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Methods for constructing parameter-dependent flat-band lattices
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We present two methods for constructing a flat-band (FB) system having a flat energy dispersion over the entire
Brillouin zone within the tight-binding model, where the resulting Hamiltonian may not be easily obtained by
existing methods based on a bipartite graph and line graph techniques. In the first method, we derive a set of
conditions equivalent to the appearance of FBs for a given graph structure. This method allows parameters to be
tuned so that systems with a small number of sites per unit cell have a FB. In the second method, we show that FB
systems can be obtained by removing or adding sites to an existing FB system under specific rules. In particular,
the site addition method enables us to construct multiple FB systems stemming from a single FB system. The FB
system obtained by the second method has the characteristic that the component ratios in the FB eigenstate are
partially common to the original system. We illustrate how lattices having a FB can be constructed by applying
the latter method starting from an existing lattice such as a kagome lattice, demonstrating that a wide variety of
lattices can possess a FB in the band structure.
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I. INTRODUCTION

Flat-band (FB) systems have a band structure with a flat
energy dispersion over the entire Brillouin zone. FBs play a
central role in a wide variety of phenomena in solids: The fer-
romagnetism of the Hubbard model with a half-filled FB has
been demonstrated for several systems such as Lieb, kagome,
and Tasaki lattices [1–5]. FB systems with nontrivial topo-
logical invariants have also been reported, and the possibility
of the room-temperature fractional quantum Hall effect has
been discussed [6–10]. The relationship between FB systems
and superconductivity has also been discussed [11]. Recently,
superconductivity has been experimentally confirmed in the
twisted bilayer graphene at a specific twist angle, the magic
angle, where nearly flat bands have been reported by several
theoretical calculations [12–16]. It has also become possible
to artificially form two-dimensional lattices in cold atom sys-
tems [17], photonic crystal systems [18], and surface systems
[19,20]. These realizations have triggered interest in the de-
sign of FB systems such as the Lieb lattice.

Obtaining a variety of FB systems is important for both
investigating the phenomena arising from FBs and designing
systems with FBs. The conventional way to derive FB systems
is to construct a bipartite graph with different sizes of sublat-
tices [21]. The FB of lattices such as the Lieb lattice and dice
lattice can be understood from the bipartite graph structure.
The FB construction method using line graph structures has
also been proposed [3,7]. For example, the FB for a kagome
lattice, which is a line graph of a honeycomb lattice, and a
checkerboard lattice, which is a line graph of a square lattice,
can be understood from the graph structure. In addition to
those methods, a method of partial line graphs inspired by the
line graph method [22], a method of constructing FB systems
by combining miniarrays [23], and a method of obtaining

different systems by transforming a plaquette using a pro-
cedure called the origami rule [24] have been proposed. An
attempt to classify FB systems in a one-dimensional (1D)
system and to generate a system with FBs based on the clas-
sification has also been reported [25,26].

Furthermore, a method of constructing FB systems by
tuning the parameters rather than the graph structure of the
system has been proposed. When a system has a FB, the
system corresponding to the power of the Hamiltonian of the
system also has a FB. A method to adjust the FB energy
using the property has been reported [27]. FBs that arise when
certain conditions are satisfied between parameters are also
reported for the distorted Lieb lattice with additional atoms,
the bitriangular lattice, and the checkerboard lattice with ad-
ditional atoms [28]. In addition, it is also noted that other
methods have been proposed to construct and/or classify FB
systems [29–31].

In this paper, we propose two methods for constructing FB
systems by tuning parameters involved in the tight-binding
(TB) model. By the methods one can derive a wide range
of systems having a FB, which may not be easily obtained
by existing methods such as a bipartite graph and line graph
techniques. The first method is to tune the parameters for a
given system so that the system satisfies a set of conditions for
having a FB. The set of conditions is necessary and sufficient
for the system to have a FB. Within the set of conditions
derived for a given graph structure, one can vary the TB
parameters while keeping the flatness of a band in the band
structure, although the conditions become complicated to han-
dle analytically as the number of sites per unit cell increases.
The conditions should be satisfied for a given graph structure
if the TB system has a FB. Thus not only any known FB
systems such as Lieb and kagome lattices, but also nontrivial
lattices having a FB must fulfill the corresponding conditions.
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The second method derives a FB system by removing or
adding a site, where a FB system is constructed from an
existing FB system. This method can handle FB systems with
a large number of sites per unit cell and enables us to obtain
FB systems with distant TB hopping parameters because ad-
ditional edges are created in the procedure. The site removal
and addition procedures can be regarded as an extension and
generalization of the method by Lee et al. [28], respectively.

The paper is organized as follows: In Sec. II, we explain
how to obtain a set of conditions equivalent to the appearance
of FBs and how to tune the parameters to obtain a FB system.
In Secs. III and IV, we describe how to construct a FB sys-
tem by removing and adding sites from a known FB system,
respectively. In Sec. V, we conclude our methods with future
perspectives.

II. FB CONDITIONS IN THE TIGHT-BINDING
(TB) MODEL

In the spinless TB model, we derive general conditions to
have a FB for TB parameters in a system with a given graph
structure. First, let us introduce a lattice with N sites per unit
cell, whose TB Hamiltonian is given by

H =
∑
i, j

∑
R,R′

t ji,R′ â†
jR+R′ âiR, (1)

where i and j represent the site index running from 1 to N in
the unit cell and R and R′ are the lattice vectors specifying the
position of the unit cell. â†

iR (âiR) is the creation (annihilation)
operator for the site i in the unit cell specified by the lattice
vector R. t ji,R′ is the hopping integral from the site i in the unit
cell of R = 0 to the site j in the unit cell of R = R′, while tii,0
is the on-site energy of the site i. The Fourier transformation
(FT) of the annihilation operator is defined by

âiR = 1√
M

∑
k

e−ik·Rĉik, (2)

where M is the total number of unit cells, which is large
enough. ĉik is an annihilation operator in the reciprocal lattice
space. The FT of the creation operator can be obtained from
the Hermitian conjugate of Eq. (2). Then, using Eq. (2) and
one corresponding to the creation operator, the Hamiltonian
of Eq. (1) can be rewritten as

Ĥ =
∑

k

∑
i, j

(∑
R

t ji,R eik·R
)

ĉ†
jkĉik. (3)

In the following, we write the k-dependent Hamiltonian as

Hi j (k) =
∑

R

ti j,R eik·R, (4)

which is nothing but the FT of the TB parameter.
When the system has a FB, the Hamiltonian has an eigen-

value EFB that is independent of the wave vector k. Without
losing generality, one can shift the on-site energy of each site
by −EFB and set the FB energy to 0. Then, the determinant
of the Hamiltonian must be zero because the secular equation
|H (k) − λI| = 0 has an eigenvalue of λ = 0. The determinant

of the Hamiltonian is explicitly written as

|H (k)| =
∑
σ∈SN

sgn(σ )H1σ (1)(k)H2σ (2)(k) · · · HNσ (N )(k)

=
∑
σ∈SN

∑
R

∑
R1, . . . , RN ,

R1 + · · · + RN = R

sgn(σ )t1σ (1),R1 · · ·

× tNσ (N ),RN eik·R, (5)

where SN denotes the symmetric group on a set of N and
sgn(σ ) denotes the sign of the permutation σ . R1, . . . , RN

run through the range satisfying R1 + · · · + RN = R. Since
|H (k)| = 0 must hold for all k if the system has a FB, one
can obtain conditions among parameters to have a FB by
comparing the Fourier coefficients of eik·R as follows:∑

σ∈SN

∑
R1, . . . , RN

R1 + · · · + RN = R

sgn(σ )t1σ (1),R1t2σ (2),R2 · · ·

× tNσ (N ),RN = 0 (∀R). (6)

All of these equations must be satisfied in order for the system
to have a FB. In practice, the range of R is limited due to the
short-range property of TB parameters we generally assume.
Since these equations give a set of conditions equivalent to
having a FB for any lattice system, any known FB systems
such as Lieb and kagome lattices should satisfy the FB con-
dition of Eq. (6) among TB parameters for all R. However,
the application of the method in deriving a FB system might
be limited to a relatively small system, since the analytic
formulas derived from Eq. (6), which are given as a pair of
N th-order equations for ti j,R, become overly complicated as
the number of sites in the unit cell increases. Note that the
number of nonzero terms in Eq. (6) scales as N!(NNN/N )N for
a given R if the number of nearest-neighboring sites is NNN on
average.

As an example, let us investigate the FB conditions for a
kagome lattice. A kagome lattice is a two-dimensional lattice
with three sites per unit cell, depicted in Fig. 1(a). The unit cell
is shown in the shaded area with R1 and R2 as lattice vectors.
Assuming that all hopping integrals to the nearest site are t
and the on-site energies are zeros, a FB is obtained at E =
−2t as shown in Fig. 1(c), where t is set to be 1. Here, we
relax the restriction that hopping integrals are the same for all
edges and that on-site energies are the same regardless of the
sites. The hopping integrals are defined as in Fig. 1(a), and
the on-site energy at the site i is defined as ei. So, we have
nine variables describing the system and obtain the following
relations among them using Eq. (6):

e1e2e3 + 2t1t3t5 + 2t2t4t6 − e1
(
t2
5 + t2

6

)
− e2

(
t2
3 + t2

4

) − e3
(
t2
1 + t2

2

) = 0 (R = 0),

t1t4t5 + t2t3t6 − e2t3t4 = 0 (R = R1,−R1),

t1t3t6 + t2t4t5 − e1t5t6 = 0 (R = R2,−R2),

t1t4t6 + t2t3t5 − e3t1t2 = 0 (R = R1 − R2,−R1 + R2).

(7)

For the other R’s, all the terms vanish due to the short-range
property of TB parameters specified in Fig. 1(a). Now, we
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FIG. 1. (a) Graph structure of a kagome lattice and definition of
hopping integrals, where the black circles and the lines represent
the sites and the interactions, respectively. (b) Brillouin zone of
the kagome lattice. (c) Band structures of the conventional kagome
lattice with parameters of t1 = t2 = t3 = t4 = t5 = t6 = 1 and e1 =
e2 = e3 = 0. (d) Band structures of a kagome lattice with tuned
parameters given by t1 = t2 = t3 = t4 = 2, t5 = t6 = 1, e1 = 8, and
e2 = e3 = 2.

assume that the hopping integrals from t1 to t6 are all nonzero
in order not to change the graph structure of a kagome lattice.
In this case, the first equation can be obtained from the other
three equations, and the FB conditions are written as

e1 = t1t3t6 + t2t4t5
t5t6

,

e2 = t1t4t5 + t2t3t6
t3t4

,

e3 = t1t4t6 + t2t3t5
t1t2

. (8)

From these equations, we see that there are six dimensions
of freedom out of the total nine dimensions in which the
system has a FB. For example, when the hopping integrals are
nonzero, a FB can be formed for any hopping parameters if the
on-site energies are properly tuned using Eq. (8). In the case of
the kagome lattice, where the hopping integrals to the nearest
site are uniformly 1, Eq. (8) gives simply e1 = e2 = e3 = 2.
Shifting the energy origin by −2 results in the band struc-
ture of Fig. 1(c). As another example, Fig. 1(d) shows that
a FB at energy of 0 occurs with the following parameters:
t1 = t2 = t3 = t4 = 2, t5 = t6 = 1, e1 = 8, and e2 = e3 = 2,
which satisfy Eq. (8).

Note that for the kagome lattice case, equivalent equations
can be obtained by considering the degrees of freedom of
parameters in FB line graph systems because a kagome lattice
is a line graph of a honeycomb lattice. However, our method
derives the FB conditions more directly and can be applied to
any system, not just line graph systems.

For a given graph structure our method gives the FB con-
dition. So, once a proper graph structure is introduced, one
can investigate to how large an extent TB parameters can
be varied while keeping the FB conditions of Eq. (6). The
evaluation of Eq. (6) might be useful to study how structural
symmetry breakings and atomic substitutions affect the FB in
known flat-band structures. In addition, one might be able to
check the degree of coincidence of Eq. (6) if a new material
possesses a FB. The procedure will be performed by utilizing
TB parameters derived from maximally localized Wannier
functions (MLWFs) [32] within density functional theory
(DFT) [33,34]. However, the analytic handling of FB condi-
tions might be limited to relatively small systems, since the
number of nonzero terms in Eq. (6) scales as N!(NNN/N )N as
discussed before. On the other hand, the numerical evaluation
of |H (k)| can be performed by employing matrix factorization
techniques such as lower-upper (LU) factorization in O(N3)
operation.

It is noted that the necessary and sufficient condition of FBs
has been discussed based on the reciprocal space representa-
tion for TB models with nearest-neighboring hoppings [35],
while the condition has also been derived based on compact
localized states for one-dimensional TB models with nearest-
neighboring hoppings [25,26], followed by the extension of
these works to two-dimensional TB models [36]. The nec-
essary and sufficient condition of Eq. (6) we derived can be
regarded as a general extension to an arbitrary dimensional
TB model which is not limited to the nearest-neighboring
hoppings.

III. METHOD FOR CONSTRUCTING A FB SYSTEM
BY SITE REMOVAL

A. Principle of the construction method

Apart from the FB conditions defined by Eq. (6), we pro-
pose methods for constructing a FB system by site removal
and addition, which enable us to obtain FB systems with
various graph structures and can be applied to systems with
a large number of sites per unit cell.

Let us start with a general case and consider a system
with N sites per unit cell. Writing down the Schrödinger
equation of the system corresponding to a certain eigen-
value E (k), and letting the corresponding eigenstate be
(c1(k), c2(k), . . . , cN (k))T , we have

N∑
j=1

Hi j (k)c j (k) = E (k)ci(k) (i = 1, 2, . . . , N ), (9)

where the Hamiltonian element Hi j (k) is given by Eq. (4).
Here, we consider removing a site labeled by N from the
system consisting of N sites to generate a system with (N − 1)
sites per unit cell. Defining ε(k) = HNN (k) − E (k), and mul-
tiplying HiN (k) by the expression of Eq. (9) with i = N , we
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obtain the following equation:
N−1∑
j=1

HiN (k)HN j (k)c j (k) + ε(k)HiN (k)cN (k) = 0

(i = 1, 2, . . . , N − 1). (10)

Next, multiplying the expression of Eq. (9) for i =
1, 2, . . . , N − 1 by ε(k), and subtracting it from Eq. (10), we
have equations for (c1(k), c2(k), . . . , cN−1(k))T as follows:

N−1∑
j=1

[ε(k)Hi j (k) − HiN (k)HN j (k)]c j (k) = E (k)ε(k)ci(k)

(i = 1, 2, . . . , N − 1). (11)

Here, we assume ε(k) �= 0 to eliminate a possibility that
the eigenstate is localized at the site N . Then, for any
k, (c1(k), c2(k), . . . , cN−1(k))T �= 0 holds because if we as-
sumed that c1(k), c2(k), . . . , cN−1(k) are all 0, then from
Eq. (9), cN (k) = 0 would hold, which is incompatible
with the fact that (c1(k), c2(k), . . . , cN (k))T is an eigen-
state. Equation (11) shows that the Hamiltonian element
H ′

i j (k) = ε(k)Hi j (k) − HiN (k)HN j (k) for the (N − 1) sites
has the eigenvalue E (k)ε(k) and the eigenstate is given
by (c1(k), c2(k), . . . , cN−1(k))T , excluding the normalization
factor.

Note that when ε(k) = 0, Eq. (10) becomes
N−1∑
j=1

HiN (k)HN j (k)c j (k) = 0 (i = 1, 2, . . . , N − 1). (12)

Equation (12) gives only information about the sites adjacent
to the site N . It depends on the details of the system whether
cl (k) �= 0 holds for at least one site labeled by l adjacent to
the site N at each k. If the condition cl (k) �= 0 holds, Eq. (12)
means that the system described by the new Hamiltonian
H ′

i j (k) = HiN (k)HN j (k) consisting of sites adjacent to the site
N has a FB with zero energy.

Next, let us consider a case where a system with N sites per
unit cell has a FB and generate a system consisting of (N − 1)
sites by applying the method explained above to the system
with N sites for the FB eigenvalue E (k) = EFB. In particular,
it turns out that E (k)ε(k) does not depend on k if HNN (k) is
independent of k; that is, ε(k) does not depend on k. Thus we
see that the constructed Hamiltonian also has a FB eigenstate.
In the following discussion, we consider a case where ε(k) =
ε �= 0. In this case, Eq. (11) reads as

N−1∑
j=1

(
Hi j (k) − HiN (k)HN j (k)

ε

)
c j (k) = EFBci(k)

(i = 1, 2, . . . , N − 1). (13)

It is possible to interpret Eq. (13) as a graphical procedure
which generates a system consisting of (N − 1) sites starting
from a system with N sites. A schematic diagram for the
graphical procedure is depicted in Fig. 2, and the details of
the procedure are summarized as follows:

(1) Choose a site labeled by l from the N-site system,
where Hll (k) = el �= EFB in order to make ε(k) [=Hll (k) −
EFB] a nonzero constant. For generality we use the label l , but
it corresponds to the label N in Eq. (9). From Eq. (4), this

FIG. 2. A schematic diagram of the site removal procedure. The
FB system on the right lattice is constructed from the FB system on
the left lattice. The white-circle site is removed, and the procedure
creates hoppings between the sites adjacent to the white-circle site.
ε is defined as the on-site energy of the white circle minus the FB
energy.

condition corresponds to tll,0 = el and tll,R �=0 = 0. In other
words, we choose a site l , where there is no hopping between
the sites l located in different unit cells and the on-site energy
of the site l is different from EFB. If such a site does not exist,
the site removal procedure cannot be applied. In Fig. 2, we
choose the white-circle site in the left graph as such a site.

(2) Create hoppings between all sites adjacent to the
site l chosen by the first step above. A hopping of value
−t jl,R′tli,−R/ε is created between the sites i and j which
belong to the unit cell R and R′ away, respectively. Here,
ε is defined as ε = el − EFB. The same procedure is also
applied to the case with i = j and R = R′, and in this case the
on-site energy of the site i in the unit cell R away increases
by −til,Rtli,−R/ε = −t2

il,R/ε. The procedure is schematically
depicted in the right graph of Fig. 2.

(3) Remove the site l and the hoppings between the site l
and the other sites.

The resulting (N − 1)-site system has a FB at energy of
EFB.

B. Example of the site removal procedure

The site removal procedure is demonstrated for a kagome
lattice as a concrete example. We choose a kagome lattice
with a FB, where the nearest-neighbor hopping integral is
uniformly 1 and the on-site energy of each site is 0. The left
figure in Fig. 3(a) depicts the kagome lattice. Let us consider
a case of removing site 3 in the figure. The FB energy of the
system is −2, which leads to ε = 2, and the procedure creates
a hopping of −1/2, as shown by the red line in the right figure
of Fig. 3(a). The removed site is depicted by the dashed circle
in the figure. Note that site 1 is connected to two removal
sites, and the total on-site energy at the sites increases by −1,
which is the same for site 2. The resulting lattice is shown
in Fig. 3(b). Here, the on-site energy of the two sites is −1,
and the hopping integrals depicted by the black and red lines
are 1/2 and −1/2, respectively. The graph structure of this
lattice is a checkerboard-type lattice. We see that FB kagome
lattices and FB checkerboard lattices are associated with the
site removal procedure.
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(a)

(c) (d)

(b)

FIG. 3. (a) Removal procedure of site 3 in the kagome lattice with each hopping integral being 1 and each on-site energy being 0. The
red lines in the right figure are the hoppings of −1/2 that are created during the procedure. The dashed circle depicts the removed site. (b) A
checkerboard-type two-site system obtained by the procedure. The black and red lines represent hoppings of 1/2 and −1/2, respectively, and
the on-site energy of each site is −1. (c) Band structure before (solid line) and after (dashed line) the site removal procedure, and the Brillouin
zone. (d) FB eigenstates for the kagome lattice and the obtained two-site lattice at the k point indicated by the red arrow in (c), where k is
found to be (−1.900, 1.097) if the length of the edge of the rhombus of the unit cell is 1. The radius of the white circle is proportional to the
absolute value of the component on each site of the eigenstate, and the red arrow in the white circle corresponds to the phase of the component.

Figure 3(c) shows the band structure of the system shown
in Fig. 3(b) (solid line) together with that of the original
kagome lattice (dashed line). A FB appears at EFB = −2,
which is the same as the kagome lattice although the other
band structure is slightly different from that of the kagome
lattice. Figure 3(d) shows the FB eigenstates at a k point indi-
cated by the red arrow in Fig. 3(c) for both the systems, where
the radius of the white circle corresponds to the absolute value
of the eigenstate component, and the red arrow drawn inside
the circle indicates the phase of the component. It is confirmed
from Fig. 3(d) that the component ratios of the eigenstates of
sites 1 and 2 do not change during the site removal procedure,
which comes from the fact that the set of coefficients in the
original eigenstate for the FB are maintained, excluding the
normalization factor, as explained in Sec. III A.

A checkerboard lattice has hoppings between sites 1 and
between sites 2, so the site removal procedure cannot be ap-
plied to any more. Similarly, successive applications of the site
removal procedure to any FB system can reduce the system to
a system where no further site removal is possible. FB systems
can be classified according to the reduced lattice system.

IV. METHOD FOR CONSTRUCTING A FB SYSTEM
BY SITE ADDITION

A. Principle of the construction method

In the previous section, we presented the procedure for
obtaining a FB system by site removal. In this section,
we consider the reverse procedure, i.e., the procedure for
obtaining a (N + 1)-site FB system by adding a site to

an N-site FB system. When the eigenstates correspond-
ing to the FB energy EFB of the N-site system are
(c1(k), c2(k), . . . , cN (k))T , the Schrödinger equation reads as

N∑
j=1

Hi j (k)c j (k) = EFBci(k) (i = 1, 2, . . . , N ). (14)

Starting from Eq. (14), let us consider adding a site labeled
by (N + 1) with the on-site energy of eN+1 �= EFB. In the
site addition procedure, one can freely choose a hopping
HiN+1(k) = H∗

N+1i(k) between the site (N + 1) and another
site i. Defining ε = eN+1 − EFB �= 0, for each k we can always
determine cN+1(k) satisfying the following equation:

N∑
j=1

HN+1 j (k)c j (k) + εcN+1(k) = 0. (15)

Multiplying Eq. (15) by HiN+1(k)/ε for i = 1, 2, . . . , N and
adding it to Eq. (14), we obtain the Schrödinger equation for
the Hamiltonian H ′(k) of the (N + 1)-site system as follows:

N+1∑
j=1

H ′
i j (k)c j (k) = EFBci(k) (i = 1, 2, . . . , N + 1) (16)

with elements of H ′(k) given by

H ′
i j (k) = Hi j (k)+ HiN (k)HN j (k)

ε
(i, j =1, 2, . . . , N ),

H ′
iN+1(k) = [H ′

N+1i(k)]∗ = HiN+1(k) (i = 1, 2, . . . , N ),

H ′
N+1N+1(k) = eN+1. (17)
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FIG. 4. A schematic diagram of the site addition procedure. The
FB system on the right lattice is constructed from the FB system
on the left lattice. The white-circle site is added, and the procedure
creates hoppings between the sites adjacent to the white-circle site.
ε is defined as the on-site energy of the white circle minus the FB
energy.

In this case, H ′(k) has a FB of energy EFB, and its eigenstates
are (c1(k), c2(k), . . . , cN+1(k))T , excluding the normalization
factor.

Similar to the site removal procedure discussed in the
previous section, one can interpret Eq. (16) as a graphical
procedure which generates a system consisting of (N + 1)
sites starting from a system with N sites. A schematic diagram
for the graphical procedure is depicted in Fig. 4, and the
details of the procedure are summarized as follows:

(1) Define an additional site labeled by (N + 1) anywhere
in the unit cell, and freely choose its on-site energy eN+1

as long as it is not equal to EFB. The left graph of Fig. 4

corresponds to the original system, and the additional site is
depicted as a white circle in the right graph.

(2) Define hoppings between the site (N + 1) and the
sites on the original system. The value of hopping integrals
can be chosen arbitrarily. No hopping between sites (N + 1)
is assumed in order to make ε(k) = H(N+1)(N+1)(k) − EFB a
nonzero constant; that is, we let t(N+1)(N+1),0 = e(N+1) and
t(N+1)(N+1),R �=0 = 0 for the hopping integrals used in Eq. (1).

(3) Create hoppings between all sites adjacent to the site
(N + 1). A hopping of value +(t j(N+1),R′ t(N+1)i,−R)/ε is cre-
ated between sites i and j which belong to the unit cells R and
R′ away, respectively. The sign is different from that of the site
removal procedure. Here, ε is defined as ε = e(N+1) − EFB.
The same procedure is also applied to the case with i = j and
R = R′, and in this case the on-site energy of the site i in
the unit cell R away increases by +(ti(N+1),R t(N+1)i,−R)/ε =
+t2

i(N+1),R/ε. The procedure is schematically depicted in the
right graph of Fig. 4.

The resulting (N + 1)-site system has a FB at energy of
EFB.

B. Examples of the site addition procedure

As examples of the site addition procedure, we show two
systems in which sites were added to the same kagome lattice
in different ways. Let us introduce a kagome lattice with
uniform nearest-neighbor hoppings of 1 and on-site energies
of 0 as shown in the left figure of Fig. 5(a).

First, we consider a case where sites are added at the
triangular center and the hoppings are defined as the blue lines

(a)

(c)

(b)

(d)

FIG. 5. (a) Example of the site addition procedure for a kagome lattice. The white-circle site is added to the triangular center of the lattice.
The blue lines show the hoppings we define, and the red lines show the hoppings created by the procedure. (b) The lattice obtained under
parameters where the original hopping and the hoppings created by the site addition procedure are canceled out. (c) Band structure of the
system shown in (b) and the Brillouin zone, where the hopping integrals are all 1, and the on-site energies of the white and black sites are −3
and −1, respectively. (d) FB eigenstates for the kagome lattice and for the obtained lattice at a k point indicated by the red arrow in (c), where
k is found to be (−1.900, 1.097) if the length of the edge of the rhombus of the unit cell is 1. The radius of the white circle is proportional
to the absolute value of the component on each site of the eigenstate, and the red arrow in the white circle corresponds to the phase of the
component. Site 4 has no amplitude, which is an intrinsic property of the system.
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FIG. 6. (a) Example of the site addition procedure for a kagome lattice. The white-circle site is added to the hexagonal center of the
lattice. The blue lines show the hoppings we define, and the red lines show the hoppings created by the procedure. (b) The obtained lattice.
Transforming the left figure without changing the connection between sites yields the bitriangular lattice shown on the right. (c) Band structure
of the system shown in (b) and the Brillouin zone, where the hopping integrals are all 1, and the on-site energies of the white and black sites are
−1 and 1, respectively. (d) FB eigenstates for the kagome lattice and for the obtained lattice at a k point indicated by the red arrow in (c), where
k is found to be (−1.900, 1.097) if the length of the edge of the rhombus of the unit cell is 1. The radius of the white circle is proportional
to the absolute value of the component on each site of the eigenstate, and the red arrow in the white circle corresponds to the phase of the
component.

in the right figure of Fig. 5(a). The site addition procedure
creates the hoppings of the red lines in the right figure of
Fig. 5(a). In particular, when we choose parameters such that
the added hoppings cancel the hopping of the original triangle,
we obtain a lattice as shown in Fig. 5(b). As an example of
the lattice for Fig. 5(b), we choose parameters with on-site
energies of −3 for the additional sites and hopping integrals
of 1 between the additional sites and the original sites. In this
case, the on-site energy at the black-circle sites in Fig. 5(b)
becomes −1. Figure 5(c) shows the band structure, where
the FB of EFB = −2 is retained. Figure 5(d) shows the FB
eigenstates at a k point indicated by the red arrow in Fig. 5(c)
for the original kagome lattice and the obtained lattice. It can
be confirmed that the component ratios of the eigenstates on
sites 1, 2, and 3 do not change before and after the site addition
procedure, which comes from the fact that the set of coef-
ficients in the original eigenstate for the FB are maintained,
excluding the normalization factor, as explained in Sec. IV A.
Note that in this system, the eigenstate after the procedure has
no amplitude on the added site, which is an intrinsic property
of the system.

Next, we consider another case, where sites are added at the
hexagonal center and the hoppings between the added site and
neighbors are introduced as the blue lines in the right figure of
Fig. 6(a). Furthermore, the site addition procedure creates the
hoppings of the red lines in the right figure of Fig. 6(a). The
left figure of Fig. 6(b) shows the obtained lattice. Transform-

ing this lattice while maintaining the connections between
the sites results in the bitriangular lattice shown in the right
figure of Fig. 6(b). The values of the hopping integrals shown
by the red line are determined by the procedure summarized
in Sec. IV A. Lee et al. [28] have derived this relationship
between parameters as one condition for a bitriangular lattice
to have a FB, from the consideration of TB models of a
bitriangular lattice, and an experimental realization with Ge
atoms of the bitriangular lattice revealed by the site addition
procedure has been recently reported [37].

Figure 6(c) shows the band structure when the on-site
energy of the added site is −1 and the hopping integrals indi-
cated by the blue lines are 1. In this case, the hopping integrals
indicated by the red lines are 1, and the on-site energies of
the black-circle sites are 1. The lattice has the same FB of
EFB = −2 as the kagome lattice. As shown in Fig. 6(d), it can
be confirmed that the component ratios of the eigenstates on
sites 1, 2, and 3 do not change before and after the site addition
procedure.

V. CONCLUSION

In this paper, we have presented two methods for con-
structing a FB system, which are a powerful tool to explore
unconventional structures having a FB. In the first method,
the parameters are tuned using a set of conditions that are
necessary and sufficient to produce a FB when the system is
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given. This method can be applied in principle to any system
once a proper graph structure is introduced. In addition to
the important role for derivation of FB conditions, one might
be able to utilize the conditions in order to investigate to
how large an extent the TB parameters can be varied while
keeping the FB conditions of Eq. (6). The evaluation of Eq. (6)
provides a way to study how structural symmetry breakings
and atomic substitutions affect FBs. Furthermore, the degree
of coincidence of Eq. (6) can be checked if a novel structure
possesses a nontrivial FB, which allows us to unveil novel
materials with the FB and the hidden mechanism to realize the
FB. By employing TB parameters derived from MLWFs [32]
within DFT [33,34], one can numerically evaluate Eq. (6).
It seems to be interesting to analyze peculiar FBs found in
materials with relatively complicated structures such as RCo5

(R = rare earth) compounds [38] and superstructures of Ag
atoms on a Si(111) surface [39–41]. It is also noted that
the analytic handling of FB conditions might be limited to
relatively small systems, since the number of nonzero terms
in Eq. (6) scales as N!(NNN/N )N . On the other hand, the
numerically evaluation of |H (k)| can be performed in O(N3)
operation by using matrix factorization techniques such as LU
factorization.

The second method provides the construction procedure
for generating a series of FB systems by site addition or
removal. In this method, an existing FB system is manipulated
to construct a FB system with a different number of sites per
unit cell by 1. The method by site removal has degrees of
freedom in selecting the removal site. The method by site
addition has degrees of freedom in defining the hoppings
between the additional site and the original sites and in choos-

ing the on-site energy of the additional site. These degrees
of freedom produce a wide range of FB systems. It is also
possible to relate different FB systems by these methods. The
site removal and addition procedures can be regarded as an
extension and generalization of the method by Lee et al. [28],
respectively.

Although we have discussed two-dimensional systems as
illustrations of the two methods, both the methods can be ap-
plied to three-dimensional systems without any modification.
It is also noted that the two methods are applicable even for
the case that each site has multiple orbitals, which is likely
to occur in real materials. In this case, both the methods are
applied to systems with multiple orbitals on a single site by
treating each orbital as a single site.

It will left to future studies to explore the origin of the
parameter-dependent FB systems by using the variety of FB
systems obtained by these construction methods and to un-
derstand the obtained systems within the framework of the
graph theory. Exploration of real materials corresponding to
lattices with a FB designed by the proposed methods is also
an interesting future direction.
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