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The anomalous charge transport observed in some strongly correlated metals raises questions as to the
universal applicability of Landau Fermi-liquid theory. The coherence temperature TFL for normal metals is
usually taken to be the temperature below which T 2 is observed in the resistivity. Below this temperature,
a Fermi liquid with well-defined quasiparticles is expected. However, metallic ruthenates in the Ruddlesden-
Popper family frequently show non-Drude low-energy optical conductivity and unusual ω/T scaling, despite
the frequent observation of T 2 dc resistivity. Herein we report time-domain THz spectroscopy measurements
of several different high-quality metallic ruthenate thin films and show that the optical conductivity can be
interpreted in more conventional terms. In all materials, the conductivity has a two Lorentzian line shape at
low temperature and a crossover to a one Drude peak line shape at higher temperatures. The two component
low-temperature conductivity is indicative of two well-separated current relaxation rates for different conduction
channels. In SrRuO3 and Sr2RuO4, both relaxation rates scale as T 2, while in CaRuO3 the slow relaxation
rate shows T 2, and the fast relaxation rate generates a constant background in conductivity. We discuss three
particular possibilities for the separation of rates: (a) strongly energy-dependent inelastic scattering; (b) an almost
conserved pseudomomentum operator that overlaps with the current, giving rise to the narrower Drude peak; and
(c) the presence of multiple conduction channels that undergoes a crossover to stronger interband scattering
at higher temperatures. None of these scenarios requires the existence of exotic quasiparticles. However, the
interpretation in terms of multiple conduction channels in particular is consistent with the existence of multiple
Fermi surfaces in these compounds and with the expected relative weakness of ω2 dependent effects in the
scattering as compared to T 2 dependent effects in the usual Fermi-liquid treatment. The results may give insight
into the possible significance of Hund’s coupling in determining interband coupling in these materials. Our
results also show a route towards understanding the violation of Matthiessen’s rule in this class of materials and
deviations from the “Gurzhi” scaling relations in Fermi liquids.

DOI: 10.1103/PhysRevB.103.205109

I. INTRODUCTION

The transport phenomenon in strongly correlated metals
is in many cases still poorly understood. In Fermi liquids
at low temperatures, disorder and electron-electron scattering
dominate the transport. The charge resistivity ρ(ω, T ) is ex-
pected to include quadratic leading terms that go as aT 2 and
bω2 from two-particle scattering. Nonetheless, the relation be-
tween prefactors a and b in general depends on the combined
effect of dimensionality [1], fermiology [2], and details of
disorder [3]. In multiband metals, where multiple conduction
channels exist, understanding how the conductivity σ (ω, T )
and resistivity ρ(ω, T ) behave is important for differentiating
Fermi-liquid and non-Fermi-liquid behavior. In this paper, we
examine the optical conductivity and the temperature- and
energy-dependent relaxation rates in the strongly correlated
metallic ruthenates, at the lowest-energy scales with low dis-
order.

The Ruddlesden-Popper family An+1RunO3n+1 of ruthen-
ates (where A = Sr or Ca) exhibits a variety of different
phases. In single-crystal form, they can be very clean and offer
a unique opportunity to examine systems with strong elec-
tronic correlations and elucidate dynamical charge transport
in 4d electron systems. Among them, infinite-layer (n = ∞)
perovskite and pseudocubic SrRuO3 is a ferromagnetic (FM)
metal, with a Curie temperature Tc of ≈160 K in single
crystals [4]. CaRuO3 has the same stoichiometry and is also
orthorhombic and metallic, but has larger structural distortions
due to the smaller size of the Ca ion [5]. It is a paramagnetic
metal on the verge of becoming ferromagnetic [6,7]. Sr2RuO4

is a single-layer perovskite the normal state of which has
been regarded as a paramagnetic quasi-two-dimensional (2D)
Fermi liquid [8], and in which unconventional superconduc-
tivity was discovered [9]. The superconductivity in Sr2RuO4

is very sensitive to disorder [10] and uniaxial strain [11].
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Ca2RuO4, however, is an antiferromagnetic insulator which
can be driven by dc current into a semimetallic nonequi-
librium steady state [12]. Quantum oscillations have been
observed in the above ruthenates which are metallic [13–15].
Low-temperature T 2 resistivity was reported in less disor-
dered samples of SrRuO3 [16] and Sr2RuO4 (in plane) [17].
In CaRuO3, the coherence temperature scale below which re-
sistivity follows T 2 was found to be ≈ 1.5 K in a high-quality
thin film [14].

However, a major puzzle in many of these materials has
been reconciling their dc transport and ac (optical) properties.
For instance, SrRuO3 thin films have been reported to show
T 2 resistivity below ≈30 K [13], but non-Drude optical con-
ductivity at THz [18] and infrared frequencies [19]. Measure-
ments of CaRuO3 thin films showed Drude-like conductivity
below 0.6 THz and inconsistency with Fermi-liquid behavior
above it [14]. In optical measurements of Sr2RuO4 thin films,
a universal Fermi-liquid scaling of ω and T of the resistivity is
reported to be obeyed below 40 K and 36 meV (corresponding
to 8.7 THz). Deviations at higher energies were accredited
to “resilient quasiparticles” [20]. Despite extensive efforts, a
comprehensive understanding of dynamical transport at the
lowest-energy scales in these materials is still lacking. Can
the anomalous aspects in optical conductivity be understood
in conventional terms or must other effects be invoked?

Here, we present a systematic time-domain THz spec-
troscopy (TDTS) study of three metallic ruthenates, SrRuO3,
CaRuO3, and Sr2RuO4, in the form of high-quality thin films.
The crucial finding is that at low temperatures the com-
plex conductivity of all three materials can be modeled as a
sum of two Lorentzians, and smoothly evolves into a single
Lorentzian as temperature is elevated. This picture gives a
way of understanding deviations from the “Gurzhi” scaling
relation [21] between aT 2 and bω2 dependencies in ρ(ω, T ).
The observation of two separate conduction channels (in-
stead of a single channel with strong frequency-dependent
inelastic scattering) with two Drude scattering rates may be
understood either through a semiclassical multiband model
or through the possible existence of an almost conserved
pseudomomentum as a result of quasi-one-dimensional (1D)
Fermi-surface sheets. Both scenarios do not assume the ex-
istence of exotic quasiparticles. Our observation might be
generic to strongly correlated metals, give insight into the
consequences of Hund’s coupling in these materials, and help
explain the seemingly anomalous optical conductivity and
scaling relations in a whole host of strongly correlated metals.

II. METHODS

In a typical TDTS experiment, a broadband THz pulse is
generated by the interaction of a near-infrared femtosecond
laser pulse with a voltage-biased photoconductive antenna,
which is made of two strip-shaped Au electrodes deposited on
a semiconductor substrate (e.g., LT-GaAs). The photocarriers
are excited in the semiconductor substrate and transiently
accelerated by the bias voltage before recombination, result-
ing in a primarily dipole radiation pattern that is collimated
and coupled to free space via a hyperhemispherical Si lens.
The ≈ 1-ps-long THz pulse is then focused and transmitted
through the sample, the electric field of which is measured

in the time domain using a delay stage which changes the
optical path difference of the emitter and detector (another
photoconductive antenna without voltage bias) branches. A
reference measurement is done on a nominally identical sub-
strate. Dividing Fourier transforms of the two time traces
gives a complex transmission T (ω) which is then used
to calculate complex conductivity of the thin film T (ω) =

(1+n)
1+n+σ (ω)dZ0

e
iω�L(n−1)

c . In this expression n is the substrate in-
dex of refraction measured separately, d is the sample film
thickness, Z0 is the impedance of free space (377 �), and �L
is the thickness difference between referencing substrate and
sample substrate. We accurately determined the effective �L
from self-consistent “first echo” measurements of the sample
and substrate at different temperatures, and interpolate the
results between them. For a measurement of �L, extended
scans that include both the transmitted pulse through the
sample (or reference substrate) and the first echo pulse in the
sample (or reference substrate) are measured. The division of
the echo field by the transmitted field is the complex trans-
mission function TField(ω). The ratio of the field transmissions
of the sample and its reference substrate encodes information
about the effective �L in its complex phase. Owing to the
reflections at the interfaces (e.g., between sample and vac-
uum), additional phases need to be accounted for which can
be calculated through Fresnel’s equations. After subtracting
these additional factors, the remaining phase is associated
with �L as �� = 2ω�Ln/c. Therefore, �L can be obtained
from linear fitting of �� as a function of frequency ω. Such a
process is iterative and needs to be solved in a self-consistent
manner, since impedance of the sample depends on �L and
affects the reflection coefficients at interfaces. Details about
this approach can be found in the Supplemental Materials of
Ref. [22].

The SrRuO3 films were grown on single-crystal (110)
DyScO3 substrates by molecular-beam epitaxy (MBE) in a
Veeco GEN10 system. The [110] and [001] directions refer
to the axes defined by the GdFeO3-type crystal structures of
the DyScO3 and NdGaO3 substrates. They are both indexed in
the Pbnm setting of space group no. 62. The thickness of the
film was 23 nm (SrRuO3). The adsorption-controlled growth
conditions are used in which an excess flux of elemental
ruthenium is supplied to the growing film and thermody-
namics controls its incorporation through the desorption of
volatile RuOx [23]. This growth regime minimizes ruthenium
vacancies in the films. Ruthenium vacancies in SrRuO3 films
can be detected in Raman measurements and produce signa-
tures in transport that look like the topological Hall effect,
but are not [24,25]. In contrast, samples with minimized
ruthenium vacancies exhibit a high residual resistivity ratio
(RRR), ρ(300 K)/ρ(4 K), of ≈ 70 in transport measurements,
including the sample studied in this paper [23]. Compared to
previously measured films by optical spectroscopy which only
had RRRs ≈ 10, this film has fewer defects related to cation
nonstoichiometry. The strong dependence of spectral features
on sample quality highlights the necessity for studies such as
the present one utilizing SrRuO3 grown by oxide MBE, which
produces higher-quality SrRuO3 films than those grown by
pulsed laser deposition or sputtering [23,26–28].

The CaRuO3 and Sr2RuO4 thin films under study were
grown on 1 cm × 1 cm × 1 mm single-crystal NdGaO3 (110)
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FIG. 1. dc resistivity as a function of temperature for the SrRuO3

film for electric field along the [110] direction. Inset: Resistivity mi-
nus residual resistivity as a function of T 2 up to 1000 K2. The black
dashed line is the linear fit. This figure is adapted from Ref. [22].

substrates in the same Veeco GEN10 system to thicknesses
of 44 and 18.5 nm, respectively. The RRR for the CaRuO3

is ≈ 29 along the [110] and 60 along the [001] direction.
For Sr2RuO4, the film thickness was chosen so as to have
measurable THz transmission (2.5%) at low temperatures, but
also sufficiently high RRR ≈ 53. Although we could not take
optical measurements below 1.3 K, it is important to point out
that the disorder in the Sr2RuO4 film is sufficiently low such
that it is superconducting [29–31].

III. SrRuO3

SrRuO3 is a 4d transition-metal oxide (itinerant ferro-
magnet. Its perovskite structure consists of a network of
corner-sharing RuO6 octahedra and has a distorted orthorhom-
bic (Pbnm) structure below 820 K [32]. The structural
distortion can be described in terms of tilting and rotation of
the RuO6 octahedra which results in a smaller Ru-O-Ru bond
angle and electronic bandwidth [33]. In the bulk, the Curie
temperature is Tc ≈ 160 K and the measured saturated spon-
taneous magnetic moment is ≈ 1.1–1.6 μB per Ru ion [34].
In epitaxial films, the Curie temperature increases with ten-
sile strain and decreases with compressive strain [35]. The
ferromagnetism is believed to have both itinerant and local-
ized character [4]. The anomalous Hall resistivity in SrRuO3

changes sign from positive to negative at around 130 K and
is proportional to the longitudinal resistivity squared at low
temperatures [36], which has been proposed to be in part
ascribable to magnetic monopoles of the Berry curvature (e.g.,
Weyl nodes) [37]. The electronic and magnetic properties of
SrRuO3 are difficult to be reproduced by theoretical modeling,
owing to the significance of several energy scales, including
Coulomb interaction, spin-orbit coupling, and Hund’s cou-
pling [38].

One of the puzzles surrounding SrRuO3 was its charge
transport and its relation with low-energy optical conductivity.
While the dc resistivity generally shows T 2 dependence below
30 K in low-disorder samples (e.g., Fig. 1), previous infrared

reflectivity measurements of thick films grown on SrTiO3

suggest that the real part of the conductivity has an asymptotic
fractional power relation with frequency σ1 ∝ ω−α where α ≈
0.5, from 50 to 10 000 cm−1 (1.5 to 300 THz), at 40 K [19].
This relation is non-Drude (α = 2 for the high-frequency
tail) and has been compared to the observations in cuprate
superconductors where α ≈ 0.7 [39]. TDTS measurements
(combined with infrared reflectivity) of thin films the RRR
of which is around 10 found the conductivity to be non-Drude
and could be fitted with a fractional power form

σ (ω) = A

(1/τ − iω)α
, (1)

that has also been discussed for high-temperature cuprate su-
perconductors [39,40]. A is a scale parameter and α was found
to be ≈ 0.4 for a wide frequency range from 6 to 2400 cm−1

(0.18 to 72 THz) [18]. Given the sensitivity of the ground
state of ruthenates to disorder, examining samples with lower
residual resistivity is crucial to understand whether the value
α strongly depends on the level of disorder. A question is then
whether there is a crossover from Fermi-liquid behavior to
anomalous behavior as a function of disorder.

TDTS measurements were performed on a SrRuO3 thin
film grown on a DyScO3 substrate. The film has ≈ 2-μ� cm
residual resistivity and a RRR of ≈74 [22]. The error bar
for the resistivity is ±20%. The uncertainties depend on the
accuracy of the measurements of the position of contacts and
how they are oriented relative to the crystal structure, and also
comes in when disentangling the resistivities along orthogonal
axes. As discussed in Ref. [22], the form of the conductivity
differs at low temperature (from 3 to ≈ 30 K) from that of a
simple Lorentzian. As shown in Fig. 2(a), one cannot fit both
the real and imaginary conductivities simultaneously with a
single Drude oscillator. This conductivity could not be fitted
with a single Drude term unless there is –41% error for the dc
resistivity. As shown in Fig. 2(b), one can fit both real and
imaginary parts with two Drude oscillators. The model we
used for fitting is

σ (ω) = ε0

(
ω2

p1

1/τ1 − iω
+ ω2

p2

1/τ2 − iω

)
− iε0(ε∞ − 1)ω, (2)

in which ε0 is vacuum permittivity, ωp1,2 are the plasma
frequencies of the two Drude terms, and 1/τ1,2 are the cor-
responding scattering rates. The ε∞ term −iε0(ε∞ − 1)ω
accounts for the effect of high-energy absorptions on the low-
frequency dielectric constant. The spectral weights [Fig. 2(h)]
A1,2 = π2ε0ω

2
p1,2

are proportional to the amount of charge
(n1,2) from each Drude term, by the f -sum rule as A1,2 =
πe2n1,2

2me
.

As we discussed in Ref. [22], we believe that this is a
reasonable parametrization of the data due to the multiband
nature of the material. The scattering rate of the narrower
Drude peak is on the edge of our measurement frequency
range <0.2 THz. Therefore, the plot of the small scattering
rate in Fig. 2(h) should be taken as an upper bound. There
is a smooth crossover, from two Drude conductivity (below
30 K) to approximately single Drude conductivity above 30 K.
It is seen that below 25 K both scattering rates follow T 2

dependence. The spectral weight, defined as the area under
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FIG. 2. (a), (b) 5-K conductivity of a SrRuO3 thin-film sample for E//[110]. (a) Real and imaginary part of the complex conductivity,
plotted with dc conductivity and a single Drude fitting. (b) The same data as in (a) with two Drude fitting, which is improved compared to
that in (a). (c), (d) Complex conductivity at 15 and 25 K, plotted with two Drude fitting sharing the same legend as in (b). (e), (f) Complex
conductivity at 35 and 60 K, which can be fit with a single Drude term. (g) Scattering rates for the two phenomenological Drude terms plotted
against temperature. The narrow Drude term is fitted with the highest scattering rate that is compatible with the data. (h) The spectral weights
of the two Drude terms where they can be resolved separately and the total spectral weight. This figure is adapted from Ref. [22].

σ1(ω) of the two Drude terms, which is proportional to the
number of charge carriers in the semiclassical Drude model,
does not depend strongly on temperature below 30 K, while
the total spectral weight is almost conserved.

The premise of multiple bands at the Fermi surface in
the metallic ruthenates is supported by calculations and
experiment. Band-structure calculations show that in the fer-
romagnetic state, for the majority spins, three t2g bands form
hole pockets at R points, while the two eg bands form an
electron pocket and an electronlike Fermi surface around
the � point [41]. The distortion from the cubic structure in
general results in multiple band crossings and foldings in
different regions in k space, as evidenced by angle-resolved
photoemission measurements of thin films [42]. In the Supple-
mental Materials of Ref. [22], we analyzed the semiclassical
equations of motion for a two band metal with parabolic
dispersions with a temperature-dependent term that repre-
sents electron-electron interband scattering [43,44]. Through
decoupling the two equations for the velocities, we showed
that the optical conductivity for such a two band model can
always be represented as the sum of two Lorentzian terms
and hence can be represented phenomenologically, by a two
Drude expression. In a simulation, we show that the con-
ductivity calculated from the formula derived by Maslov and
Chubukov [44] can be fitted with two Drude terms, no matter
the choice of scattering rates within each band, or the inter-
band scattering rates. We will come back to the origin of the
multiple peaks below.

IV. CaRuO3

CaRuO3 is an infinite-layer perovskite in the Ruddles-
den Popper family An+1BnO3n+1 of metallic ruthenates.

As compared to SrRuO3, CaRuO3 has larger GdFeO3-type
distortions [45], has slightly smaller bandwidth [46], is param-
agnetic (although it can be made ferromagnetic by disorder [6]
or tensile strain [7,47]), and does not show T 2 resistivity
until below ≈1.5 K [14,16]. This low coherence temperature
has motivated both experimental and theoretical investigations
of the possibility of a non-Fermi liquid which contravene
the Landau quasiparticle paradigm [14,38,48–55]. A para-
magnetic to ferromagnetic quantum phase transition can be
induced at x =∼ 0.2 in SrxCa1−xO3 [45,56], and therefore
CaRuO3 is considered to be borderline ferromagnetic and
prone to magnetic fluctuations. Shubnikov–de Haas oscilla-
tions [14] and a well-defined sharp quasiparticle dispersion
in photoemission [57] were observed in high-quality thin
films, but optical conductivity again hints at deviation from
the Drude form and Fermi-liquid predictions at high frequen-
cies [14,49]. In this paper, we examined complex conductivity
of a high-quality (RRR ∼ 29) 44-nm thin film grown on a
NdGaO3(110) substrate by MBE. The measurement was done
in two orthogonal directions, [110] and [001].

dc resistivity measured with van der Pauw geometry and
analyzed by the Montgomery method [58] is shown in Fig. 3.
The low-temperature part is fit to T 1.5 below 30 K for both
[110] and [001] directions on the film. This smaller than 2
exponent is unusual for a clean metal, but has been seen before
in CaRuO3 and regarded as an indicator of non-Fermi-liquid
physics. The anisotropy of resistivity between the [110] and
[001] directions is small at low temperatures and close to
that at room temperature, but larger (≈20%) at intermediate
temperatures. For ac conductivity in the ≈ THz frequency
range, we do not observe any low-frequency interband tran-
sitions that might arise as a result of band-gap openings
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FIG. 3. dc resistivity as a function of temperature for the CaRuO3

film for the two orthogonal crystallographic directions. Inset: Resis-
tivity minus residual resistivity as a function of T 1.5. T 1.5 fits to the
data in the temperature range of 4–30 K are shown as black dashed
lines.

due to small distortion/tilts of the RuO6 octahedra (Fig. 4).
Density functional theory plus dynamical mean-field theory
(DFT+DMFT) studies of ruthenates point out the importance
of Hund’s coupling (≈1 eV) [54] but corrections are usually
more prominent at higher energies (or temperatures) where
ω−1/2 is observed in infrared conductivity [49]. In previous
generations of lower RRR (≈1010) samples, suppression of

the far-infrared conductivity below ω ∼ 2 THz is observed
at elevated temperatures (>100 K) [49]. This gives a finite
frequency peak that might originate from disorder or the
substrate referencing. However, we see no evidence for it in
our present data for either crystallographic direction in our
low-disorder films (Fig. 4).

In our data, we see only a zero-frequency peak for the
entire range of temperatures measured (5–300 K). Figures 4(a)
and 4(e)–4(h) show real and imaginary parts of the complex
conductivity at representative temperatures, with polarization
of light along the [110] direction. The data with E//[001]
are similar. Similar to SrRuO3, the data cannot be fit with
a single Drude form at low temperatures, but at least two
Lorentzians and a finite ε∞ are required [see Eq. (2)]. One
of the Lorentzians is a narrow Drude term having a ≈0.1-THz
scattering rate 1/τ1 at 5 K, and the other is wide with scatter-
ing rate 1/τ2 beyond the frequency range of our measurement
and is therefore approximated as a constant conductivity, as
shown by the decomposed spectra in Fig. 4(b). This functional
dependence is similar to the THz conductivity of SrRuO3 and
Sr2RuO4 thin films of similar or higher RRR that can also
be modeled by two Lorentzians (see Ref. [22] and Sec. V),
but it is in CaRuO3 that the separation of two time scales is
most pronounced. Note that the THz conductivity of CaRuO3

of similar RRR was reported previously [14], but the higher
sensitivity of our experiments and accurate determination of
�L allow for a detailed quantitative examination. As the tem-
perature is raised above 60 K, the conductivity restores the
Drude shape and only a single Drude term is needed to fit the
data, as shown in Figs. 4(g) and 4(h).

The narrow Drude scattering rate as obtained from two
Drude term modeling follows T 2 dependence up to 40 K

FIG. 4. (a) Real and imaginary THz conductivity of the CaRuO3 thin film with dc values of 5-K data. The black dashed lines show a
single Drude term modeling. (b) The same data as in (a), but plotted with a one-Drude-plus-a-constant-term fitting. (c) The same 5-K data
as (a) plotted with a logarithmic vertical axis. The two terms in (a) are separately plotted (as indicated by blue and green shaded areas) to
show how they contribute to conductivity. (d) Real and imaginary conductivity at 5 K for two orthogonal crystal axes and the corresponding
one-Drude-plus-a-constant-term fitting. (e)–(g) Real and imaginary parts of the complex conductivity with dc values for various temperatures
as in the annotation of each graph, plotted with the one-Drude-plus-a-constant-term fitting. (h) Single Drude fitting for the data at 100 K.
Above 60 K, the conductivity is flat in the measurement range.
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FIG. 5. (a) Scattering rates of the narrow Drude peak from two
Drude modeling as a function of temperature, for the two in-plane
directions in the CaRuO3 thin film. The dashed black lines are
quadratic fits to the data below 40 K, and extended to higher temper-
atures. (b) Spectral weight of the narrow Drude peak as a function of
temperature. (c) The wide Drude term (incoherent background) part
of the conductivity against temperature.

[Fig. 5(a)]. This T 2 might have contributions from normal
electron-electron scattering (assisted by disorder), umklapp
scattering, and electron paramagnon scattering [59]. The scat-
tering rates of the narrow Drude for the two orthogonal
directions (blue for [110] and green for [001]) have simi-
lar residual values from disorder, but differ in terms of the
prefactor for the T 2 dependence. The difference between two
pseudocubic directions is as large as 40% at 40 K, possibly

not only because of the orthorhombic structure, but also spin-
orbit interaction which makes the spin fluctuation spectrum
anisotropic [60]. As shown in Fig. 5(b), the spectral weight of
the narrow Drude peak is almost conserved below 40 K.

The presence of multiple conduction channels might be
related to band-dependent mass renormalizations. Photoemis-
sion [57] and quantum oscillations [14] as well as band theory
calculations of CaRuO3 [57] show the presence of multiple
small electron/hole pockets and several Fermi-surface sheets
across EF . An in situ photoemission study of CaRuO3 films
observed multiple heavy bands (effective mass m∗ ∼ 13.5 me)
in the 30-meV (corresponding to 7.3 THz) region close to
EF . Since the wide Drude background has a scattering rate
we could not determine experimentally, we could not track
its spectral weight, like we did for the narrow Drude peak.
Nevertheless, the trend that two components merge into a
single Drude is evident [e.g., Figs. 4(g) and 4(h)].

In both SrRuO3 and CaRuO3, the spectral weight of the
narrow Drude component does not vary considerably at low
temperatures [Figs. 2(h) and 5(b)]. However, one empirical
difference between these compounds is that when the two
components merge, and become less distinguishable from one
another (at around 30 K for SrRuO3 and around 60 K for
CaRuO3), the narrow Drude term in SrRuO3 loses spectral
weight to the wide Drude [Figs. 2(e) and 2(f)], while the
narrow Drude in CaRuO3 appears to gain spectral weight
[Fig. 4(g)].

V. Sr2RuO4

Sr2RuO4, the n = 1 Ruddlesden-Popper phase, is isostruc-
tural to La2CuO4, a parent compound of cuprate high-
temperature superconductors. Since the discovery of super-
conductivity in single-crystalline Sr2RuO4 more than two
decades ago [9,61], considerable efforts were devoted to un-
derstanding the order parameter (OP) of the superconducting
phase, and the origin of unconventional superconductiv-
ity in ruthenates [62,63]. The normal state of Sr2RuO4

is usually regarded as a clean Fermi liquid [16]. Three
bands give the Fermi surface, in which holelike α and
electronlike β bands are quasi-1D, and the electronlike γ

band is quasicylindrical [64]. In the superconducting state,
muon spin relaxation [65] and optical polar Kerr exper-
iments [66] showed signatures of time-reversal symmetry
breaking. Nuclear magnetic resonance (NMR) seemed to sug-
gest odd-parity OP, among which the px ± ipy state was a
viable candidate. This is a state that is analogous to super-
fluid helium-3 [67]. Nevertheless, Pauli-limited upper critical
fields [68], absence of edge currents [63], and recent obser-
vation of a pronounced drop of NMR Knight shift across the
superconducting transition seem to contradict the previously
most favored px ± ipy OP [69,70]. The superconductivity can
be enhanced through uniaxial strain which is thought to induce
a Lifshitz transition, where a van Hove singularity in the γ

band crosses Fermi energy [11,71]. The superconductivity
is sensitive to disorder and destroyed when the normal-state
resistivity is above 1.1 μ� cm in single crystals [10]. As
mentioned above, the present films are among the first to be
grown with sufficiently low disorder that they are routinely
superconducting [29–31]. The presence of multiple bands,
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FIG. 6. (a) dc resistivity as a function of temperature for the Sr2RuO4 film. The data are geometric means of the [110] and [001] directions
of the NdGO3 substrate. Inset: Resistivity minus residual resistivity as a function of temperature squared. Fits to the data in the temperature
range 2–32 K are shown as black lines. (b) Real and (c) imaginary parts of the THz conductivity σ1,2 from 3 to 250 K. The markers at zero
frequency are dc conductivity. (d) Two Drude fit of dc plus THz data at 3 K. dc conductivity and real and imaginary parts of the optical
conductivity are fitted simultaneously. For all THz data, E//[110].

spin-orbit interaction, and possibly spatial inhomogeneity al-
lows a variety of odd- and even-parity OP candidates [72].

Although puzzles about the superconductivity are still
to be settled, the normal state has been studied by both
transport and optical experiments. Shubnikov–de Haas oscil-
lations were reported [15,73] and Fermi-liquid-like scaling
of the optical conductivity was identified in the regime
of h̄ω � 36 meV (corresponding to 8.7 THz) and T �
40 K [20], both of which are consistent with T 2 resistivity
at low temperatures. Takahashi et al. reported the in-plane
THz conductivity of a ≈ 120-nm thin film grown on a
(LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) (001) substrate [74].
The film had a resistivity of 2.7 μ� cm at 2 K (giving a
RRR of ≈ 40) and with a resistivity that obeyed T 2 scaling
up to 20 K. A multiple-band Drude Lorentz model was used
to fit the dc conductivity, THz conductivity (from 2–8 meV,
or 0.5–1.9 THz), and Hall coefficients simultaneously. It was
claimed that the scattering rates for the α, β, and γ bands are
0.38, 0.34, and 0.48 THz at 4 K, respectively.

We performed TDTS measurements on a high-quality
[ρ(4 K) ≈ 2.1 μ� cm] Sr2RuO4 film grown on NdGaO3

substrates. The low-temperature normal-state conductivity is
separable into two Drude terms with two independent de-

cay rates. This two Drude observation is qualitatively similar
to our findings in clean SrRuO3 [ρ(4 K) ≈ 2.6 μ� cm] and
CaRuO3 [ρ(4 K) ≈ 3.9 μ� cm] which are ferromagnetic and
paramagnetic metals, respectively. So while negative violation
of Matthiessen’s rule was found in SrRuO3 and CaRuO3, it
has not been reported for Sr2RuO4. The question remains for
the normal state of Sr2RuO4 as to whether there are multiple
channels of conduction and whether these channels can be
assigned to different bands.

Figure 6(a) shows dc resistivity measured in the van der
Pauw geometry. The inset shows a tentative T 2 fit to the data
<30 K which shows only slight deviations. The temperature
dependence of the real and imaginary parts of the THz con-
ductivity is shown in Figs. 6(b) and 6(c). At high temperatures,
both parts of the conductivity do not show much frequency
dependence, meaning the scattering rate exceeds the measured
frequency range. As the temperature goes down, both real and
imaginary parts increase, and the spectral weight is transferred
into low frequencies. The imaginary part of conductivity grad-
ually surpasses the real part, which is a signature of a narrow
zero-frequency conducting channel.

The data below 40 K cannot be fit with a single
Drude. Analogous to SrRuO3 and CaRuO3, one can fit the
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FIG. 7. (a)–(d) Real and imaginary THz conductivity of the Sr2RuO4 thin film with dc conductivity at (a) 8 K, (b) 16 K, (c) 40 K, and
(d) 50 K. Fitting is presented in dashed lines. For data �40 K, two Drude terms are required. The 50-K data can be approached by a single
Drude model. Green and blue shades correspond to a narrow and wide Drude term, respectively. (e) Spectral weight and (f) scattering rates of
the two Drude terms as a function of temperature. The black dashed lines in (f) are quadratic fitting.

conductivity with two Drude terms. In Fig. 6(d), the 3-K
conductivity shows that the spectra can be decomposed into
two Drude components with rather different decay rates. The
narrow peak which is part of the current that decays more
slowly accounts for most of the conductivity at low fre-
quencies while the wide peak almost overlaps with the total
conductivity above 1 THz. Figures 7(a)–7(d) show the temper-
ature evolution of the two Drude components using the data at
a few representative temperatures. The conductivity spectra
are well fit with two Drude components for 8, 16, and 40 K,
while the conductivity at 50 K is fitted with a single Drude
term. The scattering rates of both components increase with
temperature [Fig. 7(f)]. Both follow T 2 dependence below
40 K. From fitting, the ratio of the residual scattering rate
γ w

0 /γ n
0 = 0.57/0.16 ≈ 3.5, and the ratio of the coefficients

for AT 2 dependence is Aw/An ≈ 2.1. The spectral weights are
plotted in Fig. 7(e). The two Drude components have similar
spectral weight at low temperatures up to 20 K and as the
temperature is increased to 50 K all the spectral weight is
transferred to the wide Drude component. The total spectral
weight is almost unchanged from 3 to 200 K. As noted above,
Takahashi et al. reported the in-plane THz conductivity of
a low disorder ≈120-nm thin film grown (RRR ∼ 40) on a
LSAT (001) substrate [74]. With a combination of dc conduc-
tivity, Hall resistivity, and THz conductivity (from 2–8 meV,
or 0.5–1.9 THz), they fit to a three Drude model and found
scattering rates at low temperature of 0.38, 0.34, and 0.48 THz
(which they assigned to the α, β, and γ bands). In contrast,
we used a more minimalist model and have no need for three
Drudes when two will do. In this regard the choice of three

Drudes was probably motivated by existence of the three
known bands of the band structure and not by a necessity for
the fits as two of the three scattering rates were found to be
similar.

VI. DISCUSSION

How to understand these results? In a typical case for a
single band metal at low temperature the frequency-dependent
conductivity assumes a Lorentzian form, which indicates the
current-current correlation decays exponentially in time. This
corresponds to frequency-independent scattering, which oc-
curs in the typical case when the current decay is dominated
by scattering from static impurities, and quantum statistics are
unimportant [75]. The robustness of the Drude conductivity
relies on the law of large numbers and self-averaging such that
many separate scattering events average to a single effective
scattering rate that can be applied to all electrons. Although
a single Lorentzian Drude line shape will be realized in the
simplest cases, there are a number of reasons where devia-
tions from a simple Lorentzian may be observed. Inelastic
frequency-dependent scattering can be significant, there can
be geometric cancelations of the scattering rate, or multiple
relatively independent conduction channels can exist. We will
consider all these possibilities below.

Although disorder scattering is dominant at low temper-
ature and frequency, inelastic scattering will occur at finite
temperature and frequency in all real materials. The question
is its relative size. Within Matthiessen’s rule, the scattering
rate of a conducting channel will be the sum of elastic- and
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FIG. 8. (a)–(c) Real part of the complex THz resistivity ρ1(ω) at different temperatures for the SrRuO3, CaRuO3, and SrRuO3 thin films,
respectively. E//[110] for all the three samples. Quadratic fitting in (b) is presented with black dashed lines. (d) Simulated ρ1(ω) by inverting
the two Drude conductivities. The scattering rates γ1 and γ2 (in a.u.) for the two Drude terms are (0.2, 0.6), (0.2, 1.2), and (0.6, 1.2) for the
three modeled curves black, blue, and red, respectively. The spectral weights for the two Drude terms are set to be equal and identical for the
three situations.

inelastic-scattering rates. Inelastic scattering is dominated by
electron-electron scattering at the lowest temperatures and
generally goes as ω2 and T 2. However, how this scattering
manifests in the transport depends on details. Conventional
electron-electron scattering of charge in a single parabolic
band does not contribute to the resistivity as the momentum-
conserving scattering is also velocity conserving. However,
intraband umklapp scattering does decay the crystal momen-
tum (and hence the current), and gives rise to a T 2 scattering
rate [76,77]. Moreover, interband electron-electron scattering
such as present in a multiband metal conserves crystal mo-
mentum but can still degrade the current [43]. A nonvanishing
matrix element for T 2 scattering is constrained by momentum
and energy conservation and so whether or not the T 2 term is
observed is shown to depend on the dimension, topology, and
shape of the Fermi surfaces [78].

Additional insight can come from looking at the frequency
dependence of the complex dynamical resistivity ρ1(ω).
Figures 8(a)–8(c) show the real part of ρ(ω) of all three
materials, calculated by inverting the complex conductivity:

ρ(ω) =
(

1

σ1 + iσ2 − iε0(1 − ε∞)ω

)∗
, (3)

where “*” indicates complex conjugation. The ε∞ term
is subtracted before the inversion because it arises from
higher-energy excitations that make their effects felt at lower
frequency only through polarization. The dc values are plot-
ted along with the frequency-dependent resistivity. A strong
frequency dependence is seen in all cases, although there
are both commonalities and differences between the different
materials. The resistivities of SrRuO3 and Sr2RuO4 at low
temperatures and low frequencies show weaker dependencies.
They also both show a small mismatch with the dc values,
perhaps owing to the existence of the narrow Drude peak.
CaRuO3 shows the strongest frequency dependence in the
frequency range (0.2–1.6 THz) and can be fitted well with an
ω2 dependence up to 1.5 THz [the dashed lines in Fig. 8(c)]. In
all cases as temperature increases, the frequency dependence
of the resistivity becomes weaker, which corresponds to the
behavior of a system with a single Drude peak.

The extended Drude model has been applied to many
correlated metals that are expected to have a single
conduction channel [44,79–81]. It introduces a phenomeno-
logical frequency-dependent scattering rate and mass that
accounts for the effects of inelastic energy-dependent scat-
tering. These parameters are proportional to the real and
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imaginary parts of the frequency-dependent complex resistiv-
ity, respectively. However, a question arises in the current case
whether or not the frequency-dependent resistivity is indica-
tive of strong inelastic scattering, or instead arises from the
superposition of multiple conduction channels that themselves
have little frequency dependence. In principle the extended
Drude analysis is only valid when only a single conduc-
tion channel exists. We will come back to this point below.
However, for a single band metal, a conventional explanation
for the strong ω2 resistivity seen most clearly in CaRuO3 is
related to umklapp scattering. One can analyze the inelastic
part of the scattering for a single band metal in the limit of
ω � γ (ω). It has been shown that for three-dimensional (3D)
or 2D Fermi surfaces, in the presence of umklapp scattering,
the conductivity is approximately a constant (the incoherent

background) σ (ω) ∼ U 2k5
F

v4
F

, and the scattering rate γ (ω) ∝
ω2 [1,82]. Here U is the screened interaction potential, and
kF and vF are the Fermi wave vector and Fermi velocity,
respectively. For small Fermi surfaces in three dimensions,
where umklapp scattering is suppressed, the conductivity is
still approximately a constant but smaller by a factor (kF a)4,
where a is the lattice constant. The relations do not hold for
small 2D Fermi surfaces where umklapp scattering is absent.
In that situation, σ (ω) ∝ ω2 and γ (ω) ∝ ω4. In our CaRuO3

data, the high-frequency tail of the conductivity is almost a
constant [e.g., Fig. 4(b)], which could reflect strong umklapp
scattering in two or three dimensions. Multiparticle electron
scattering leads to a term in the temperature-dependent scat-
tering rate that goes as γ (ω → 0, T ) ∝ U nT 2n−2, in which
the integer n depends on the filling of the band ≈ G/(2kF )
where G is the reciprocal-lattice vector [1,2]. This temperature
scaling agrees with the scattering rate of the narrow Drude
peak, which is approximately γ (ω → 0, T ) (Fig. 5). Anoma-
lously strong umklapp scattering might be a reason for the
low coherence scale of CaRuO3. It is also possible that the
flat contribution to the conductivity for CaRuO3 in the narrow
measuring range could instead derive from broad absorption
peaks in the midinfrared or far-infrared regions, which was
observed in CaRuO3 [49]. However, we find the possibility
that there are two compelling “Drude-derived” features in the
spectrum.

Another possibility for the origin of the two Drude peaks
is associated with “geometric cancellation” of the scattering
rate and the presence of an almost conserved current in clean
metals [82]. It was shown by Rosch that in 1D Fermi-surface
sheets umklapp scattering does not decay a pseudomomentum
which connects the two sheets with a sign function. This quan-
tity overlaps with the velocity operator (and current) when the
metal is away from commensurate filling [2] and therefore
contributes to transport, leading to partial conservation of the
current. Although the majority of current is proportional to
crystal momentum and decays by umklapp scattering, this
long-lived pseudomomentum leads to an additional narrow
Drude peak. There are quasi-1D Fermi-surface sections in
Sr2RuO4, but less is known about the detailed shapes in the
other materials. The role of this kind of physics should be
further investigated.

However, we consider that by far the most likely explana-
tion for the multiple Drude peaks is multiband transport. In
a multiband metal where different carriers each contribute a

Drude-like peak, the form of the low-temperature conductivity
will obviously deviate from the single Drude form in different
scattering rates for the different channels that exist [83,84].
However, in the presence of interband scattering it is not
a priori obvious that the conductivity can be decomposed
into separate Drude terms. However, since electron-electron
interband scattering vanishes as ω2 and T 2 and moreover T 2

scattering dominates over ω2 scattering, it is reasonable that at
low temperature each conduction channel is independent and
contributes an independent Drude [it was shown by Gurzhi in
the 1950s that ρ(T, ω) and hence the scattering rate was pro-
portional to T 2 + A(h̄/2πkB)2ω2 with a coefficient A that will
be 1 due to requirements of the “first-Matsubara-frequency
rule” for boson response [21,44,85]]. However, as long as
the scattering is not strongly energy dependent, a two Drude
decomposition appears to be even more general than that.
In Ref. [44], the authors calculated the optical conductivity
from a two band model, with equations of motion taken
from Ref. [43]. We analyzed the same equations of motion
in Ref. [22], and found that for two bands, even in the pres-
ence of interband electron-electron scattering, the equations
of motion can always be decomposed into the equations of
motion for two effective Drude models (with highly effective
parameters). Simulations of the optical conductivity given by
the formulas in Ref. [44] can be fit with two Drude terms
for all the band parameters we have tested. This may explain
the two Drude to one Drude term crossover with increasing
temperature (at ≈30 to 60 K), in which the spectral weight
of one of the effective Drude terms vanishes as interband
electron-electron scattering increases. This can occur in par-
tially compensated semimetals [77,86]. At low temperatures,
scattering is dominated by elastic scattering off impurities,
but as temperature is raised both intraband electronic scat-
tering and interband electronic scattering are enhanced. In
the presence of electrons and holes, there is effectively an
equation of motion for the total momentum and another equa-
tion for the relative velocities. In a compensated metal, the
relative velocity vanishes with sufficiently strong electron-
hole scattering, which acts as a viscous damping force to
make the two band velocities equal [77,86]. As a result, the
conductivity is only left with one Drude term corresponding
to the total momentum of the two band velocities. Similar
physics could be playing a role here where different bands
act individually at the lowest temperature where interband
electron-electron scattering is weak. At higher temperature the
interband electron-electron scattering becomes enhanced and
only a single highly collective conducting feature is retained.

At low temperature, if the two channels of conduction
come from two independent bands and interband scattering
is small, then each channel derives from the scattering rates
and density of states of each band separately. It would be nice
to understand for the multiple components observed if their
features can be connected to aspects of the band structure. One
would want to understand if the relative sizes of scattering
rates, spectral weight, and coefficients of the inelastic T 2

scattering can be understood based on the gross aspects of
the band structures and the expectations for 2D vs 3D effects.
However, this appears challenging. For parabolic bands, the
elastic-scattering rate of each band would be expected to be
proportional to the density of states [87] [proportional to mass
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(m) in two dimensions and m
√

E3
F in three dimensions]. The

spectral weight goes like EF in two dimensions and
√

mE3
F

in three dimensions. The coefficient of the inelastic scattering
has leading proportionality of 1/EF in both dimensions. One
may hope that Sr2RuO4 is closer to the 2D limit and SrRuO3

is closer to the 3D limits, and although there is some corre-
spondence between features a detailed analysis does not hold
up. For 3D Fermi surfaces, the density of states is larger for
larger Fermi surfaces, and therefore the impurity scattering
rate would be expected to have a Drude term with larger spec-
tral weight. This is as observed for SrRuO3. On the other hand,
in contrast [as shown in Figs. 7(e) and 7(f)], for Sr2RuO4,
the spectral weights of the two features at low temperatures
are close to each other, but the coefficient of the inelastic
T 2 scattering is larger for the term with the larger elastic
scattering. As spectral weight and the inelastic scattering are
expected to scale inversely with each other this is against the
expectation for two dimensions.

To understand the shape of ρ1(ω) in a two band metal,
we performed simulations where frequency-dependent resis-
tivity is generated by summing up multiple Drude channels
in the conductivity. Each Drude channel has a frequency-
independent scattering, but as one can see in Fig. 8(d) the
resistivity gives the appearance of frequency-dependent scat-
tering (if it was interpreted as a single channel model).
Simulations were performed using the following parameters.
The two Drude components were chosen to have equal spec-
tral weight for simplicity and kept identical for all three
situations [black, blue, and red curves in Fig. 8(d)]. Under
these circumstances, the simulations show that the resistivity
will generically be an increasing function of frequency. When
the scattering rates are close to each other, the simulated re-
sistivity increases more slowly with frequency (the red curve).
The resistivity shows the strongest frequency dependence
when their scattering rates are the most different. Figure 8(d)
demonstrates this for the case when the larger scattering rate
is six times the smaller one (the blue curve).

This is very general behavior. When two Drude terms with
frequency-independent scattering are added in the complex
conductivity, the resulting complex resistivity shows a ω2

dependence at low ω. This low-frequency dependence can be
seen by Taylor expanding ρ1(ω) at ω = 0:

ρ1(ω) = Re

(
1

σA
1−iω/γA

+ σB
1−iω/γB

)

= 1

σA + σB
+ σAσB(γA − γB)2

γ 2
A γ 2

B (σA + σB)3
ω2 + O(ω4). (4)

In the above expression, σA and σB are the dc conductivities
of the two Drude terms, respectively. γA and γB are the cor-
responding scattering rates. The leading term is ω2. Again we
emphasize that this ω2 arises not because of the energy depen-
dence of electron-electron scattering, but due to the inversion
of the superposition of two Lorentzians.

Because of the very large disparity in the two scattering
rates of CaRuO3, a quadratic fitting of ρ1(ω) of CaRuO3

allows for the most straightforward comparison with exper-
iments in other materials. As discussed above, it was shown

by Gurzhi in the 1950s for a single band Fermi liquid that
ρ(T, ω) ∝ T 2 + A(h̄/2πkB)2ω2. As shown by Gurzhi and
later discussed by Maslov and Chubukov [21,44,85], for pure
umklapp scattering the coefficient A has to be 1 due to re-
quirements of the “first-Matsubara-frequency rule” for boson
response. In actuality many materials that otherwise look like
Fermi-liquid-like metals show notable differences of A from
1 [88–90]. To investigate the applicability of this expression,
we take the coefficient for T 2 from the fitted narrow Drude
peak. From the frequency-dependent resistivity fits, the value
of A is estimated to be 2.8 and 3.8 for [110] and [001] di-
rections at 5 K, respectively. These values are comparable to
reported results of CePd3 (3.07) [91], Nd0.95TiO3 (3.63) [92],
and URu2Si2 (4) [88]. Therefore, although it has been sug-
gested that the deviations from Gurzhi scaling may be due
to the presence of elastic but energy-dependent scattering,
we demonstrate here that another possibility is that multiple
weakly frequency-dependent conductivity channels contribute
to the transport.

The presence of two conducting channels which turn into
one as interband scattering increases means a violation of
Matthiessen’s rule in which one adds scattering rates for
different kinds of scattering events that are independent of
each other. In fact, a negative deviation from Matthiessen’s
rule was observed for SrRuO3 and CaRuO3 thin films [93].
In that work, they introduced point defects by electron ir-
radiation at low temperatures and found that the change in
resistivity decreases with increasing temperature, in lieu of
shifting the residual resistivity ρ0 by a constant. According to
Matthiessen’s rule, the low-temperature resistivity for simple
metals is ρ = ρ0 + AT 2 in which ρ0 is the residual resistivity
and A is a coefficient proportional to the density of states and
the probability of two-body scattering. Usually both ρ0 and
A are regarded as independent of temperature. However, we
would point out that the relative importance of the coupling of
bands may change with increased impurity scattering, which
will also lead to deviations from Matthiessen’s rule.

Finally, we address the consistency of our data with the
older interpretation where a fractional power-law form was
found [18]. In the present case, the availability of high-quality
thin films and the development of THz spectroscopy has
allowed us to resolve that the true low-temperature form
of the complex conductivity is two Drude terms. However,
the fractional power-law form [Eq. (1)] used previously for
SrRuO3 [18] is still consistent with our data albeit over a
restricted frequency range. Over a restricted frequency range,
the fractional power (e.g., α = 0.5) can be written as a sum of
two terms, a Drude term in which α = 1 and a constant (which
is the approximate form of a Drude term the scattering rate of
which is much larger than the measured frequency range):

σ (ω) = σ1

(1 − iω/γ1)1
+ σ2

(1 − iω/γ2)0
≈ σ3

(1 − iω/γ3)α
.

(5)

VII. CONCLUSIONS

In conclusion, we have shown that the optical conductivity
of three metallic ruthenates, SrRuO3, CaRuO3, and Sr2RuO4,
can be phenomenologically modeled with two Drude terms
with different scattering rates at low temperatures. With
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increasing temperature, we find that there is a crossover from
two Drude to single Drude conductivity. Although details of
the materials matter, this may indicate there is a general mech-
anism for non-Drude and nonuniversal low-energy optical
conductivity in these moderately correlated 4d transition-
metal oxides.

The optical conductivities of SrRuO3 and Sr2RuO4 are
qualitatively similar. Below a temperature scale of 30 K, the
scattering rates of both Drude peaks can be roughly fit with
T 2, which is expected for two-particle scattering. Owing to the
presence of the narrow Drude peak the scattering rate of which
is 0.2 THz at 5 K, the renormalized scattering rate γ (T, ω)
does not follow the ω2 scattering rate in this frequency range.
The low-temperature conductivity of CaRuO3 is separated
into a narrow Drude peak and a broad constant incoherent
background. At elevated temperatures the two relaxation time
scales merge into a single Drude peak, probably owing to
enhanced interband scattering. We believe that this behavior
arises from multiple conduction channels that are weakly cou-
pled at low temperatures, but more strongly coupled at higher
temperatures. This interpretation is consistent with the exis-
tence of multiple Fermi surfaces in these compounds and with
the expected relative weakness of ω2 dependent scattering
as compared to T 2 dependent scattering in the Fermi-liquid
treatment. As we have discussed, the presence of multiple
conduction channels with interband scattering instead of mul-
tiple scattering channels violates the underlying assumptions
of Matthiessen’s rule. In a multiband system where carriers
have different masses and Fermi velocities, charge conduction
can be separated into parallel channels.

The importance of Hund’s coupling has been recently
emphasized for multiband transition-metal oxides like the
ruthenates [94,95]. Hund’s coupling is the energy associated
with intra-atomic exchange, which lowers the interaction en-
ergy when two electrons are placed in different orbitals with
parallel spin, as opposed to two electrons in the same orbital. It
provides a mechanism for large electron-electron correlations
even in systems that are far from the Mott regime. Except for
near half filling or a shell with a single electron or a single
hole, a Hund’s coupling gives two key effects that compete
with each other. First, it tends to increase the critical U above
which a Mott insulator is formed and hence pushes a system
away from the Mott regime. On the other hand, it also tends to
reduce the Fermi-liquid coherence temperature scale and the
energy scale below which a Fermi liquid is formed, leading
to a bad metallic regime in which quasiparticle coherence is
suppressed. This is an influence that has been called “Janus
faced.” The moderate scale of mass enhancements and the low
Fermi-liquid coherence temperature in the ruthenates have
been taken to be a signature of the Hund’s coupling [94,95].
With regards to our present findings, although we have taken
interband coupling to be of a generic variety, it may be that
these effects of it at higher temperature and its suppression
at lower temperature are both enhanced by these Hund’s
effects [95] that can reduce the effective interaction in differ-
ent orbitals [96]. In this regard, the very different scattering
rates of the channels at low temperatures may be understood
as a consequence of the “orbital-decoupling” effect of the

Hund’s effect. Moreover, the crossover to a single Drude term
at higher temperatures can occur to an enhanced interband
electron scattering that takes place above the Fermi-liquid
coherence temperature. Recent optical work on Sr2RuO4 [20]
has shown the existence of excess spectral weight above
0.1 eV that was shown to be the consequence of the inter-
play between effects which allowed residual quasiparticlelike
excitations at high energies and Hund’s coupling. This assign-
ment was made via a comparison of the optical conductivity
and DFT+DMFT calculations. It would be interesting to ap-
ply such analysis to the current case where multicomponent
features are found in the optical conductivity at even lower
energies. Going forward it would also be interesting to do such
experiments to even lower temperatures, perhaps even in the
superconducting state of Sr2RuO4 films.

We believe the experimental findings in this paper are gen-
eral to the ruthenate family. However, they may shed light on
low-disorder multiband metals in general and the anomalous
transport behavior of other strongly correlated metals with
complicated Fermi surfaces. Our result might be an example
of correlated materials, for which the low-energy and low-
temperature electrodynamics can be still grossly understood
in terms of Fermi-liquid notions and semiclassical equations
of motion. The multi-Drude model may also be applicable to
other multiorbital compounds with strong Hund’s coupling at
low temperatures, including iron-pnictide [98], iron chalco-
genide [97], and manganite [99]. Nevertheless, it should be
emphasized that our measurement is in the long-wavelength
limit and is therefore more sensitive to the collective behavior
of the entire Fermi surface and almost conserved quantities.
They are not necessarily inconsistent with previous measure-
ments of more disordered thin films or measurements in the
near-infrared frequencies, which may be more sensitive to
collective excitations and short-wavelength correlations.
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