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Excitonic insulator emerging from semiconducting normal state in 1T -TiSe2
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A new state of matter, an excitonic insulator (EI) state, was predicted to emerge from Bose-Einstein conden-
sation of electron-hole pairs. Some candidate materials were suggested but it has been elusive to confirm its
existence. Recent works gave renewed support for the EI picture of the charge density wave (CDW) state below
the critical temperature Tc ≈ 200 K of 1T -TiSe2. Yet, an important link to its establishment is to show that a
majority fraction of the measured Tc indeed follows from the Coulomb interaction alone, while a quantitative
match of the Tc may require assistance from the electron-lattice coupling. This will establish that the CDW is
formed predominantly by the Coulomb interaction and help confirm the EI view for TiSe2. Here, we provide
such calculations by solving the exciton gap equation with material-specific electronic structures. We obtain,
with no fitting parameters, Tc ≈ 135 ± 27 K for the normal state gap of Eg ≈ 74 ± 15 meV. It seems that the
calculated Tc from Coulomb interaction gives a majority fraction of experimental Tc for recently determined
values of Eg. The measured doping dependence of Tc was satisfactorily reproduced as well. Also in agreement
with experiments is the same set of calculations of the photoemission spectroscopy and density of states. The
semiconducting state above and EI below Tc together should give a coherent picture of 1T -TiSe2.
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I. INTRODUCTION

Coherent quantum states of excitons emerge out of a
macroscopic number of electron-hole pairs bound by the
Coulomb interaction as the band gap of semiconductors is
reduced below the exciton binding energy [1]. They may
Bose condense into a superfluid [2] or an insulating electronic
crystal [3,4]. The exciton superfluid or excitonic insulator
(EI) is a new state of matter which should have higher Tc

scale than the traditional Bardeen-Cooper-Schrieffer (BCS)
or Bose-Einstein condensation (BEC) states due to their light
mass and the strong binding energy [2,5]. These states may
provide a platform to investigate and utilize manifestations
of macroscopic quantum phenomena. Exciton condensation
in electronic double layers, where indirect excitons form out
of photogenerated electrons and holes residing in spatially
separated conducting layers, has been realized under strong
magnetic field [6]. More recently the exciton superfluidity
transport was observed in a quantized Hall regime in dou-
ble bilayer graphenes at temperatures an order of magnitude
higher than previously observed in GaAs double layers [7,8].
Despite these achievements there is a great need to identify
materials in which an exciton condensate forms in equilibrium
state without the applied field. TmSe0.45Te0.55, Ta2NiSe5,
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and 1T -TiSe2 have been investigated most intensely among
candidate materials primarily because they have semiconduct-
ing and/or semimetallic electronic configuration with a small
gap and/or overlap.

The 1T -TiSe2 is a transition metal dichalcogenide semi-
conductor or semimetal of a layered structure with an indirect
gap or overlap between the Se 4p hole band centered at the
� point and the Ti 3d electron bands around the L (M for
single-layer samples) points in the Brillouin zone (BZ) as
shown in Fig. 1. An exciton, a bound state of an electron from
the Mi band and a hole from the � band in Fig. 1(a), then has
a nonzero net momentum and the inverse of the momentum
sets a new length scale. Consequently, the exciton condensa-
tion is accompanied by a structural instability at the inverse
momentum and makes a phase transition to CDW of 2a ×
2a × 2c structure (where a and c are the lattice constants)
below the critical temperature Tc ≈ 200 K. Early transport and
angle-resolved photoemission spectroscopy (ARPES) mea-
surements found that TiSe2 has a small band gap or overlap
and low numbers of carriers which led to speculations of
the CDW as an EI [9,10]. Also, the observation by high-
resolution ARPES of a very flat valence-band dispersion near
the � point and a large spectral weight transfer to backfolded
bands in the CDW state seemed to be consistent with the-
oretical calculations on EI in TiSe2 [11,12]. The nature of
the resulting CDW, however, is subtle to distinguish from
other mechanisms involving lattice degrees of freedom alone
like the Peierls instability [13] or Jahn-Teller distortion [14].
An idea to differentiate them is to recall that the phonon

2469-9950/2021/103(20)/205108(13) 205108-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2555-1218
https://orcid.org/0000-0001-5424-5853
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.205108&domain=pdf&date_stamp=2021-05-05
https://doi.org/10.1103/PhysRevB.103.205108


BOK, HWANG, AND CHOI PHYSICAL REVIEW B 103, 205108 (2021)

FIG. 1. (a) The first BZ of 1T -TiSe2 exhibiting the hole band
(blue) around the � and three electron bands (red) around Mi points.
The BZ is reduced in the charge density wave (CDW) phase (black
dashed line) and appear as the backfolded dispersions (red and blue
dashed lines). (b) The energy dispersion of the hole and electron
bands along the �-M1 direction. Eg is the indirect bare gap between
the electron and hole bands. The dashed lines are backfolded bands.

mode corresponding to the CDW structure becomes soft
at Tc for electron-phonon coupled systems. Likewise, for a
condensation of excitons of the momentum Q there should
appear a softening in the Coulomb interaction, that is, plasma
frequency softening at the Q as T approaches Tc. The re-
cent momentum-resolved electron energy loss spectroscopy
(EELS) experiments by Kogar et al. exactly observed this and
gave a renewed support for the EI picture for 1T -TiSe2 [15].

On the other hand, it should be noted that the excitonic
and lattice instabilities should appear simultaneously as re-
ported by Kogar et al. because they have the same spatial
symmetry. It means that the origin of the CDW should be
rephrased as a quantitative question as to which between
the instabilities contributes more to open the CDW gap and
to what extent. Then, a remaining theoretical step to a firm
establishment of the EI in TiSe2 is to check if a majority of
the measured Tc indeed follows from the Coulomb interaction
alone in material-specific calculations, while a quantitative
match of the experimental Tc may need assistance from the
electron-lattice coupling [16]. This will help establish that the
CDW is formed predominantly by the Coulomb interaction,
and confirm the EI view for TiSe2. Here, we provide such cal-
culations by solving a BCS-like exciton gap equation [3,11]
with experimentally determined electronic structures.

The employed exciton gap equation as given by Eqs. (6)
and (7) below is a mean-field approach which is reliable in
the weak-coupling BCS regime. It also gives reliable Tc in
the strong-coupling BEC regime as was discussed by Bronold
and Fehske [17]. From the perspective of BCS-BEC crossover
theory this may seem surprising because the mean-field theory
does not account for preformed excitons above Tc on the semi-
conducting regime. However, the charge neutrality constraint
in the present problem as given in Eq. (A9) leads to a cancella-
tion of the leading-order corrections to the chemical potentials
and forces Tc on the semiconducting side to coincide with
the BEC transition temperatures for a noninteracting boson
gas of excitons [17]. This justifies the employment of the gap
equation for Tc determination in the semiconducting regime
as well as the semimetallic one.

II. FORMULATION

The calculations of the exciton order parameter � and the
critical temperature Tc presented here were performed by solv-
ing the exciton gap equation self-consistently by numerical
iterations and finding the largest eigenvalue of the linearized
gap equation. The gap equation is given by

�i(k) = −
∑

k′

∫ ∞

−∞
dωA�i (k

′, ω) f (ω)Vs(k − k′), (1)

where

�i(k) = 〈a†(k)bi(k)〉 (2)

(i = 1, 2, 3) is the anomalous self-energy or the exciton order
parameter formed between an electron from the Mi band and
a hole from around �, and f is the Fermi-Dirac distribution
function. A� is the anomalous spectral function given by

A�i (k
′, ω) = − 1

π
ImG�i (k

′, ω)

= − 1

π
Im

�i(k′)
(ω − ξe,i )(ω − ξh) − �2

i (k′) − Bi
,

(3)

where ω should be understood as ω + iδ, with δ an infinites-
imal. The ξe,i and ξh are the dispersions for the ith electron
band and hole band given by

ξe,i(k) = ε0
e,i(k) − μ + Eg + 	e,i,

ξh(k) = ε0
h (k) − μ + 	h, (4)

where Eg is the bare energy gap between the electron and hole
bands and μ is the chemical potential. ε0

e,i and ε0
h are the bare

dispersions of electron and hole bands, respectively, given by
Eq. (A19), and 	e,i and 	h are the corresponding self-energy
given by Eq. (A17) in Appendix A.

Bi is the term arising from the coupling between the three
electron bands given by

Bi(ω, k′) =
∑
j �=i

�2
j (k

′)
ω − ξe,i(k′)
ω − ξe, j (k′)

, (5)

with i and j the electron band indices. A derivation of the
exciton gap equation with the explicit electronic structure of
TiSe2 is outlined in Appendix A. A similar formulation was
presented by Monney et al. [11].

For the kernel of the gap equation (1), we employed the
two-dimensional (2D) Thomas-Fermi screened Coulomb in-
teraction as the effective interaction between charge carriers
in TiSe2:

Vs(q) = 2πe2

ε∞(q + qs)
. (6)

ε∞ is the in-plane component of the background dielectric
tensor of the three-dimensional (3D) TiSe2 of layered struc-
ture and qs is the screening wavenumber defined in Eq. (A6).
Deduction of this form for TiSe2 from the screened Coulomb
interaction of layered structures, V 3D

s (q, qz ) of Eq. (B4), is
discussed in Appendix B.

In the limit of T → Tc, �i, and Bi of Eq. (5) → 0, and
the exciton gap equation (1) is reduced to the linearized gap
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FIG. 2. (a) The EI phase diagram of 1T -TiSe2 exhibiting Tc as a function of Eg for ε∞ = 3.0. The grey dashed line indicates the border
between semimetal and semiconductor phases. The red star on the Tc curve shows the calculated Tc = 135 K corresponding to the recent
measurement of Eg = 74 meV [18]. The inset shows an enlargement of the region around the red star. (b) The calculated doping dependence of
Tc for Eg = 0.12 eV in comparison with experiments. The red circles represent measurements on pristine and Cu intercalated polycrystals [19].

equation [17]

�(k) =
∫

BZ

dk′

(2π )2
Vs(k − k′)

f (ξh(k′)) − f (ξe(k′))
ξe(k′) − ξh(k′)

�(k′).

(7)
The order parameters �i are related by a rotational symmetry
and satisfy the same form of the gap equation as can be seen
from Eq. (1). The solution of Tc is independent of the band
index i and it was dropped out.

Equation (7) formally looks identical to the BCS gap
equation. This similarity, however, holds only if the electron
and hole have equal masses, and their dispersions are di-
rect (negative) gap semimetals and satisfy ξe(k) = −ξh(−k)
for one-electron and one-hole bands. In real materials these
stringent requirements are necessarily not met and the cel-
ebrated Cooper logarithmic divergence is washed away.
Consequently, the exciton instability is no longer a universal
phenomenon in the BCS sense but becomes a number compar-
ison problem of the exciton binding energy being larger than
the band gap. Material-specific calculations are called for as
discussed below.

III. EXCITON INSULATOR CRITICAL TEMPERATURE

It is crucial to determine the quantities qs, 	i, and μ

self-consistently as we did here by solving Eqs. (A6), (A9),
and (A17) via numerical iterations for given temperature T ,
the background dielectric constant ε∞, and normal gap Eg.
The self-consistency ensures the Tc from the exciton gap equa-
tion is reliable in the BEC as well as BCS regime as mentioned
in the last paragraph in the Introduction section. With thus
determined quantities, we write Eq. (7) in a matrix form by
discretizing the wavevector k within an irreducible BZ as

�(ki ) =
∑

j

M(i, j)�(k j ). (8)

We took the wavevector k as an array of 48 × 48 k points
within the hexagonal first BZ as explained in Appendix C.
Equation (8) is just an eigenvalue problem with the eigenvalue
set to 1. Above Tc all the eigenvalues are smaller than 1. Then,

Tc is given by the temperature where the largest eigenvalue of
the matrix M of Eq. (8) becomes 1. This sets up a route to
determine the EI critical temperature Tc microscopically with
no fitting parameters.

Tc of 1T -TiSe2 was calculated as the normal state gap Eg

is varied taking the background dielectric constant ε∞ = 3.0.
This gives the calculated Tc once the normal gap Eg is ex-
perimentally established. The determination of ε∞ from the
published experimental data and ab initio calculations is ex-
plained in Appendix D. The resulting phase diagram in the
Eg-T plane is shown in Fig. 2(a). As can be seen from the fig-
ure, Tc ≈ 135 ± 27 K for the normal gap Eg ≈ 74 ± 15 meV
(marked by the red star) recently determined by utilizing
the photon-energy-dependent ARPES as we discuss about
the normal state gap in the paragraph after next [18]. The
measured CDW critical temperature is Tc ≈ 202 K from the
neutron diffraction measurement on bulk crystals [9], and on
monolayers Tc ≈ 232 K from ARPES [20] and ≈ 240 K from
Raman experiments [21]. The calculated Tc ≈ 135 ± 27 K is
smaller than the measured Tc ≈ 200 K from bulk samples but
is larger than half of it.

We also checked robustness of the results by calculating Tc

from the 3D gap equation (B5) and Eq. (B4). The screened
Coulomb interaction is weakened in three dimensions, which
decreases Tc. On the other hand, for a fixed Eg, the minimum
gap between � and L points in the 3D BZ, the kz dispersion
of the bands widens the average energy gap between the
electron and hole bands, which should increase Tc around
Eg ≈ 74 meV as can be inferred from Fig. 2(a). This over-
comes the decrease from the weakened Coulomb interaction
and causes a net increase to Tc ≈ 150 K for Eg ≈ 74 meV as
shown in Fig. 8 in Appendix C. Notwithstanding uncertainty
in the normal state nature, it seems that the CDW formation
in TiSe2 is mainly by the Coulomb interaction. This should
provide a much needed theoretical support for the EI picture
of the CDW state of TiSe2.

We wish to point out that the screened Coulomb inter-
action in monolayers of transition metal dichalcogenides is
better described by the Rytova-Keldysh potential because of
the dielectric contrast between a monolayer and surrounding
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substrates or vacuum [22]. The parameters of the potential
need to be determined before quantitative comparisons are
made between experimental Tc and calculations for monolay-
ers.

The EI phase in the low-temperature limit appears for
0 < Eg < EX , where EX is the exciton binding energy. EX =
1.6 eV for ε∞ = 3.0. It is given by

EX ≈ 2mrc2
( α

ε∞

)2
− h̄2�M

2

2M
, (9)

where α = e2/h̄c, �M is the distance between � and M in
the BZ, and mr and M are, respectively, the reduced mass and
total mass of an electron and a hole of an exciton, as discussed
in Appendix C. The phase diagram for direct gap EI including
its suppression in the semimetallic region was discussed by
Bronold and Fehske [17]. The EI phase may be suppressed
in the semimetallic region by the indirectness of the gap,
the asymmetric mass ratio between electron and hole, or the
number of conduction bands being larger than 1. Equation (7),
which determines the EI phase diagram, is different from
the superconducting gap equation as discussed above and is
dependent on material-specific parameters including ε∞. Con-
sequently, the EI phase diagrams presented here and in [17]
look quite different from the presumed EI phase diagram [23]
or from the BCS-BEC crossover of superconductors.

The normal state must be semiconducting for the EI to be
a viable picture for the CDW phase of TiSe2 as can be mani-
festly seen in Fig. 2(a). Yet, the nature of the normal state is
still controversial. Some previous works reported semimetal-
lic behaviors [9,14,20,24,25]. ARPES measurements showed
that the electron band at the L point touches or crosses the
Fermi level in the normal state and moves down to a lower
energy as T is decreased [14,20]. It is consistent with metal-
lic behavior of the T dependence of resistivity [9]. On the
other hand, many spectroscopic and transport experiments
reported a semiconducting normal state [18,26,27]. Watson
et al., utilizing the photon energy-dependent ARPES, pre-
sented results supporting the semiconducting normal state,
Eg ≈ 74 ± 15 meV [18]. They also showed that the “pas-
senger” states from the unhybridized Ti d conduction bands
and the valence band around the A point remain decoupled
from the CDW instability and provide the metallic behavior
by accommodating extra charges from various extrinsic fac-
tors like crystal imperfections, Se vacancies, excess Ti, and
residual iodine. Novello et al. also noticed that the semimetal-
lic behavior in previous works actually came from crystal
imperfections which can be controlled by new synthesis tech-
niques, and that the imperfections are not related to the CDW
phase formation [28]. Measurements on samples from the
new synthesis techniques exhibited the anticipated insulating
low-temperature behaviors [29,30].

To strengthen the arguments for the EI picture for TiSe2,
we consider the doping dependence of Tc by repeating the
calculations as we vary the chemical potential. The doping
dependence, Tc(x), can be obtained by calculating Tc and the
doping concentration x as a function of the chemical potential
μ. Because the doping increases the screening wavenumber
qs, the Coulomb binding energy is weakened, and Tc(x) should
be a decreasing function of x. Figure 2(b) shows that the

calculated Tc(x) (black solid line) is in good agreement with
the electron doping experiments. The Tc suppression rate by
hole doping is steeper than the electron doping as might be
expected because the conduction band has higher density of
states (DOS). The Tc(x) result also suggests that pristine TiSe2

to exhibit intrinsic behavior might be prepared by hole or
electron doping such that the samples have a maximum Tc

with doping.
The pressure dependence of Tc may be considered simi-

larly. Pressure induces more overlap between the electron and
hole bands and a decrease of the gap. This leads to more
screening and weakened interaction, which suppresses the
Tc within the EI picture. This behavior was indeed observed
experimentally [24].

IV. SPECTROSCOPIC FEATURES

We now turn to the spectroscopic features of the ARPES
and DOS below Tc. In the low-temperature regime deep in
the CDW state, the full gap equation of Eq. (1) must be
solved self-consistently to obtain �i(k). All three gap order
parameters �i(k) are coupled in the full gap equation unlike
the linearized one, and they are calculated simultaneously. We
assumed they are real for simplicity with no consideration
of the possible chirality of the order parameter phase. The
sum over k′ in Eq. (1) was performed using the fast Fourier
transform with a 48 × 48 k point mesh within the hexagonal
first BZ as is explained in Appendix E. The indirectness of the
gap was properly taken into consideration in this process. The
computed �i(k) is shown in the first BZ in Fig. 3.

With the determined �i(k) as shown in Fig. 3, the spec-
tral functions of the hole and electron bands which ARPES
measure are then given as below:

Ae,i(k, ω) = − 1

π
Im

ω − ξ ′
h − Bi/(ω − ξe,i )

(ω − ξe,i )(ω − ξ ′
h) − �2

i (k) − Bi
,

Ah(k, ω) = − 1

π
Im

ω − ξ ′
e,3

(ω − ξ ′
e,3)(ω − ξh) − �2

3(k) − B′
3

,

(10)

where ξ ′ are the backfolded dispersions of the corresponding
electron and hole bands. The DOS is obtained by summing
the spectral function A(k, ω) over the wavevector k by

D(ω) =
∑

k

[ ∑
i=1,2,3

Ae,i(k, ω) + Ah(k, ω)

]
. (11)

The renormalized dispersions in the EI states show up in
high intensity as shown in Figs. 4(a) and 4(b). The calcu-
lated spectra are in good agreement with Monney et al. [11].
The most significant distinction is that the exciton order pa-
rameter with the full momentum dependence was calculated
self-consistently from the screened Coulomb interaction in
the present work. The conduction and hole dispersions are
hybridized in the EI state. Around, say, the M1 point, the ξe,1

out of the triplet conduction bands and the hole dispersion ξh

are coupled and shifted up and down, respectively, and show
up with high intensity as shown in Figs. 4(a) and 4(b). Their
backfolded bands also clearly show up. The renormalized
conduction band is shift up from ξe,1 and shows a flat disper-
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FIG. 3. The momentum dependence of the computed order parameter �i(k) within the first BZ. The blue and red lines are the hole and
electron bands, respectively. �i(k) takes the largest value at the BZ center and is elongated along �-Mi direction.

sion around the M1 point. The other two electron dispersions
remain little affected. Consequently, they overlap with the
bare dispersions (the orange dashed lines) and their backfold-
ings have a vanishing intensity.

Some of these features may be better studied by the
scanning tunneling spectroscopy(STS) and scanning tunnel-
ing microscopy (STM) experiments because ARPES cannot
probe the unoccupied states. The tunneling conductance
(dI/dV ) is proportional to the DOS given by Eq. (11). The
calculated DOS above and below Tc are shown in Fig. 4(c).
The coherence peaks become split due to the momentum
dependence of the exciton order parameter: two-step-like
structure in the negative bias (green arrows) and two-peak
structure in the positive bias (black arrows) regime. Interesting
features may be revealed more clearly in the normalized con-
ductance of (dI/dV )CDW /(dI/dV )normal as shown in Fig. 4(d).
Most important is the clear zero-bias peak of the width of
the normal gap as marked by the red arrow. This is because
the normal state is semiconducting with the gap Eg and the

EI has a bigger gap of
√

E2
g + 3(2�� )2 or

√
E2

g + 3(2�M )2.

Systematic analysis of DOS is not available in the literature.
But, the recent STS experiments of Kolekar et al. [27] (re-
produced in Appendix E) do exhibit the anticipated zero-bias
peak, which is consistent with the semiconducting normal
state. High-resolution STS data in a wide bias range will be
informative.

V. SUMMARY AND CONCLUDING REMARKS

We presented in this paper a theoretical investigation of
the view that the charge density wave below Tc ≈ 200 K
is an excitonic insulator phase in 1T -TiSe2. The idea was
to check if the calculated Tc from the Coulomb interaction
alone accounts for a majority fraction of the experimental
Tc. If so, it implies that the observed CDW is predominantly
formed by the Coulomb interaction and that the CDW is an
EI phase. Two crucial physical parameters for a quantitative
determination of Tc were the background dielectric constant

FIG. 4. (a, b) The calculated spectral function around � and M points. The orange dashed lines represent the (a) hole and (b) electron
dispersions in the normal phase and the black dashed lines show their backfolded ones. The high-intensity curves near the orange lines are the
main dispersions in the EI state. (c) DOS in EI (black line) and normal (red) states. The black and green arrows indicate the coherence peaks
due to flat dispersions of spectral function. These peaks are split because of the momentum dependence of �i(k). (d) The normalized DOS,
where the zero-bias peak (marked by the red arrow) shows up because of the normal state gap.
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ε∞ and the normal state gap Eg. We determined ε∞ ≈ 3.0
by combining the published reflectance spectrum and EELS
measurements up to 30 eV. If we take Eg ≈ 74 ± 15 meV as
a representative value, we obtained Tc ≈ 135 ± 27 K. This
accounts for majority fraction of the measured Tc ≈ 200 K
from bulk crystals, while a quantitative match of the mea-
sured Tc may need assistance from other interactions like the
electron-lattice coupling and the Jahn-Teller effect. It seems
that the EI is a convincing view of the CDW state of 1T -TiSe2.

The EI view was furthermore reinforced by calculating
the doping dependence of the critical temperature Tc(x) and
the spectroscopic features in the low-temperature limit. These
calculations were done with the same set of parameters as the
Tc calculations of undoped samples and were in agreement
with experimental observations. We note again that the EI
phase emerges only out of a semiconducting normal state
(positive Eg). The semiconducting state above Tc and EI below
together should give a coherent picture of 1T -TiSe2.

The semimetallic or semiconducting normal state behavior
turns out to be a crucial facet of underlying physics which
may help uncover nature of CDWs of disparate mechanisms.
The underlying physics of the Peierls instability or Jahn-Teller
distortion is to lift degeneracy or to reduce the DOS at the
Fermi level by a CDW distortion to lower the free energy.
This implies that a metallic DOS at the Fermi level is fa-
vored for the Peierls instability or Jahn-Teller distortion to
be operative. On the other hand, the excitons may condense
in the metallic or insulating states in, respectively, BCS or
BEC regimes. Therefore, a CDW out of a semiconducting
normal state is expected to be of an excitonic nature. This
physical anticipation is indeed borne out to be the case for
TiSe2 by detailed material-specific calculations in this paper.
We anticipate our approach to be applied to a wider class of
problems and materials where the exciton condensation is yet
to be explored.
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APPENDIX A: FORMULATION OF THE EXCITON GAP
EQUATION FOR 1T -TiSe2

To describe the excitonic insulator state of 1T -TiSe2, we
considered three Ti 3d–derived electron bands around Mi and
a Se 4p–derived hole band around � in the BZ with statically
screened Coulomb interaction. The Hamiltonian is written as

H = H0 + W, (A1)

H0 =
∑

k

εh(k)a†(k)a(k) +
∑
k,i

εe,i(k)b†
i (k)bi(k), (A2)

W = 1

2

∑
q,i

ρa(q)Vs(q)ρb,i(−q), (A3)

where the density operators are

ρa(q) =
∑

k

a†(k + q)a(k), (A4)

ρb,i(q) =
∑

k

b†
i (k + q)bi(k). (A5)

Here εh and εe,i are the hole and electron dispersions and i is
the electron band index. Vs(q) is the Thomas-Fermi screened
Coulomb interaction in two dimensions given in Eq. (6) in the
main text. qs is the screening wavenumber given by

qs = 2πe2

ε∞

∂n

∂μ
, (A6)

where μ is the chemical potential and n is the sum of the
densities of three electron bands and one hole band,

n(μ, T ) =
∑

i=1,2,3

ne,i(μ, T ) + nh(μ, T ), (A7)

with

ne,i(μ, T ) = 2
∫

BZ

dk
(2π )2

f (ξe,i ),

nh(μ, T ) = 2
∫

BZ

dk
(2π )2

f (−ξh), (A8)

where the factor of 2 is due to the spin degeneracy.
The charge neutrality condition is∑

i=1,2,3

ne,i(μ, T ) = nh(μ, T ). (A9)

Deviations from the charge neutrality are represented by the
doping concentration x which can be calculated by varying the
chemical potential μ. x is given by

x(μ, T ) =
∑

i=1,2,3

ne,i(μ, T ) − nh(μ, T ), (A10)

for given temperature T and μ.
We employ the four-component operator �k in Nambu

notation:

�
†
k = (b†

1(k), b†
2(k), b†

3(k), a†(k)), �k =

⎛⎜⎜⎜⎝
b1(k)

b2(k)

b3(k)

a(k)

⎞⎟⎟⎟⎠. (A11)

The 4 × 4 matrix renormalized Green’s function Ĝ is defined
as

Ĝ(k, τ ) = −〈Tτ�k(τ )�†
k (0)〉, (A12)
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with the bare Green’s function Ĝ0 and the self-energy 	̂ given as

Ĝ−1
0 (k, ip) = ip −

⎛⎜⎜⎜⎝
εe,1(k) 0 0 0

0 εe,2(k) 0 0

0 0 εe,3(k) 0

0 0 0 εh(k)

⎞⎟⎟⎟⎠, (A13)

	̂(k, ip) =

⎛⎜⎜⎜⎝
	e,1(k, ip) 0 0 �1(k, ip)

0 	e,2(k, ip) 0 �2(k, ip)

0 0 	e,3(k, ip) �3(k, ip)

�1(k, ip) �2(k, ip) �3(k, ip) 	h(k, ip)

⎞⎟⎟⎟⎠. (A14)

The renormalized Green’s function is given by Dyson’s equation as

Ĝ−1(k, ip) = Ĝ−1
0 (k, ip) − 	̂(k, ip) =

⎛⎜⎜⎜⎝
ip − ξe,1(k) 0 0 −�1(k, ip)

0 ip − ξe,2(k) 0 −�2(k, ip)

0 0 ip − ξe,3(k) −�3(k, ip)

−�1(k, ip) −�2(k, ip) −�3(k, ip) ip − ξh(k)

⎞⎟⎟⎟⎠ (A15)

in the Matsubara frequency.
The normal state dispersions are

ξe,i(k) = ε0
e,i(k) − μ + Eg + 	e,i, ξh(k) = ε0

h (k) − μ + 	h, (A16)

as given previously in the main text. The diagonal self-energies 	e,i and 	h are given by

	e,i = −2
∑

k

Vs(k) f (ξi(k)), 	h = 2
∑

k

Vs(k) f (−ξh(k)). (A17)

	 and qs were also determined self-consistently by keeping the charge neutrality [17]. The renormalized band gap is

Ēg = Eg + 	e − 	h. (A18)

The 2D bare dispersions within the hexagonal first BZ were taken as

ε0
e,1(kx, ky) = h̄2

2me,l
(kx − �M )2 + h̄2

2me,s
k2

y ,

ε0
e,2(kx, ky) = h̄2

2me,l

(
1

2

(
kx + �M

2

)
−

√
3

2

(
ky −

√
3

2
�M

))2

+ h̄2

2me,s

(√
3

2

(
kx + �M

2

)
+ 1

2

(
ky −

√
3

2
�M

))2

,

ε0
e,3(kx, ky) = h̄2

2me,l

(
1

2

(
kx + �M

2

)
+

√
3

2

(
ky +

√
3

2
�M

))2

+ h̄2

2me,s

(√
3

2

(
kx + �M

2

)
− 1

2

(
ky +

√
3

2
�M

))2

,

ε0
h (kx, ky) = − h̄2

2mh

(
k2

x + k2
y

)
, (A19)

for the three elliptic electron bands at Mi points and a hole band at �, where �M is the distance between � and M points in the
reciprocal space. We took

me,l = 3.46 × free electron mass,

me,s = 1.38 × free electron mass,

mh = 0.63 × free electron mass, (A20)
for the effective masses of the conduction and hole bands [20,31].

APPENDIX B: THE SCREENED COULOMB
INTERACTION FOR TiSe2 OF LAYERED STRUCTURE

We calculated the critical temperature Tc of the exciton
condensation by solving the linearized gap equation (7). The
inputs are the material-specific electronic structure and the ef-
fective screened Coulomb interaction Vs. Let us first consider
Vs.

Recall that the solution to the anisotropic Poisson equation
with the in-plane and out-of-plane dielectric constants ε‖ and
ε⊥ is given as

V (r, z) = e√
ε‖ε⊥

1√
r2 + ε‖

ε⊥
z2

, (B1)
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as may be verified by a direct substitution to the Poisson
equation,

ε‖

(
∂2

∂x2
+ ∂2

∂y2

)
+ ε⊥

∂2

∂z2
= −4πe δ(r, z), (B2)

where r is the 2D in-plane vector. Take the distance between
neighboring layers as c. A scaling to z̃ = √

ε‖/ε⊥z in Eq. (B1)
reveals that this is a Coulomb potential of a charge e in an
isotropic medium of a dielectric constant

√
ε‖ε⊥ in the r, z̃

space.
We then follow the well-studied results of the dielectric

function of layered structures in an isotropic medium [32,33].
It is given in the reciprocal space by

ε(q, q̃z ) =
√

ε
‖
∞ε⊥∞ + vqχ

sinh(qd )

cosh(qd ) − cos(q̃zd )
, (B3)

where d =
√

ε
‖
∞/ε⊥∞c, q̃z =

√
ε⊥∞/ε

‖
∞qz, vq = 2πe2/q, and

χ is the response function. The effective screened Coulomb
interaction is

V 3D
s (q, q̃z ) = 2πe2√

ε
‖
∞ε⊥∞q

[
cosh(qd ) − cos(q̃zd )

sinh(qd )
+ qs

q

]−1

,

(B4)

where qs = 2πe2χ/

√
ε

‖
∞ε⊥∞.

The exciton gap equation in two dimensions of Eq. (7)
would be written in three dimensions as

�(k, k̃z ) = 1

(2π )2

∫
BZ

dk′ c

2π

∫
dk̃′

zV
3D

s (k − k′, k̃z − k̃′
z )

× f (ξh(k′, k̃′
z )) − f (ξe(k′, k̃′

z ))

ξe(k′, k̃′
z ) − ξh(k′, k̃′

z )
�(k′, k̃′

z ). (B5)

For cases where the z-direction dispersion can be neglected in
Eq. (B5) as in strongly anisotropic materials, we may ignore
the k̃z dependence of �(k, k̃z ) and perform the k̃′

z integral.
Then, Eq. (B5) is reduced to Eq. (7), where

Vs(q) = c

2π

∫ π/d

−π/d
dq̃zV

3D
s (q, q̃z )

= 2πe2

ε
‖
∞q

sinh(qd )√[
cosh(qd ) + sinh(qd ) qs

q

]2 − 1
, (B6)

using the relation of
∫

dqzV (qz ) = ∫
dq̃zV (q̃z ). Note that the

effective background dielectric constant
√

ε
‖
∞ε⊥∞ of 3D lay-

ered materials is changed to ε
‖
∞ because of the

√
ε

‖
∞/ε⊥∞

factor in the integrand in the qz integral. Make expansion on
the small qsd and use tanh(qmind ) = 1.0, where qmin = �M
corresponds to the wavevector of the minimum gap between �

and M points. The qmind � 1 corresponds to a weak-coupling
limit which reduces the Coulomb interaction of a layered
structure to that of decoupled single layers. We obtain

Vs(q) = 2πe2

ε
‖
∞

1

q + qs
. (B7)

This shows that the effective background dielectric constant in
the 2D modeling of the screened Coulomb interaction is given

M

K

FIG. 5. The gray hexagonal area represents 1st BZ of TiSe2. It
can be converted into the blue dash rhombus of the same area. The
red and black dots in the blue dashed rhombus are the selected k
points for FFT. The red dots are the k points in the irreducible BZ
(pale red triangle) for Tc calculations.

by the in-plane component of the background dielectric tensor
of 3D layered materials.

APPENDIX C: CALCULATION OF Tc

There are a few characteristics of the electronic structure
of candidate materials relevant for the exciton condensation:
(a) direct or indirectness of the band gap, (b) the normal gap
size Eg, (c) the number of electron bands and hole bands,
(d) mass asymmetricity, the ratio of hole to electron masses
β = mh/me, and (e) the background dielectric constant. All
these material-specific electronic structures were incorporated
in the calculations of the critical temperature Tc of the exciton
condensation.

To calculate Tc, the linearized gap equation was written in
a matrix form by discretizing the wavevector k within first
BZ as given in Eq. (8) in the main text. The discretization of
the wavevector k was taken as the 48 × 48 points as shown
in Fig. 5. For calculation efficiency, ki points were selected
within the irreducible BZ (red dots in red area) with the weight
of each point properly taken into account. This produces
∼1/12 times smaller matrix size to diagonalize. Equation (8)
is just an eigenvalue problem with the eigenvalue set to 1. For
temperatures above the critical temperature Tc all the eigenval-
ues are smaller than 1. Tc is given by the temperature where
the largest eigenvalue of the matrix M of Eq. (8) becomes 1.
This sets up a route to determine the EI critical temperature Tc

microscopically with the electronic structure properties like
ε∞ and Eg and with no fitting parameters.

Figure 6(a) shows the critical temperature Tc of EI in two
dimensions for four different cases of the characteristics. The
calculated EI phase on the negative Eg region strongly de-
pends on the material parameters, while it is more robust on
the positive Eg side. All of the characteristic configurations
affect the suppression of the EI phase on the negative Eg

region. In particular, the EI phase on the negative Eg region
is completely suppressed for indirect gap configurations or
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FIG. 6. (a) The critical temperature Tc of excitonic instability as a function of the energy gap for four different characteristic configurations
of electronic structure. (b) Tc vs Eg for TiSe2 for different choices of the background dielectric constant ε∞.

the number of conduction bands being greater than 1. The
exciton condensation is not expected in the semimetallic cases
for TiSe2. Figure 6(b) shows Tc vs Eg for TiSe2 for different
choices of the background dielectric constant ε∞ = 2, 3, and
4. Tc is suppressed as Eg is increased.

The Eg where Tc → 0 on the positive Eg side is the exciton
binding energy EX . Figure 6 shows that the EX is reduced in
the indirect gap cases as given in Eq. (9) in the main text.
Consider the gap equation of Eq. (7). Take the T → 0 limit
and determine the positive Eg that satisfies the equation. From
Eq. (A19)

ξe − ξh = Eg +
(

h̄2

2me
+ h̄2

2mh

)
k2 + h̄2

2me
(�M

2 − 2k�M )

= Eg + h̄2�M
2

2M
+ h̄2

2mr

(
k − mr

me
�M

)2
, (C1)

where M and mr are the total and reduced masses of an
electron and a hole of an exciton,

M = me + mh,
1

mr
= 1

me
+ 1

mh
. (C2)

For a rough estimate of EX , we neglect the k dependence of
the order parameter for simplicity and extend the range of
integration of Eq. (7) to the entire wavevector space to obtain

1 =
∫

d2k
e2

2πε∞

1

k

1

Eg + h̄2�M
2

2M + h̄2

2mr
k2

= α

ε∞

2mrcπ

h̄

1√
2mr

h̄2

(
Eg + h̄2�M

2

2M

) . (C3)

Then, the exciton binding energy is given by

EX ≈ 2mrc2
( α

ε∞

)2
− h̄2�M

2

2M
, (C4)

as given in Eq. (9) in the main text. The first term on the
right-hand side is the well-known binding energy of a direct
exciton in two dimensions. For Tc of layered structures, EX is

modified to

EX ≈ 2mrc2 α2

ε
‖
∞ε⊥∞

− h̄2�L
2

2M
, (C5)

where EX is reduced by the indirectness of the gap. A slight
increase of ε∞ or a decrease of M such that the first term
becomes smaller than the second one on the right-hand side
of Eq. (C4) then completely suppresses an EI phase in can-
didate materials. Figure 7 shows a contour plot of excitonic
Tc of TiSe2 in the ε∞-Eg plane. For example, for ε∞ ≈ 4.0,
EX ≈ 0.6 eV, and for ε∞ � 4.5 the EI phase is completely
suppressed because Eg � EX as can be seen from Fig. 7.

Figure 8 shows the calculated critical temperature Tc as a
function of Eg from the 3D gap equation [Eq. (B5)] with the
screened Coulomb interaction of layered structures [Eq. (B4)]
in comparison with the 2D results from Fig. 2(a). The Eg refers
to the minimum gap between the electron and hole bands and
corresponds to the gap between � and L in three dimensions
(M in two dimensions). The kz dispersion, therefore, widens

FIG. 7. Contour plot of the exciton critical temperature for TiSe2

in the plane of the background dielectric constant ε∞ and the nor-
mal gap Eg. The red line represents the region corresponding to
Tc = 200 K.
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FIG. 8. The exciton critical temperature for TiSe2 as a function
of the normal gap Eg from 3D gap equation.

the gap between the electron and hole bands on average which
around 74 meV negates weakening of screened Coulomb
interaction and leads to an increase of Tc. We adapted the
parametrization for the kz dispersion as given by Monney
et al. [11], adding

te cos(πkz/�A), th cos(πkz/�A), (C6)

to the electron and hole dispersions, respectively, with te =
30 ± 2.5 meV and th = 60 ± 5 meV. For ε⊥

∞ = 3.25 as de-
termined from the ab initio calculation as explained in
Appendix D and ε

‖
∞ = 3.0 the same as the 2D calculations,

Tc increased to 150 K around Eg ≈ 74 meV as shown in
Fig. 8. Another change is that the exciton binding energy
EX decreased to around 1.3 eV in three dimensions (1.6 in
two dimensions). This is as anticipated because the first term
of Eq. (C5) in comparison with Eq. (C4) decreases and the
second term increases in three dimensions.

APPENDIX D: DETERMINATION OF ε∞ OF 1T -TiSe2

We determined the background dielectric constant ε∞
by combining the measured reflectance spectrum below
6.2 eV [34], and the measured electron energy loss spec-
troscopy spectrum up to 30 eV [35]. We also used the ab initio
calculated real and imaginary parts of the dielectric functions
in a published paper [36] to check reliability of the determined
value from the experiments. They are in good agreement with
each other as we discuss below.

The reflectance spectrum R(ω) for the normal incidence
is given in terms of the complex dielectric constant ε̃(ω) ≡
ε1(ω) + iε2(ω) by

R(ω) =
∣∣∣∣1 − √̃

ε(ω)

1 + √̃
ε(ω)

∣∣∣∣2

. (D1)

The separate reflectance spectra at 300 K are shown in Fig. 9,
and the combined reflectance spectrum is shown in the inset.
We performed the Kramers-Krong (KK) analysis [37] to get
the optical conductivity from the combined reflectance spec-
trum. The optical conductivity is shown in Fig. 10.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

0.01 0.1 1 10
0.0

0.2

0.4

0.6

0.8

 Reflectance from Ref. [34]
 EELS from Ref. [35]

T = 300 K

1T-TiSe
2

R
(

)

Energy (eV)

 Combined spectrum

FIG. 9. Separate reflectance spectra of 1T -TiSe2 at 300 K ob-
tained from the optical spectroscopy [34] and the EELS study [35].
In the inset we show the combined reflectance.

The largest interband optical transition between the elec-
tron and hole bands of Eqs. (A19) considered in the present
calculations is about 6.5 eV within the first BZ. The ex-
citations above 6.5 eV then contribute to the background
dielectric constant ε∞. We used the method introduced in [38]
to estimate ε∞ from the optical conductivity above 6.5 eV. We
obtain the imaginary part of the optical conductivity above
6.5 eV using the Kramers-Kronig relation [37] between the
real and imaginary parts of the optical conductivity. Also
using the relation between the imaginary part of the optical
conductivity and the real part of the dielectric function, we
obtain the background dielectric constant as

ε∞ ≡ lim
ω→0

εH
1 (ω),

εH
1 (ω) = 1 − 4π

ω
σ H

2 (ω). (D2)

ε∞ = 3.0 as can be seen in Fig. 11.
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-1
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-1
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FIG. 10. The optical conductivity: the full conductivity (orange
line) and a high-energy part above 6.5 eV (olive line).
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FIG. 11. The dielectric function ε1(ω) of 1T -TiSe2 obtained
from the KK analysis and the high-energy dielectric function, εH

1 (ω).

The ε∞, having been determined by the contributions from
high-energy excitations above the cutoff of 6.5 eV, should be
temperature independent. To demonstrate this explicitly, we
used the 10 K experimental data to determine ε∞ at T = 10 K.
As can be seen from Fig. 12 the conductivities at 10 K (blue
curve) and 300 K (red) merge above around 1 eV. The ε∞
is determined from the high-energy part (green curve) where
the two different T data overlap exactly. This explicitly shows
that the background dielectric constant ε∞ is temperature
independent as expected.

Since the exciton instability is rather sensitive on the ε∞
value as can be seen, for example, from Eq. (9), we checked
the reliability of the determined value of ε∞ = 3.0. We pro-
ceed exactly the same now with the ab initio evaluated real
and imaginary parts of the dielectric functions ε1(ω) and
ε2(ω) for the in-plane electric field (E ⊥ ẑ) in a published

FIG. 12. The conductivity σ1(ω) and the high-energy part of the
conductivity σ H

1 (ω) for temperatures 10 and 300 K. The σ H
1 (ω) for

the two temperatures overlap exactly and, consequently, the back-
ground dielectric constant ε∞ is temperature independent.

FIG. 13. The dielectric function ε1(ω) and the high-energy part
of the dielectric function εH

1 (ω) for the electric field parallel to the
layers.

paper [36]. We obtained ε
‖
∞ = 3.06 as can be seen in Fig. 13

in good agreement with the ε
‖
∞ = 3.0 from the combined data

of reflectance and EELS.
We also determined ε⊥

∞ from the ab initio calculations for
the out-of-plane electric field [36]. We obtained ε⊥

∞ = 3.25
as can be seen in Fig. 14. Then, the 3D effective background

dielectric constant is
√

ε
‖
∞ε⊥∞ = 3.15.

APPENDIX E: COMPARISON WITH STS AND STM
EXPERIMENTS

In the low-temperature limit, we need to solve the full gap
equation of Eq. (1) in the main text. The k′ summation was
performed using the fast Fourier transform (FFT) between the
momentum and real space for accuracy and efficiency using

FIG. 14. The full dielectric function and the high-energy part
of the dielectric function for the electric field perpendicular to the
layers.
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FIG. 15. (a) The dI/dV of TiSe2 at 280 K (red) and 15 K (black)
from Kolekar et al. [27]. (b) Normalized dI/dV .

the convolution relation∑
k

eik·r ∑
k′

F (k′ − k)G(k′) = F (r)G(r). (E1)

Then, Eq. (1) may be transformed to the real space as

�i(r) = −
∫ ∞

−∞
dωA�i (r, ω) f (ω)Vs(r). (E2)

The screened Coulomb interaction and the spectral function
in the real space, Vs(r) and A(r, ω), respectively, were also
obtained by performing FFT. The k points in the 2D hexagonal

lattice (gray area in Fig. 5) are not suitable for performing
FFT, so a 2D rhombus lattice (dashed line in the figure) of
the same size was considered. The k points were selected
evenly spaced within the 2D rhombus lattice (red and black
dots in the figure). The selected k points naturally include
the periodicity of the 2D hexagonal lattice. At this time, in
order to fully consider the information of the 2D hexagonal
lattice, the number of k points on one side was set to an integer
multiple of 6. Here we choose 48 × 48 k points as shown in
Fig. 5. Since the rhombus is an inclined rectangle, the selected
k points can be applied to the conventional 2D FFT algorithm.

The gap equation (E2) was solved self-consistently via
numerical iterations. The �i(k) (i = 1, 2, 3) are all coupled
in the full gap equation. They were obtained simultaneously
from iterations without making symmetry operations among
them. The obtained �i(k) were shown in Fig. 3. With thus
determined �i(k) the spectroscopic features were calculated
as explained in main text. The semiconducting DOS of our
model TiSe2 [Fig. 4(c), red solid line] gets enlarged in the EI
phase [Fig. 4(c), black solid line]. Some detailed structures,
split weak coherence peaks, and steplike structures are as we
may expect from the ARPES intensity.

These features may be revealed more clearly in the normal-
ized DOS as shown in Fig. 4(d) in the main text. A remarkable
structure in the normalized DOS from calculations is the
zero-bias peak, which is caused by a semiconducting normal
state. The corresponding DOS plots from STS experiments by
Kolekar et al. [27] are shown for both normal [Fig. 15(a), red
solid line] and CDW phases [Fig. 15(a), black solid line], and
the normalized DOS in Fig. 15(b). It is not straightforward
to determine the gap size from experiments because there is
no strong coherence peak. But this weak coherence peak is
consistent with calculations. A steplike structure around −0.1
to −0.2 eV can be compared with calculations, although the
energy scale is not clear. Interestingly, the zero-bias peak also
appears in normalized DOS from experiments. For more sys-
tematic comparison, one may need a systematic measurement
and analysis of STS and/or STM for above and below Tc.
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T. K. Kim, K. Rossnagel, and P. D. C. King, Orbital- and kz-
Selective Hybridization of Se 4p and Ti 3d States in the Charge
Density Wave Phase of TiSe2, Phys. Rev. Lett. 122, 076404
(2019).

[19] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y.
Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava,
Superconductivity in CuxTiSe2, Nat. Phys. 2, 544 (2006).

[20] P. Chen, Y. H. Chan, X. Y. Fang, Y. Zhang, M. Y. Chou, S. K.
Mo, Z. Hussain, A. V. Fedorov, and T. C. Chiang, Charge
density wave transition in single-layer titanium diselenide, Nat.
Commun. 6, 8943 (2015).

[21] P. Goli, J. Khan, D. Wickramaratne, R. K. Lake, and A. A.
Balandin, Charge density waves in exfoliated films of van der
Waals materials: Evolution of Raman spectrum in TiSe2, Nano
Lett. 12, 5941 (2012).

[22] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li,
O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz,
Exciton Binding Energy and Nonhydrogenic Rydberg Series in
Monolayer WS2, Phys. Rev. Lett. 113, 076802 (2014).

[23] Y. F. Lu, H. Kono, T. I. Larkin, A. W. Rost, T. Takayama, A. V.
Boris, B. Keimer, and H. Takagi, Zero-gap semiconductor to
excitonic insulator transition in Ta2NiSe5, Nat. Commun. 8,
14408 (2017).

[24] A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš,
Pressure Induced Superconductivity in Pristine 1T -TiSe2, Phys.
Rev. Lett. 103, 236401 (2009).

[25] T. Jaouen, M. Rumo, B. Hildebrand, M. L. Mottas, C. W.
Nicholson, G. Kremer, B. Salzmann, F. Vanini, C. Barreteau,
E. Giannini, H. Beck, P. Aebi, and C. Monney, Unveiling the
semimetallic nature of 1T -TiSe2 by doping its charge density
wave, arXiv:1911.06053.

[26] T. E. Kidd, T. Miller, M. Y. Chou, and T.-C. Chiang, Electron-
Hole Coupling and the Charge Density Wave Transition in
TiSe2, Phys. Rev. Lett. 88, 226402 (2002).

[27] S. Kolekar, M. Bonilla, Y. Ma, H. C. Diaz, and M. Batzill,
Layer- and substrate-dependent charge density wave criticality
in 1T -TiSe2, 2D Mater. 5, 015006 (2018).

[28] A. M. Novello, B. Hildebrand, A. Scarfato, C. Didiot, G.
Monney, A. Ubaldini, H. Berger, D. R. Bowler, P. Aebi, and Ch.
Renner, Scanning tunneling microscopy of the charge density
wave in 1T -TiSe2 in the presence of single atom defects, Phys.
Rev. B 92, 081101(R) (2015).

[29] D. J. Campbell, C. Eckberg, P. Y. Zavalij, H.-H. Kung, E.
Razzoli, M. Michiardi, C. Jozwiak, A. Bostwick, E. Rotenberg,
A. Damascelli, and J. Paglione, Intrinsic insulating ground state
in transition metal dichalcogenide TiSe2, Phys. Rev. Mater. 3,
053402 (2019).

[30] J. M. Moya, C.-L. Huang, J. Choe, G. Costin, M. S. Foster,
and E. Morosan, Effect of synthesis conditions on the electrical
resistivity of TiSe2, Phys. Rev. Mater. 3, 084005 (2019).

[31] C. Chen, B. Singh, H. Lin, and V. M. Pereira, Reproduction of
the Charge Density Wave Phase Diagram in 1T -TiSe2 Exposes
its Excitonic Character, Phys. Rev. Lett. 121, 226602 (2018).

[32] P. B. Visscher and L. M. Falicov, Dielectric screening in a
layered electron gas, Phys. Rev. B 3, 2541 (1971).

[33] K. W. K. Shung, Dielectric function and plasmon structure of
stage-1 intercalated graphite, Phys. Rev. B 34, 979 (1986).

[34] G. Li, W. Z. Hu, D. Qian, D. Hsieh, M. Z. Hasan, E. Morosan,
R. J. Cava, and N. L. Wang, Semimetal-to-Semimetal Charge
Density Wave Transition in 1T -TiSe2, Phys. Rev. Lett. 99,
027404 (2007).

[35] G.-J. Shu, Y. Zhou, M.-Y. Kao, C. J. Klingshirn, M. R. S.
Huang, Y.-L. Huang, Y. Liang, W. C. H. Kuo, and S.-C. Liou,
Investigation of the π plasmon and plasmon-exciton coupling
in titanium diselenide (TiSe2) by momentum-resolved elec-
tron energy loss spectroscopy, Appl. Phys. Lett. 114, 202103
(2019).

[36] A. Leventi-Peetz, E. E. Krasovskii, and W. Schattke, Dielectric
function and local-field effects of TiSe2, Phys. Rev. B 51, 17965
(1995).

[37] F. Wooten, Optical Properties of Solids (Academic Press, New
York, 1972).

[38] J. Hwang, T. Timusk, and G. D. Gu, Doping dependent optical
properties of Bi2Sr2CaCu2O8+δ , J. Phys.: Condens. Matter 19,
125208 (2007).

205108-13

https://doi.org/10.1126/science.aam6432
https://doi.org/10.1038/nmat4042
https://doi.org/10.1103/PhysRevB.74.165107
https://doi.org/10.1103/PhysRevLett.122.076404
https://doi.org/10.1038/nphys360
https://doi.org/10.1038/ncomms9943
https://doi.org/10.1021/nl303365x
https://doi.org/10.1103/PhysRevLett.113.076802
https://doi.org/10.1038/ncomms14408
https://doi.org/10.1103/PhysRevLett.103.236401
http://arxiv.org/abs/arXiv:1911.06053
https://doi.org/10.1103/PhysRevLett.88.226402
https://doi.org/10.1088/2053-1583/aa8e6f
https://doi.org/10.1103/PhysRevB.92.081101
https://doi.org/10.1103/PhysRevMaterials.3.053402
https://doi.org/10.1103/PhysRevMaterials.3.084005
https://doi.org/10.1103/PhysRevLett.121.226602
https://doi.org/10.1103/PhysRevB.3.2541
https://doi.org/10.1103/PhysRevB.34.979
https://doi.org/10.1103/PhysRevLett.99.027404
https://doi.org/10.1063/1.5097023
https://doi.org/10.1103/PhysRevB.51.17965
https://doi.org/10.1088/0953-8984/19/12/125208

