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Quantum oscillations in the field-induced ferromagnetic state of MnBi2−xSbxTe4
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The intrinsic antiferromagnetic topological insulator MnBi2Te4 undergoes a metamagnetic transition in a
c-axis magnetic field. It has been predicted that ferromagnetic MnBi2Te4 is an ideal Weyl semimetal with a
single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced
ferromagnetic phase of MnBi2−xSbxTe4, where Sb substitution tunes the majority carriers from electrons to
holes. Single-frequency Shubnikov–de Haas oscillations were observed in a wide range of Sb concentrations
(0.54 � x � 1.21). The evolution of the oscillation frequency and the effective mass shows reasonable agreement
with the Weyl semimetal band structure of ferromagnetic MnBi2Te4 predicted by density functional calculations.
Intriguingly, the quantum oscillation frequency shows a strong temperature dependence, indicating that the
electronic structure depends sensitively on magnetism.
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I. INTRODUCTION

The recently discovered magnetic topological material
MnBi2Te4 presents a unique platform to study band topology
intertwined with magnetic order [1–4]. The crystal structure
of MnBi2Te4 [Fig. 1(a)] consists of van der Waals bonded
septuple layers. Each of the septuple layers can be viewed as a
natural heterostructure of a magnetic MnTe layer sandwiched
by Bi2Te3 topological insulators. The layered structure en-
ables exfoliation to reach the regime of a two-dimensional
phenomenon. For example, the quantum anomalous Hall ef-
fect has been observed in atomically thin flakes [5–8]. The
ground state of bulk MnBi2Te4 is a layered antiferromagnet
(AFM) (TN = 24 K), in which the individually ferromagnetic
Mn-Te layers are coupled antiferromagnetically in the out-of-
plane direction (the c-axis), which is also the easy-axis of
the moments. Density functional theory (DFT) calculations
indicate that the three-dimensional bulk electronic structure in
the AFM phase is an antiferromagnetic topological insulator,
with an insulating bulk and gapped surface state on the top and
bottom surfaces. Although soon after the material realization,
angle-resolved photoemission spectroscopy (ARPES) studies
of MnBi2Te4 revealed the Dirac surface states predicted by the
theory [9–14], controversy remains as to whether the Dirac
point is gapped as expected [15].

When a magnetic field is applied along the c-axis, the
AFM phase undergoes a metamagnetic transition, and a fer-
romagnetic (FM) phase is stabilized at 8 T. Compared with
the antiferromagnetic phase, the electronic structure in the
field-induced FM phase is much less explored. This is partly
because the magnetic field and ARPES measurements are

incompatible. It has been predicted that the electronic struc-
ture in the FM phase of MnBi2Te4 is an ideal type-II Weyl
semimetal, with just two Weyl nodes that are situated on
the kz axis [1,2]. If so, the metamagnetic transition is also
a field-induced topological phase transition. Recent scanning
tunneling spectroscopy (STS) measurements found that the
local density of states is almost unchanged across the AFM-
FM transition [16,17], inconsistent with a topological phase
transition. However, STS only probes the surface. Clearly, a
direct measurement of the bulk electronic structure of FM
MnBi2Te4 is desirable to resolve this issue.

Sb-substituted MnBi2Te4 (MnBi2−xSbxTe4) offers the op-
portunity to study the electronic structure in the ferromagnetic
phase via quantum oscillation measurements. The Sb substi-
tution effectively tunes the carriers from electrons to holes
while preserving their intrinsic magnetism (19 < TN < 24 K)
[13,18]. Close to the charge-neutrality point, the mobility is
enhanced and quantum oscillations have been observed [19].
The measurement of quantum oscillations has been a canon-
ical method to probe the bulk electronic structures of metals
and semiconductors. In particular, the doping dependence of
the oscillation frequency and effective mass provides strong
constraints on the band dispersion near the band edge.

Here, we report measurements of the Shubnikov–de
Haas (SdH) oscillations in the field-induced FM phase of
MnBi2−xSbxTe4 over a wide range of Sb concentrations
(0.54 < x < 1.21). By comparing the measured oscillation
frequency, carrier density, and effective mass with DFT
calculations, we find overall reasonable agreement with cal-
culations assuming a rigid band shift of the Weyl semimetal
band structure in FM MnBi2Te4. Interestingly, the oscillation
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FIG. 1. Transport characterization of MnBi2−xSbxTe4. (a) Crystal structure of MnBi2−xSbxTe4. (b) Temperature dependence of zero-field
in-plane resistivity ρxx . (c) Field dependence of Hall resistivity ρxy with field along the c-axis at T = 2 K. Dash-dotted lines denote data taken
on Oak Ridge samples, while solid lines represent UW samples. (d) Carrier density vs chemical doping x. Carrier density is extracted by fitting
the linear background of the Hall resistivity above Hc2.

frequency shows a strong temperature dependence. We can
explain this unusual phenomenon as a manifestation of the
high sensitivity of the electronic structure to the size of the
magnetization in this material.

II. METHODS

Single crystals of MnBi2−xSbxTe4 were grown out of a Bi
(Sb)-Te flux [18,20]. Initial measurements were performed on
samples grown in the Oak Ridge National Lab (OR). After
the initial measurements, another batch was grown at the
University of Washington (UW) using the recipe developed
by the OR group. The compositions were determined by

elemental analysis on a cleaved surface using a Hitachi TM-
3000 tabletop electron microscope equipped with a Bruker
Quantax 70 energy-dispersive x-ray system for OR samples
and a Sirion XL30 scanning electron microscope for UW
samples. Both batches of samples exhibited a similar com-
positional dependence of the physical properties, with a slight
offset in the exact composition, likely due to differences in
the number of antisite defects [21]. Magnetotransport was
carried out in a 36 T series connected hybrid magnet at the
National High Magnetic Field Laboratory in Tallahassee, FL
(OR samples) and in a 14 T Physical Property Measurement
System (PPMS) (UW samples). Magnetotransport measure-
ments were made in a standard four-probe or six-probe contact

FIG. 2. Magnetization characterization of MnBi2−xSbxTe4. (a) Field dependence of magnetization of the x = 0.63 OR sample measured
at various temperatures. (b) Field-temperature magnetic phase diagram of MnBi2−xSbxTe4 for x = 0.63. Circles and triangles denote spin-flop
field Hc1 and saturation field Hc2, respectively. Dotted lines are guides for the eyes for the phase boundaries. Color in the phase diagrams maps
to the logarithm of the absolute value of the second derivative of magnetization with respect to field. Note: the temperature range is 2–30 K.
(c) Doping dependence of spin-flop field Hc1 (circles) and saturation field Hc2 (triangles) at 2 K. Red data are taken on UW samples, whereas
black data are taken on OR samples.
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FIG. 3. Magnetoresistance of MnBi2−xSbxTe4. Field dependence of ρxx for MnBi2−xSbxTe4 with c-axis magnetic fields up to 36 T [OR
samples (a)–(d)], 14 T [UW samples (e)–(j)], and 31 T [UW sample (k)]. The temperature of the measurements is color-coded based on the
scale bar on the right.

configuration with current direction in-plane and magnetic
field out-of-plane (c-axis). To eliminate any effects from
contact misalignment, the magnetoresistivities and Hall resis-
tivities were symmetrized and antisymmetrized, respectively.
Magnetization measurements were made using the vibrating
sample magnetometry option of the PPMS.

Density functional theory calculations were performed
with the Vienna Ab initio Simulation Package (VASP) [22,23].
A projector-augmented wave [24] method with an energy cut-
off of 269.9 eV is used to expand Kohn-Sham wave functions.
The sampling mesh in reciprocal space is 12 × 12 × 4.
The electron-electron interactions are described by a modified
Becke-Johnson (mBJ) functional [25]. Maximally localized
Wannier functions are constructed with the WANNIER90 pack-
age [26].

III. RESULTS

The magnetic and transport properties of MnBi2−xSbxTe4

have been characterized in previous studies [17,18]. In Figs. 1
and 2 we show representative data for the samples studied
in this work. Figure 1(b) shows the temperature dependence
of the zero-field in-plane electrical resistivity ρxx. For most
samples, the resistivity exhibits a metallic behavior, consistent
with a degenerately doped semiconductor. For one composi-
tion very close to the charge-neutrality point (x = 0.7), the

resistivity shows a nonmonotonic temperature dependence.
A kink in the resistivity at around 23–25 K marks the AFM
transition temperature TN . Figure 1(c) shows the Hall resistiv-
ity ρxy measured at T = 2 K. The carrier density is extracted
by fitting the linear background of the Hall resistivity above
Hc2. As shown in Fig. 1(d), the carrier density changes
from 6 × 1019 cm–3 electrons to 2 × 1019 cm–3 holes as the
Sb concentration increases, and the system switches from
n-type to p-type at a compensation point in the vicinity of
0.6 < x < 0.7.

Figure 2 shows the magnetization measurement of a repre-
sentative sample, x = 0.63. As shown in Fig. 2(a), when the
magnetic field is swept along the c-axis at low temperatures,
the sample first undergoes an AFM to canted AFM transition,
corresponding to the sudden jump of the magnetization at the
spin-flop field Hc1, and then a canted AFM to FM transition
at the saturation field Hc2. Using the magnetization versus
field data, we constructed the magnetic phase diagram for x =
0.63, shown in Fig. 2(b). By plotting the second derivative of
the magnetization with respect to the field in a log scale, sharp
color changes highlight the phase boundaries defined by Hc1

(circles) and Hc2 (triangles). As the temperature increases, the
FM phase eventually crosses over to the paramagnetic (PM)
phase. Within the range of the doping focused on in this study,
the Sb substitution only slightly suppresses TN , Hc1, and Hc2

without altering the magnetic phase behavior [18]. All of the
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FIG. 4. Shubnikov–de Haas oscillations of MnBi2−xSbxTe4. Oscillatory part of resistivity for MnBi2−xSbxTe4 as a function of inverse field
obtained by subtracting a fifth-order polynomial background.

quantum oscillations presented below were observed in the
FM-PM crossover regime.

Shubnikov–de Haas oscillations were observed in the
transverse magnetoresistance of MnBi2−xSbxTe4. Figure 3
shows the in-plane longitudinal resistivity ρxx as a function of
c-axis magnetic field. The magnetoresistance (MR) exhibits a
strong field dependence. At base temperature, two successive
features can be seen in most samples, corresponding to Hc1

and Hc2. As the temperature increases, the two anomalies
merge and eventually smear out above TN . For all the doping
levels shown in the figure, quantum oscillations can be seen
once the field surpasses Hc2. In Fig. 4, the oscillatory part of
the resistivity is plotted against the inverse of the magnetic
field. The oscillatory part was extracted by subtracting a fifth-
order polynomial background. Using a fast Fourier transform
(FFT), we obtained the frequency spectrum for each doping
level, plotted in Fig. 5. The oscillation frequency, defined as
the peak position in the FFT spectrum at base temperature, is
plotted as a function of composition in Fig. 5(l). Starting from
the electron-doped side, the oscillation frequency decreases as
x increases and reaches 82 T for x = 0.63. After crossing the
compensation point, the frequency increases monotonically
from 37 to 144 T as x increases from 0.7 to 1.21.

The quantum oscillation frequency is related to the ex-
tremal area of the Fermi surface cross section (A) projected
along the field direction via the Onsager relation Fs =
(h̄/2πe)A. The compositional dependence of the frequency

[Fig. 5(l)] is consistent with the shrinking and expanding of
the Fermi surface as the system is tuned across the charge-
neutrality point. Notice that for a three-dimensional Fermi
surface, the full angular dependence of the frequency is re-
quired to determine the carrier density from its volume. Such a
three-dimensional mapping is impossible for MnBi2−xSbxTe4

because the rotation of the magnetic field also changes the
direction of magnetization, which inevitably changes the elec-
tronic structure [27]. In this study, we focus on the electronic
structure when the magnetization is aligned to the c-axis by
the magnetic field.

We next turn to the temperature dependence of the quantum
oscillations. The amplitude of quantum oscillations always
decays with temperatures due to the smearing of the Fermi-
Dirac distribution, but the frequency is usually a constant as a
function of temperature. Surprisingly, here, in addition to the
thermal damping, we also observed substantial shifts of the
peak and valley positions (Fig. 4) as temperature increases. A
closer inspection of the FFT spectra (Fig. 5) shows that the
oscillation frequency also shifts with temperature. To ensure
that this shift is not an artifact due to background subtraction,
we extracted the oscillatory data of two representative sam-
ples, x = 0.63 (electron-doped) and x = 0.75 (hole-doped),
using three different methods: background subtracted ρxx,
second derivative of ρxx with respect to H, and background
subtracted Hall resistivity ρxy. The results shown in Figs. 6(a)
and 6(b) all exhibit the same clear shifts of the peak and
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FIG. 5. Fast Fourier transform (FFT) spectrum and oscillation frequency of MnBi2−xSbxTe4. (a)–(k) FFT spectrum of the oscillatory part
of resistivity for MnBi2−xSbxTe4 at various temperatures. (l) Doping dependence of the peak frequency Fs. Red (black) dots are data taken
from OR (UW) samples. The gray dashed line denotes the doping level closest to the charge-neutral point.

valley positions, which are plotted in Figs. 6(c) and 6(d). From
these we obtained the oscillation frequency by extracting the
period in inverse field, which is plotted versus temperature in
Figs. 6(e) and 6(f). Interestingly, as the temperature increases,
the electron-doped sample (x = 0.63) shows a decrease in
frequency whereas the hole-doped sample (x = 0.75) shows
an increase.

In the standard theory, the frequency of quantum oscilla-
tions reflects the area of the Fermi surface. The Fermi surface
may change in principle if the Fermi energy shifts with tem-
perature due to an asymmetric density of states, but such a
shift is usually very small. In the cases of Dirac or Weyl
semimetals, energy-dependent cyclotron mass also leads to a
frequency shift as the temperature changes [28]. However, the
temperature dependence of the oscillation frequency that we
observed in MnBi2−xBixTe4 is orders of magnitude larger than
the effect caused by band curvature. Hence, such a significant
change in frequency suggests instead a modification of the
energy bands connected to the temperature-dependent mag-
netic order. As the temperature increases, the field-induced
magnetization decreases due to thermal fluctuations, and the
size of the Fermi surface changes accordingly. The opposite
trend in electron-doped and hole-doped samples indicates
that both the conduction and valence bands move upward
in energy as the temperature increases, so that the electron

pocket size decreases while the hole pocket size increases. We
note that shifts of the oscillation with temperature have been
observed in the magnetic topological semimetal PrAlSi [29],
and in the magnetic semimetal CeBiPt [30], suggesting that
the phenomenon may be generic to magnetic semimetals.

As usual, we proceed to determine the effective mass m =
m∗me by fitting the temperature dependence of the amplitude
of oscillations to the Lifshitz-Kosevich factor,

RT = αT m∗

B sinh(αT m∗/B)
,

where α = 2π2kBme/eh̄. We determine the amplitude by tak-
ing the difference between the peak and valley resistances
measured at the highest field, where the magnetization is in
the saturation state, and the electronic structure state should be
stable. As shown in Fig. 7, the temperature dependence is well
fitted by RT in all cases. The extracted effective mass shows
a strong doping dependence [Fig. 7(l)], indicating that the
energy bands are nonparabolic. In particular, the increase of
m* as the system is doping away from zero-carrier condition
is consistent with the massive Dirac dispersion.

To gain further insights, we used DFT to calculate the band
structure of ferromagnetic MnBi2Te4 with the magnetization
fully saturated along the c-axis [Fig. 8(a)]. We obtain a Weyl
crossing along the �-Z direction, consistent with previous
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FIG. 6. Anomalous temperature dependence of SdH oscillations of MnBi2−xSbxTe4. (a),(b) Oscillatory part of ρxx , second derivative of
ρxx , and background subtracted ρxy for (a) electron-doped (x = 0.63) and (b) hole-doped (x = 0.75) MnBi2−xSbxTe4 at varied temperatures as
a function of inverse field 1/μ0H . (c),(d) Temperature dependence of peak and valley positions in the SdH oscillations for (c) x = 0.63 and (d)
x = 0.75. (e),(f) Oscillation frequency Fs as a function of temperature for (e) electron-doped MnBi2−xSbxTe4 (x = 0.63) and (f) hole-doped
(x = 0.75).

studies. As the Fermi energy moves from the heavily electron-
doped to the heavily hole-doped condition, the Fermi surface
evolves from a single electron pocket that encloses both Weyl
points, to two electron pockets each enclosing a single Weyl
point, to a coexistence of one hole pocket and two electron
pockets, and finally to one hole pocket that encloses both Weyl
points. This is illustrated in Fig. 8(c) using projections of the
Fermi surface onto the ky = 0 plane. Note that Weyl points
are close to the Fermi level only when the Fermi surfaces
consist of two electron pockets [second panel from the right
in Fig. 8(c)]. The frequencies corresponding to the extremal
orbits are plotted in Fig. 8(b) as a function of Fermi energy. If
we map the observed frequencies to the calculation [Fig. 8(b)],
the estimated range of Fermi levels for the samples in this
study [shown as the shaded gray region in Fig. 8(a)] are all
outside the range of Lifshitz transitions in which the Fermi
surface topology changes, i.e., the Fermi surface is either a
single electron or a single hole pocket that encloses both Weyl
points.

IV. DISCUSSION

The goal of this study was to address two questions about
MnBi2−xSbxTe4: (i) Does the electronic structure change
across the field-induced metamagnetic transition? (ii) Is the
field-induced FM state an ideal magnetic Weyl semimetal?

The first question is answered by the strong temperature
dependence of the oscillation frequency—it clearly demon-
strates that the energy band shifts as the magnetization
decreases. From this observation we expect a change of elec-
tronic structure as the system undergoes the metamagnetic
transition. We can address the second question by making a
comparison between the experimentally measured and theo-
retically calculated effective mass.

The effective mass, m, is the derivative of the cyclotron
orbit area A with respect to energy, E:

m = h̄2

2π

∂A

∂E
.

The effective mass m as a function of A is determined
by the band dispersion E (k), and A is in turn directly re-
lated to the oscillation frequency Fs via the Onsager relation,
Fs = (h̄/2πe)A. Therefore, the experimentally measured vari-
ation of m with respect to Fs provides strong constraints on
the underlying band dispersion. In Fig. 9(a), the measured
effective mass versus oscillation frequency is plotted along-
side the prediction based on the Weyl dispersion (blue and
red curves) calculated by DFT. The Weyl dispersion shows a
good agreement with the experimental values. In particular,
the calculated values of the effective mass of the conduction
band match almost perfectly with the experimental data, and
the valence-band effective mass also falls within the range
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of measured values, although the experimental doping de-
pendence seems somewhat stronger. We also calculated the
carrier density (from the Fermi surface volume) versus oscilla-
tion frequency from the Weyl band structures, and it too shows
good agreement with the experimental data [Fig. 9(b)].

Another indicator that has been widely used to determine
the topological nature of a band structure is the phase shift, λ,
of the quantum oscillations [31]. This has three contributions:
φB, due to the geometric phase; φR, due to the orbital magnetic
moment; and φz, due to the Zeeman coupling. It has often
been assumed that in 3D metals, Dirac-type bands lead to
φB = π and parabolic bands lead to φB = 0. However, a
recent comprehensive analysis has shown that φB is in general
a continuous quantity and is only fixed to the specific values of
0 and π in certain symmetry classes determined by the space
group and the type of cyclotron orbits [32]. The cyclotron
orbit and the point group symmetry of FM MnBi2−xSbxTe4

do not belong to one of those symmetry classes, and therefore
we do not expect to observe either φB = 0 or π . Hence the
phase shift cannot be used as conclusive evidence for Weyl
points in this system. For the sake of completeness, however,
we present an analysis of the phase shift of the quantum
oscillations in the Appendix.

We close by noting two reasons for caution. First, Sb sub-
stitution may induce effects that differ significantly from a
simple rigid energy shift of the band structure of MnBi2Te4

[13,14]. This problem could be addressed by developing

new dopants that tune the Fermi level with less change in
chemical composition [33]. Second, in the DFT calculations,
the existence of Weyl nodes in FM MnBi2Te4 is very sensitive
to the input parameters, such as the lattice constants [1,2]. Fu-
ture studies on samples with even lower carrier concentrations
will help resolve the exact band structures near the putative
Weyl points.

V. CONCLUSION

In summary, we obtained important insight into the bulk
electronic structure of ferromagnetic MnBi2−xSbxTe4 using
quantum oscillation measurements. From the temperature
dependence of the oscillation frequency, we infer that the
electronic structure is sensitive to the magnitude of the
magnetization, while in the limit of saturated c-axis magne-
tization we find good overall agreement with band-structure
calculations. This lays the foundation for understanding
magnetism-induced topological phases in this class of
materials.
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APPENDIX: PHASE SHIFT OF QUANTUM OSCILLATIONS

We analyzed the doping dependence of phase shift λ by
constructing Landau fan diagrams from quantum oscillations,
as shown in Fig. 10. We assigned integer Landau level indices
to resistivity peaks, which were shown to coincide with Lan-
dau band edges in a study in which numerical simulation of a
minimal magnetic Weyl semimetal was performed [34]. The
phase shift λ is determined by the following relation:

� = − 1
2 + λ + δ,

in which � is the y-intercept of the linear fits to Landau
indices n versus inverse field, and |δ| is 1/8 with the sign
depending on whether the orbit is the minimum or maximum
of the Fermi surface. We plot � as a function of oscillation
frequency in Fig. 10(i). Notice that λ contains a contribution
from Berry curvature, orbital moment, and Zeeman coupling,
i.e., λ = (φB + φR + φZ )/2π . Their contributions cannot be
separated without an analysis of the higher harmonics of quan-
tum oscillations, which we did not observe. We also do not
expect φB = 0 or π based on the space group symmetry and
the orbits of MnBi2−xSbxTe4. Hence, we cannot determine the
existence of Weyl points based on the extracted �.
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