernel

D ..= iγμ∂μ − iφ, γ0 ..= −σ2, γ1 ..= σ1, (5.5b)

where χ̄ = χ†(iσ2). Because the kernel iσ2D is skew symmet-
ric, the identity

(Pf[iσ2 D[φ]])2 = Det[iσ2 D[φ]] (5.6)

holds. Therefore, the Pfaffian of iσ2D, is nothing but the
square root of the functional determinant of iσ2D.

The idea that we shall develop below is the following.
According to Eq. (5.6), computing the Pfaffian of a skew-
symmetric operator is akin to taking the square root of a
number. Taking the square root of a real-valued number yields
two roots differing by their signs. For any pair φ and φ′, it is
the relative sign between Pf[iσ2 D[φ]] and Pf[iσ2 D[φ′]] that
fixes if φ is topologically equivalent to φ′. The background φ

is topologically equivalent to φ′ if

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[φ′]]

)
= +1. (5.7)

Otherwise, the background φ is not topologically equivalent to
φ′. We are going to show that there are two topological sectors
in the effective bosonic theory, i.e., there are two disjoint sets
of topologically inequivalent profiles of the field φ.

Although the kernel iσ2D[φ] is not Hermitian, the kernel

D′[φ] ..=
(−φ +∂

+∂̄ +φ

)
= −iσ1 ∂x + iσ2 ∂τ − σ3 φ, (5.8a)

∂ ..= ∂τ − i∂x, ∂̄ ..= −∂τ − i∂x (5.8b)

(i) shares the same determinant as iσ2D[φ] and (ii) is
Hermitian. It follows that the eigenvalues of D′[φ] are real
valued. Moreover, the kernel D′[φ] obeys the Bogoliubov–de
Gennes condition and, hence, the nonvanishing real-valued
eigenvalues of D′[φ] come in pairs of opposite signs. We shall
assume that all eigenvalues of D′[φ] are nonvanishing. The
label ι enumerates all pairs of eigenvalues ±|λ′

ι| ∈ R \ {0} of
D′[φ]. We then have the definition

Pf[iσ2 D[φ]] ..=
∏

ι

|λ′
ι| (5.9)

that consists of choosing all the positive representatives of the
pairs of nonvanishing eigenvalues. The question that immedi-
ately arises is if this definition can be done consistently over
the entire target space of φ. If the answer to this question is
positive, then the target space is topologically trivial. Other-
wise, it is not.

Our goal is to show that there are two distinct topological
sectors as discussed above. To this end, we shall choose an

arbitrary profile φ(τ, x) that obeys the boundary conditions
(5.4) and prove the identities

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[φ̄]]

)
= −sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[−φ̄]]

)
(5.10a)

and

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[−φ]]

)
= −1. (5.10b)

Two comments are in order before we prove Eqs. (5.10).
Equation (5.10a) implies that profile φ is topologically equiv-
alent to either one of the two constant profiles ±φ̄. In other
words, there exist exactly two topological sectors with rep-
resentative profiles +φ̄ and −φ̄ as measured by Eq. (5.10a).
Equation (5.10b) implies that the profiles φ and −φ belong
to distinct topological sectors, a fact that originates from a Z2
global anomaly [51,52]. Indeed, the transformation

χ = σ3χ
′, φ = −φ′ (5.11a)

leaves the Lagrangian

χ̄ (iγμ∂μ − iφ)χ = χ̄ ′(iγμ∂μ − iφ′)χ ′ (5.11b)

invariant, while the partition function (5.5a) changes accord-
ing to

Zbd ∝
∫

D[φ′]D[χ ′]J [σ3]e− ∫
d2x χ̄ ′(iγμ∂μ−iφ′)χ ′

∝
∫

D[φ′]J [σ3]Pf[iσ2 D[φ′]]

∝
∫

D[φ]J [σ3]Pf[iσ2 D[−φ]]. (5.11c)

On the one hand, to reach the right-hand side of the second
line, we allowed for a possibly nontrivial Jacobian J [σ3]
associated with the transformation χ = σ3χ

′. On the other
hand, to reach the third line, we assumed that the Jacobian
associated with the transformation φ = −φ′ is unity. Equation
(5.10b) then implies that J [σ3] = −1, which is the precise
definition of a Z2 global anomaly, namely, the symmetry of
the Lagrangian that is not respected by the measure.

Proof of Eqs. (5.10)

We now prove Eqs. (5.10). To examine whether two pro-
files φi(τ, x) and φf (τ, x) are topologically equivalent, we
introduce a parameter t ∈ [0, 1] and define a continuous func-
tion φt (τ, x) such that

φt=0(τ, x) = φi(τ, x), φt=1(τ, x) = φf (τ, x). (5.12a)

We choose the linear interpolation

φt (τ, x) ..= (1 − t ) φi (τ, x) + t φf (τ, x). (5.12b)

We impose periodic boundary conditions in both τ and x,

φ(τ, x + Lx ) = φ(τ, x), φ(τ + Lτ , x) = φ(τ, x). (5.13)

Hence, interpolation (5.12) also satisfies these boundary
conditions. Boundary conditions (5.13) describe a compact
space-time (S1 × S1 = T2). It follows that the spectrum of the
kernel D′[φt ] defined in Eq. (5.8) is discrete. If one calculates
the flow of eigenvalues λ′

t,ι of the kernel D′[φt ] as a function
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of t , whenever there is a gap closing, i.e., at least one of the
λ′

t,ι is 0, there is a π phase change in the Pfaffian. Thus, an
odd number of gap closings during the evolution from t = 0
to t = 1 means that the initial and final profiles belong to
different topological sectors. We will prove Eqs. (5.10) by
assuming that the number of gap closings is independent of
the choice of the interpolation scheme, without calculating the
actual number of gap closings explicitly.

We first examine a special case of Eq. (5.10a) for which
φ(τ, x) = +φ̄. Consider the linear interpolation

φ+,−
t ..= (1 − t )φ̄ + t (−φ̄) = (1 − 2t )φ̄. (5.14)

For any t �= 1/2, φ+,−
t contributes to the Kernel D′[φ+,−

t �=1/2] as
a constant nonvanishing mass term. Hence, the spectrum is
gapped. This gap closes only at t = 1/2, in which case the
kernel D′[φ+,−

t=1/2] is that of a free Majorana fermion. There
exists only a single pair of zero eigenvalues that are labeled by
reciprocal vector (ω, k) = (0, 0). Therefore, we find that there
is a single crossing between negative and positive eigenvalues
of D′[φ+,−

t ] at t = 1/2. It follows that in the special case
φ(τ, x) = +φ̄, Eq. (5.10a) holds. For any profile φ(τ, x), the
manipulation

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[φ̄]]

)
= sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[−φ̄]]

)
× sgn

(
Pf[iσ2 D[−φ̄]]

Pf[iσ2 D[φ̄]]

)
(5.15)

then implies Eq. (5.10a). Observe that identity (5.15) is noth-
ing but the interpolation

�+,−
t ..=

{
(1 − 2t )φ(τ, x) − 2t φ̄, if 0 � t < 1

2
(2t − 2)φ̄ + (2t − 1)φ̄, if 1

2 � t � 1.
(5.16)

To show Eq. (5.10b), we note that for any φ(τ, x),

σ2 K D′[φ] K σ2 = D′[−φ]. (5.17)

Hence, D′[φ] and D′[−φ] share the same eigenvalue spec-
trum. This implies that for the two interpolations

�+
t ..= (1 − t ) φ̄ + t φ(τ, x), (5.18a)

�−
t ..= (1 − t ) (−φ̄) + t (−φ(τ, x)) = −�+

t , (5.18b)

D′[�+
t ] and D′[�−

t ] also share the same eigenvalue spectrum.
Therefore, one can then show that

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[φ̄]]

)
= sgn

(
Pf[iσ2 D[−φ]]

Pf[iσ2 D[−φ̄]]

)
, (5.18c)

which after rearrangement gives

sgn

(
Pf[iσ2 D[φ]]

Pf[iσ2 D[−φ]]

)
= sgn

(
Pf[iσ2 D[φ̄]]

Pf[iσ2 D[−φ̄]]

)
= −1. (5.18d)

Any profile φ(τ, x) is topologically inequivalent to −φ(τ, x),
as claimed in Eq. (5.10b).

B. Mean-field treatment of the interaction

To complement the discussion in the previous subsection,
we integrate over the bosonic field φ in action (5.5a) and de-

rive the effective action for the Majorana fields χ̂L and χ̂R. The
single interaction term has the form χ̂L(x) χ̂R(x) χ̂L(x + ε)
χ̂R(x + ε), where ε is a short-distance cutoff that implements
point splitting. For weak coupling strength, this interaction
term is irrelevant and the boundary remains gapless. In the
limit of a strong interaction strength, a gap opens in the spec-
trum [53,54]. At the mean-field level, this gap corresponds
to the bilinear iχ̂L χ̂R acquiring a nonvanishing expectation
value. This is equivalent to replacing the dynamical field
φ(τ, x) in action (5.5a) by the constant profiles ±φ̄. Inserting
the mean-field solution for the field φ(τ, x) explicitly breaks
the TRS since the term ±i φ̄ χ̂L χ̂R is odd under the trans-
formation (2.3b). Gapping the boundary is only possible by
spontaneously breaking TRS.

VI. CONCLUSION

We have studied by nonperturbative means the stability
of a two-dimensional crystalline topological superconductor
in symmetry class DIIIR when perturbed by symmetry-
preserving quartic contact interactions. Building on the fact
that eight copies of helical pairs of edge modes are gapped
by such interactions without symmetry breaking, we investi-
gated the stability of ν = 1, 2, 4 copies of the helical pairs of
edge theories in order to understand how these cases remain
stable. For ν = 4 copies of edge modes, we identified four
interacting channels and presented an analytical derivation of
the low-energy effective action, which is a NLSM model sup-
plemented by a WZ term. In (1 + 1)dimensions, this action
flows to that of a gapless theory. Hence, the interacting theory
remains gapless. We then employed bosonization methods to
study interactions between ν = 2 copies of helical pairs of
edge modes. We found that there is a regime in coupling space
for which interactions become relevant, but always at the cost
of the spontaneous breaking of one of the two protecting
symmetries, provided we impose translation symmetry on the
edge. For the final case of a single helical pair of edge modes,
although we were not able to bosonize the fermionic theory
explicitly, we showed that there exist two topological sectors
and a Z2 global anomaly. We instead analyzed the stability of
the noninteracting edge states by using their Majorana repre-
sentation and showed that the boundary can only be gapped at
the cost of spontaneously breaking the TRS.

In two-dimensional space, the symmetry class BDIR cor-
responds to a TRS crystalline superconductor for which the
operation of time reversal squares to +1. Its noninteract-
ing topological classification Z becomes the classification
Z8 in the presence of symmetry-preserving contact quartic
interactions [35]. Our approach would also apply to this
case. The stability analysis of two-dimensional crystalline
insulators with noninteracting topological classification Z
can always be dealt with using Abelian bosonization tech-
niques in combination with the Haldane criterion. How-
ever, Abelian bosonization techniques are not applicable to
three-dimensional space. Instead, one relies on functional
bosonization techniques based on the gradient expansion or
on conjectured dualities. Detailed stability analysis of some
two- and three-dimensional topological crystalline insulators
can be found in Refs. [55–57].
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