
PHYSICAL REVIEW B 103, 205107 (2021)

Random sampling neural network for quantum many-body problems
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The eigenvalue problem of quantum many-body systems is a fundamental and challenging subject in
condensed-matter physics because the dimension of the Hilbert space (and hence the required computational
memory and time) grows exponentially as the system size increases. A few numerical methods have been
developed for some specific systems but may not be applicable in others. Here we propose a general numerical
method, random sampling neural networks (RSNNs), to utilize the pattern recognition technique for the random
sampling matrix elements of an interacting many-body system via a self-supervised learning approach. Several
exactly solvable one-dimensional models, including the Ising model with a transverse field, the Fermi-Hubbard
model, and the spin- 1

2 XXZ model, are used to test the applicability of RSNN. Pretty high accuracy (>96%)
of energy spectra, magnetization, critical exponents, etc. can be obtained within the strongly correlated regime
or near the quantum phase-transition point, even the corresponding RSNN models are trained in the weakly
interacting regime. After including data augmentation and transfer learning methods, RSNN can be further
applied to systems of larger sizes with much less training data if only pretrained in a smaller system. Our
results demonstrate the possibility to combine the existing numerical methods and the RSNN to explore quantum
many-body problems in a much wider parameter space.
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I. INTRODUCTION

It has been a long-standing challenge in condensed-
matter physics that the eigenvalue problem of a many-body
system is in general not accessible because of the ex-
ponentially huge Hilbert space of the associated quantum
many-body Hamiltonian. Only very few simple models in
low-dimensional space can be solved exactly due to their
higher order symmetries [1–3]. As a result, various an-
alytical and numerical methods are developed for certain
specific systems, including perturbation theory [4,5], renor-
malization group [6–8], bosonization [9,10], quantum Monte
Carlo [11–13], density matrix renormalization group [14,15],
tensor networks [16,17], etc. Within these analytic or nu-
merical methods, there are also many exquisite techniques
developed for solving some specific many-body problems in
some parameter regimes. Furthermore, in the recent rapidly
growing development of machine-learning approaches [18],
certain unsupervised learning methods, such as neural net-
work quantum state (NQS), are found to have better results
than ordinary variational methods in the calculation of the
ground-state and excited-state energies [19,20] through its
undetermined parameters of a restricted Boltzmann machine.
However, in these various approaches, each data point is
calculated independently according to the associate system
parameters, and therefore it may cost a lot of computational
resources to get a complete phase diagram.

From the data-driven machine-learning point of view, on
the other hand, this problem could be investigated from differ-

ent perspectives. Instead of unsupervised learning approaches,
which are similar to variational methods, one could also train
a model based on existing results in a well-known parameter
regime and then apply this model to other regimes. Most ap-
plications along this line are the classification and/or feature
extraction of various phase transitions through the supervised
learning approach [21–24]. The basic concept is to train a
model to learn the identities (i.e., labels) of different phases
in some parameter regimes and apply it to define the phase
boundary in the middle regime. Such a numerical approach is
possible because a horizontal relationship between features in
different parameter regimes could be learned (more precisely,
fit by a complicated function through machine learning) dur-
ing the training process. However, since the input features are
usually from experimental data or other physical quantities,
and the labels of these phases are in fact artificial labeling
for the purpose of classification [say, =(0, 1) for phase A
and =(1, 0) for phase B], such a pattern-recognition scenario
could not provide sufficient information for the understanding
of a many-body system. After all, the “nature” of these phases
should be associated with the relationship between these phys-
ical quantities, while such a relationship is in general too
complicated to be calculated in most systems.

Combining the advantages of the two approaches men-
tioned above, in this paper, we propose a self-supervised
machine-learning method, random sampling neural network
(RSNN), to study a general many-body problem. Motivated
by pattern recognition and self-supervised methods in com-
puter vision [25–27], we treat the many-body Hamiltonian
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as a huge two-dimensional (2D) “system image.” Random
sampling matrix elements (i.e., “patches”) are collected from
this system image as the input features to train a convolutional
neural network (CNN) in the training regime. The labels of
these features are physical quantities obtained by the system
Hamiltonian at the same parameter, reflecting the spirit of a
self-supervised learning process. We show that the accuracy
of such a simulation in the test regime can be systemati-
cally improved by increasing the amounts of training data,
while the computation time just scales linearly to the system
size, independent of the physical quantities to investigate. We
use several one-dimensional (1D) exactly solvable models,
including an Ising model with a transverse field, a Fermi-
Hubbard model, and a spin- 1

2 XXZ model, to demonstrate
the applicability of RSNN in the strongly correlated regime, if
only the model is properly trained by known results (obtained
by other numerical methods) in the weakly interacting regime.
Furthermore, when the RSNN model is pretrained by data
in a smaller system, we could use transfer learning method
to obtain results of a much larger system with much less
training data. Our results therefore demonstrate that RSNN
is an efficient data-driven and complementary approach to the
existing numerical methods for the study of quantum many-
body problems.

In the rest of this paper, we first introduce the basic concept
and hypothesis of RSNN in Sec. II, and then use the 1D
Ising Model with a transverse field as the first example of
a RSNN in Sec. III. In Sec. IV, we then use 1D IMTF to
systematically investigate how the accuracy and computation
time change for different hyperparameters of RSNN. Similar
results should be also expected for other physics models. We
then apply RSNN to predict the whole energy spectrum of a
1D Fermi-Hubbard Model in the strongly correlated regime
in Sec. V. In Sec. VI, we further apply RSNN to predict
the quantum phase-transition point of the 1D XXZ model
and investigate its quantum critical exponent. After applying
RSNN in different models, in Sec. VII, we utilize the data
augmentation and transfer learning method to improve RSNN
results for fewer training data and/or for larger system sizes.
We then summarize our results in Sec. VIII, and provide a
Github code. Further details of the RSNN models are shown
in the Appendix.

II. BASIC CONCEPT AND HYPOTHESIS

The concept of RSNN is motivated by machine-learning
methods developed for pattern recognition: The system
Hamiltonian Ĥ can be treated as a 2D system image, after
represented by a Hermitian matrix H with matrix elements
Hμν = 〈φμ|Ĥ|φν〉. Here {|φν〉} is a complete and orthonormal
basis. Each Hμν is like a “two-color pixel” with its real and
imaginary parts. As a result, the process to calculate any
physical quantities (for example, its eigenenergies En or any
expectation value of the ground state) is thus equivalent to de-
riving the functional relationship between the matrix elements
and these quantities, i.e., F (H[λ]) = F ({Hμν (λ)}) = {En(λ)},
where λ stands for a system parameter in control (for exam-
ple, external magnetic field or coupling strength). From the
machine-learning point of view, interestingly, solving such a
functional relationship F is thus equivalent to training a neural

network model (FNN) to simulate this complicated function,
i.e.,

FNN(H[λ]) ⇒ F (H[λ]) = {En(λ)}. (1)

According to the universal approximation theorem [28], the
difference between the approximate function FNN and the true
function F can be infinitesimal if the number of artificial
neurons (and hence the fitting parameters) and training data
used for FNN are large enough.

In a general many-body system, however, the dimension
of such a system image (i.e., the matrix representation of
the system Hamiltonian) grows exponentially as the system
size increases and therefore cannot be simulated efficiently.
To overcome this problem, here we propose a random sam-
pling method, where a large image could still be recognized
if only patches of this image are used during the training
process. More precisely, we first randomly select M basis
vectors from the full many-body basis to construct an M × M
sampling matrix H(m)

S and repeat this sampling NS times (m =
1, . . . , NS). The selected basis for each time can be different
from each other. These random sampling matrices therefore
form a collection of patches of the original system image
and hence contain partial information of the full many-body
system.

We could then combine these random sampling data and
the concepts of a self-supervised learning model, which is
trained by the internal properties of a system rather than exter-
nal labels [29], and propose the following random sampling
hypothesis: The patches of the full system image extracted
from random sampling basis can be used as the input features
of a neural network model so that, in a given training regime
(λ ∈ Rtrain), the obtained random sampling function FRSNN can
simulate the target physical quantities via a self-supervised
learning process within a small deviation:

∣∣FRSNN
({

H(m)
S [λ], b(m)

S [λ]
}) − {

En(λ)
}∣∣ < ε. (2)

Here the upper bound of their difference, ε, can be reduced
only if the amounts of artificial neurons and/or the training
data are increased. Its application in the test regime (λ ∈ Rtest)
can therefore also provide reliable estimates if Rtest is not too
far from Rtrain.

Before applying this hypothesis to a realistic physical
problem, we have to emphasize that the collection of sam-
pling basis ({b(m)

S [λ]}) can be different for each time, so
that the neural network could be enforced to simulate the
eigenvalue-solving problem based on the partial information
of the selected basis. A similar scenario can be also applied
to the calculation of other physical quantities, such as mag-
netization or a spectral function. In the rest of this paper, we
provide numerical calculations to support this hypothesis and
investigate its application in different many-body problems.

III. GROUND STATE AND MAGNETIZATION
OF ONE-DIMENSIONAL ISING MODEL

WITH A TRANSVERSE FIELD

To demonstrate the applicability of RSNN, we first take a
1D spin- 1

2 Ising model with a transverse field (IMTF) [1] as
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FIG. 1. A typical flowchart of a RSNN model. The input data are M × M matrices H(m)
S , randomly sampled from the original full system

Hamiltonian (see text). After a standard self-supervised learning by a CNN model with known results in the training regime (Rtrain), the obtained
RSNN model can be used to predict physical results in the test regime (Rtest). In most physical problems, the training and test regimes can be
defined by a continuous parameter λ.

an example for systematic studies. The system Hamiltonian is
known to be

ĤIMTF = −J
N∑
i

σ z
i σ̂ z

i+1 − h
N∑
i

σ̂ x
i , (3)

where σ̂x,y,z are Pauli matrices, J > 0 is the spin coupling
between the nearest-neighbor site, h is the transverse field
strength, and N is the total number of spins. 1D IMTF with
the periodic boundary condition is exactly solvable though
the Jordan-Wigner transformation [30], and therefore could
be a good example to test the application of our RSNN. In the
thermodynamic limit, the ground state is a doubly degenerate
ferromagnetic phase for h < J and becomes a nondegenerate
paramagnetic phase for h > J . We could then define λ ≡
h/(h + J ) ∈ (0, 1) as a dimensionless system parameter (see
Fig. 1) to measure such a phase transition.

In Fig. 2(a) we show the results of RSNN for the three
lowest eigenenergies of N = 12. Note that the energy is
scaled by J + h in order to have a better expression of
the energy in the both sides of training regime. We select
Ntrain = 10 000 values of λ from the training regime (col-
ored background) and generate Ns = 200 sampling matrices
(with a dimension M = 10) for each λ as the training data,
labeled by the exact eigenstate energies. Since the ground
state is pretty well known in the regime as λ → 0 and λ →
1, we choose the training regime on both sides and pre-
dict the results in the middle (test) regime, Rtest = (0.3, 0.7),
where a first-order quantum phase transition is expected to
appear around λ = 0.5 in the thermodynamic limit. Compar-
ing the results of RSNN with the exact results in the test
regime, we fine the accuracy Acc ≡ 1 − Ave[

∑2
i=0 |ERSNN

i −

EED
i |/EED

i ] = 99.43% ± 0.19%. Here ERSNN
i and EED

i are the
ith eigenvalues obtained by RSNN and the exact solution,
respectively, and Ave[· · · ] is the average taken over the whole
test regime for five independent calculations. The inset of
Fig. 2(a) shows the predicted magnetization by RSNN for
N = 30, where the training values of magnetization are calcu-
lated by matrix product state (MPS) method [31,32]. Notice
that the eigenstate energies and magnetization predicted by
RSNN are very close to the exact results. Below we use this
model to investigate the accuracy and efficiency of RSNN
in various conditions. Details of these model parameters are
shown in Appendix A.

In Fig. 2(b), we show the average computation time tRSNN

of each data for RSNN as a function of system size N .
The computation time tMPS by MPS is also shown together
for comparison. Here tRSNN is calculated by adding all the
generation times of random sampling matrices (for both the
training data and the test data) as well as the training time
of the RSNN model, and then dividing by the total num-
ber of test data (Ntest = 100). For comparison, we also show
the calculation time of MPS (dashed line) in the same plot.
We find that, as opposed to the exponentially growing time
by exact diagonalization (not shown here) or the long com-
putation time of MPS in the large-N limit, tRSNN grows
much more slowly and linearly in the large-N lime, while
the accuracy of output is still above 99% for the eigenval-
ues (not shown here) and above 92% for the magnetization
even for N > 100. Note that, since the required computa-
tion time for the feature generation and model training of
RSNN is almost the same no matter how many test data
are generated, RSNN could be a very efficient method to
generate many more test data in the whole parameter regime
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FIG. 2. (a) Prediction result of the lowest three eigenenergies of
1D IMTF by RSNN (solid lines) for N = 12. The training regime,
Rtrain = (0, 0.3) ∪ (0.7, 1.0), is shown by the colored background,
and the test regime, Rtest = (0.3, 0.7) is shown by the white back-
ground. The blue-gray area near the RSNN result indicates the
uncertainty, resulting from five independent calculations. The results
obtained by the exact diagonalization (dashed lines) are shown to-
gether for comparison. The inset shows the predicted magnetization
(solid line) for N = 30 compared with the results obtained by MPS
(dashed line). Here we use Ntrain = 10 000, NS = 200, and M = 10
for the training process (see text). Note that we have scaled the
energy in unit of J + h in order provide a more balanced expression
of eigenstate energies in the training regime. Panel (b) shows the
average computation time (solid line) to generate a test data by
RSNN for Ntest = 100 data points (see text). The computation time
by MPS (dashed lines) as a function of system sizes are also shown
together for comparison. The accuracy of the magnetization of the
RSNN method is also shown together by open squares. The inset
shows the finite-size scaling of the phase-transition point, which is
defined when the separation between the lowest two eigenenergies
is larger than their uncertainties. The horizontal dashed line is the
quantum critical point (λc = 0.5) in the thermodynamic limit. The
other parameters are the same as in panel (a).

within a reasonably good accuracy, even for a large system
size.

The slow growing rate of tRSNN as a function of the system
size N can be understood as follows: The preparation time tS
of each data sampling depends on the system size linearly for
the calculation of matrix elements, while the training time ttrain

depends on the model parameters as well as training scheme
only. These two timescales determine the time for data prepa-
ration but are not sensitive to the system size. That is why
RSNN could be more efficient than other numerical methods,
especially for a larger system size. In the inset of Fig. 2(b),
we also show the finite-size scaling of the phase-transition

point, which is defined when the difference of the lowest two
eigenenergies is larger than their uncertainty. We could find
that the precise determination of phase-transition point is also
possible due to the generation of a large amount of data within
reasonable accuracy.

IV. ACCURACY AND COMPUTATION TIME
FOR DIFFERENT HYPERPARAMETERS

From the basic calculation shown above for 1D IMTF,
we have demonstrated the possibility to apply RSNN for the
study of a quantum many-body system. However, we have
to emphasize that the results obtained above are nontrivial,
especially for a large system size, because the Hilbert space
grows exponentially as N increases, and hence only an expo-
nentially small fraction of matrix elements are included in the
RSNN. Therefore, the success of RSNN here results from the
fact that the obtained simulation function FRSNN captures how
the eigenvalues and/or other physical parameters change as
a function of the system parameter λ through a small portion
of matrix elements. To demonstrate this, below we systemat-
ically investigate how the accuracy and efficiency of RSNN
can change by tuning the hyperparameters of RSNN during
the training process.

In Fig. 3(a), we show how the average accuracy of eigen-
state energies increases as the number NS of sampling matrices
increases. This reflects the fact that including more sam-
pling matrices enhances the accuracy as the nature of neural
networks. This also implies that such a high accuracy of
prediction in the test regime could not be obtained faithfully
if one just fits the eigenstate energy curves without knowing
the matrix elements (i.e., NS → 0). This result, therefore,
demonstrates the validity of our random sampling hypothesis
as described in Eq. (2). Furthermore, we find that the aver-
age computation time tRSNN does not increase but eventually
becomes saturated for large NS because we have applied the
early stop method during the training process to avoid overfit-
ting. In Fig. 3(b), we show the same calculation as a function
of sampling matrix dimension M with NS = 200 being fixed.
We also find that the computation time grows significantly in
the small-M regime but becomes saturated as M > 10 due to
the early stop mechanism. Note that, comparing with the cal-
culation for larger values of NS in panel (b), it requires much
more computational memory in RSNN when the dimension
M of sampling matrices increases, since the input features
(matrix elements) scale as M2. Therefore, here we just show
the calculated results up to M = 20 and expect the accuracy
could grow further for a larger value of M.

Finally, in Fig. 3(c), we show how the accuracy and average
computation time changes as a function of λ0, which measures
the relative size of training regimes by Rtrain ≡ (0, λ0) ∪ (1 −
λ0, 1), see Fig. 2(a). Here we have fixed the total number
Ntrain of the training data in the training regime with NS = 200
and M = 10 for all different values of λ0. As expected, the
calculated results show that the overall accuracy of the RSNN
prediction increases monotonically as a function of λ0 and
reaches 100% when λ0 → 0.5 because the test regime is so
close to the training regime. On the other hand, tRSNN still
remains almost constant since the total number of training data
is the same.
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FIG. 3. (a) Accuracy and average computation time of RSNN
(tRSNN) for the lowest three eigenenergies of 1D IMTF as a function
of the number Ns of sampling at each λ. Here N = 28, NS = 200,
and M = 10. Panel (b) shows the same calculation but for a different
size of sampling matrix, M, for NS = 50 and N = 28. The average
computation time stops increasing due to the early stop mechanism
when the training loss is saturated. Panel (c) shows the same calcu-
lation for different value of training regime, λ0 (see the text). The
total number of λs for different training regimes are still the same
(Ntrain = 10 000). Here NS = 200, M = 10, and N = 28.

V. ENERGY SPECTRUM IN THE STRONGLY
INTERACTING REGIME OF THE ONE-DIMENSIONAL

FERMI-HUBBARD MODEL

The 1D IMTF discussed above is a good example for the
application of RSNN, but it is not a strongly correlated system
because its Hamiltonian can still be mapped to a free fermion
model via the Jordan-Wigner transformation [30] and hence
the eigenstates are still product states without correlation. To
investigate the application of RSNN in the strongly correlated
regime, here we consider the 1D Fermi-Hubbard model (1D
FHM) with the following system Hamiltonian:

ĤFH = −t
∑

i,s

(ĉ†
i,sĉi+1,s + H.c.) + U

∑
i

n̂i,↑n̂i,↓, (4)

where ĉi,s and n̂i,s are the fermion field operator and the
number operator at site i and of spin s = ↑/↓ = ±. t and U
are the hopping energy and the on-site repulsion, respectively.

It is well known that, in the weakly interacting limit
(U/t → 0), the 1D FHM can be well described by a Luttinger
liquid [33], where all elementary excitations are bosonic and
collective modes, and which can be separated into spin and

charge sectors (i.e., spin-charge separation). When consider-
ing the backward scattering for a large momentum transfer
as well as the Umklapp scattering in the presence of a pe-
riodic lattice, the spin-charge excitations become gapless at
the momentum p = 2kF and 4kF , respectively, even for an
infinitesimal U > 0. In the strongly interacting limit (U/t →
∞), on the other hand, states with different particle distribu-
tions are almost degenerate with either zero or one particle per
site. The system then becomes equivalent to the t-J model [34]
with an antiferromagnetic spin-exchange coupling through the
second-order perturbation of t (i.e., J ∝ t2/U ).

Below we use 1D FHM as an example to test RSNN in the
strongly correlated regime, after the model is trained in the
weakly interacting regime. More precisely, we train a RSNN
model by using the exact results of momentum-energy disper-
sion obtained by the Bethe-ansatz (BA) method [35,36]. The
nonlinear coupled algebraic equations within the BA method
is described by

eik j L = �
N↓
α=1

sin k j − λα + iU/4

sin k j − λα − iU/4
, (5)

�N
j=1

λα − sin k j + iU/4

λα − sin k j − iU/4
= −�

N↓
β=1

λα − λβ + iU/2

λα − λβ − iU/2
, (6)

where L and N is the total number of sites or fermions
and N↑ (N↓) is the number of spin-up (spin-down) fermions
(N↓ � N/2). The pseudomomentum {k j} and spin rapidities
{λα} are variables to be solved and are related to the total
energy by E = −2t

∑N
j=1 cos k j and the total momentum by

p = ∑N
j=1 k j . For simplicity, here we just consider the en-

ergy spectrum of holon excitations in the charge sector [36].
Results of spinon excitations in the spin sector can also be
obtained similarly.

In Figs. 4(a) and 4(b), we show the predicted energy
spectrum (pi, Ei ) obtained by the RSNN approach at the in-
termediate [λ ≡ U/(t + U ) = 0.76 or U/t = 3.3] and strong
interaction strength (λ = 0.93 or U/t = 15.3), respectively.
The training regime is in the weakly interacting regime
Rtrain(λ) = (0.23, 0.73) or Rtrain(U/t ) = (0.3, 2.8). The input
features are 16 × 16 random sampling matrices, obtained
from the original system Hamiltonian (see Fig. 1 and Sec. II),
and the output label is the whole energy spectrum, (pi, Ei ).
In the training regime, we take Ntrain = 2000 values of λ

and generate Ns = 100 sampling matrices for each of them.
Compared to the exact solution by BA, the predicted results of
RSNN are pretty good even in the strongly interacting regime.
In Fig. 4(c) we show the associated density of states (DOS),
which reflects the interaction-broadened bandwidths.

In Fig. 4(d), we show the obtained accuracy and its uncer-
tainty (obtained by averaging five independent calculations)
for the whole test regime. We could find that the accuracy of
the whole energy spectrum could be as high as 99% in the in-
termediate interaction regime (λ ∼ 0.76 or U/t ∼ 3.3), while
it decreases gradually in the strongly interacting regime (λ >

0.8 or U/t > 4) with a larger uncertainty at the same time.
However, we note that it is still impressive that the accuracy
can be still larger than 95% even for λ = 0.97 (U/t = 30.3),
showing that RSNN could be a very promising tool to estimate
physical quantities in a strongly correlated system even it is
trained in the weakly interacting regime.
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FIG. 4. Panels (a) and (b) show the predicted holon excita-
tion spectrum (blue dots) of 1D FHM by RSNN for λ ≡ U/(t +
U ) = 0.76 and 0.93, respectively. The training regime is Rtrain =
(0.23, 0.73) with L = 30, N = 10, and N↓ = 5. Exact results calcu-
lated by using the Bethe ansatz (BA, red crosses) are also shown
together for comparison. Panel (c) shows the associate density of
states (DOS) obtained by RSNN. Panel (d) shows the accuracy of
the energy spectrum with an uncertainty by RSNN in the test regime,
Rtest = (0.73, 0.96) (white background). Results for two different
system sizes are shown together for comparison.

VI. QUANTUM CRITICAL EXPONENTS
OF ONE-DIMENSIONAL XXZ MODEL

The quantum phase transition we discussed in the 1D
IMTF is a first-order transition, where the magnetization
changes discontinuously in the thermodynamic limit (N →
∞). It is therefore instructive to see if RSNN could be also ap-
plied to the study of the second-order phase transition, where
the order parameter changes continuously in the thermody-
namic limit and hence scaling exponents could be identified
near the quantum critical point (QCP) [37].

One of the most important examples is the superfluid
to Mott insulator transition for strongly interacting bosonic
atoms loaded in an optical lattice [38]. Here we consider a
simpler case of hard-core bosons with a finite intersite re-
pulsion to compete with the kinetic energy, leading to the
so-called Bose t-V model:

Ĥt−V =
N∑

i=1

[−t (b̂†
i b̂i+1 + H.c.) + V n̂in̂i+1 − μn̂i], (7)

where b̂i and n̂i = b̂†
i b̂i are the bosonic field operator and

number operator, respectively, t and V are the tunneling and
interaction between the nearest-neighbor sites, and μ is the
chemical potential. It is easy to see that the system prefers to
be superfluid if V is small and can become a solid phase at
half filling when V is repulsive and large. Quantum phase dia-
grams of such a superfluid-to-solid transition has been studied
by quantum Monte Carlo methods in 1D and 2D systems [12].

Since the number of particles per site is either 0 or 1 in
the hard-core limit, it is easy to connect such a t-V model of
hard-core bosons to a spin- 1

2 system. More precisely, in the
dilute limit, one could use Holstein and Primakoff transfor-

mation [39] to map the above t-V model into the spin- 1
2 XXZ

model with a transverse field. To simplify the calculation in
the rest of this paper, however, we concentrate on the quantum
phase transition of the 1D XXZ model itself at zero field,
which has the following system Hamiltonian:

ĤXXZ = −J

2

N∑
j=1

(
σ̂ x

j σ̂
x
j+1 + σ̂

y
j σ̂

y
j+1 + λσ̂ z

j σ̂
z
j+1

)
, (8)

where J is the in-plane spin coupling and λ is the z-direction
spin coupling. It is well known that there are three different
phases for 1D XXZ model in the thermodynamic limit: Anti-
ferromagnetism (AFM, gapped) for λ < −1, paramagnetism
(PM, gapless) for −1 < λ < 1, and ferromagnetism (FM,
gapped) for λ > 1. The superfluid-to-solid transition of the
t-V model of hard-core bosons corresponds to the AFM-PM
transition at λ = −1, which we study closely by RSNN here.
We note that the spin 1

2 1D XXZ model in Eq. (8) could be
also exactly solved by the Bethe-ansatz method [2,40,41].

To investigate the quantum phase-transition point near λ =
−1, we use λ ∈ (−1.15,−1.125) ∪ (−0.875,−0.85) as the
training regime with Ntrain = 500 for the training data inside.
For each λ, we generate Ns = 100 random sampling matrices
(with the dimension M = 10) as input features. In Fig. 5(a),
we show the predicted spectrum for λ = −1.1 (in the test
regime) for N = 28. The obtained spectrum agrees very well
with the BA results (not shown). The lowest-energy excitation
occurs at p = π as expected. The average accuracy of the
whole energy spectrum is 98.01% ± 1.29% in the whole
test regime, showing a pretty good prediction even near the
phase-transition point, λ = −1.

In Fig. 5(b) we show the calculated spinon excitation gap
� as a function of λ for various system sizes N . We find that
the gap almost vanishes for λ > −1 as N > 300. However, as
the system size increases, the matrix elements in the sampling
Hamiltonians cover an increasingly smaller fraction of the
original Hilbert space and therefore the prediction accuracy
also decreases down to 90.49% ± 1.09% for N = 300.

As opposed to the first-order phase transition of 1D IMTF,
the order parameter (here the spinon excitation gap) should
decrease to zero continuously at the QPT point λc in the
thermodynamic limit, but it always has a finite value for
finite N . To determine the QCP from finite-size scaling,
here we use the phenomenological renormalization group
(PRG) method [42,43]: Using the fact that the excitation
gap must scale with N linearly at the QCP in a 1D sys-
tem, i.e., �(N, λc) ∝ N−1, it is reasonable to expect that, for
any two large system sizes, N �= N ′ � 1, �(N, N ′, λ) ≡ |1 −
N ′�(N ′, λ)/N�(N, λ)| has a minimum at λmin(N, N ′). This
minimum value of � should reach zero and λmin(N, N ′) → λc

when N, N ′ → ∞ at the same time. As a result, after consider-
ing the possible uncertainty of the finite-size calculation, we
define λRBNN

c (N ) ≡ AveN ′[λmin(N, N ′)], where AveN ′[· · · ] is
the average of different system sizes N ′ by keeping another
one (N) fixed.

In Fig. 5(c) we show the gap as a function of 1/N in a log-
log plot with different values of λ near the quantum critical
point (QCP), λc = −1. We see that the curves approach linear
when λ is increased from below λc as expected. In the inset,
we show the calculated function, �(N, N ′, λ), for N = 400
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FIG. 5. (a) Spinon excitation spectrum of 1D XXZ model for
N = 28 and λ = −1.1. The spin excitation gap � is defined by the
excitation energy at p = π . (b) The spin excitation gap � predicted
by RSNN for several system sizes up to N = 400 with the cor-
responding uncertainties. The training and test regime is indicated
by the colored and white background. (c) RSNN-predicted � as a
function of 1/N (on a log-log plot) for different values of λ. The
predicted phase-transition point, λRSNN

c = −1.07 ± 0.02, is defined
as the fixed point of phenomenological renormalization group (see
text). The dashed line is the slope given by λRSNN

c . The inset shows
the �(λ) obtained (see text) for several system sizes. The position
of its minimum value gives an estimate of critical quantum phase-
transition point. (d) Predicted � as a function of |λ − λRSNN

c | (on a
log-log plot) for M = 300 and 400. The solid lines are the fitting
results for different values of dynamical exponent. Inset shows how
such critical exponent (zν) changes as a function of the system size.
zν = 2.16 in the thermodynamic limit, as indicated by the horizontal
dashed line.

and N ′ = 200, 250, and 300, respectively. We could see that
there are two local minimum values near −1.1 and −1.05.
After averaging the position of the minimum values, we
obtain the estimated QCP at λRSNN

c = −1.07 ± 0.02, pretty
close to the value λBA

c = −1.06 obtained by the finite-size
Bethe-ansatz method. However, we have to emphasize that,
for the results calculated by BA in the same regime (not
shown here), �(N, N ′, λ) is a pretty flat function with only
one shallow minimum, different from the results predicted
by RSNN. Therefore, what we could say is that the results
predicted by RSNN here is just an estimate of the QCP, based
on the data trained outside the critical regime.

Finally, using the obtained QCP value, λRSNN
c = −1.07,

we could further calculate the critical exponent zν, which
is defined by how the gap function vanishes [37] near the
QCP: � ∼ |λ − λc|zν for λ < λc in the thermodynamic limit
(note that � = 0 for λ > λc). In Fig. 5(d), we show that such
a nontrivial scaling exponent could be obtained to be zν =
2.04 ± 0.05 by RSNN and is close (within 5% uncertainty) to
the numerical value, zν = 2.16, obtained by the Bethe-ansatz
in thermodynamics limit [3] (see Appendix B; note that the
value of ν is known to be one for the 1D XXZ model [44,45]).
Again, we find RSNN could provide a reasonably good esti-

FIG. 6. Comparison of the accuracy for the energy spectrum
of 1D FHM in different extended RSNN models. All the training
data are taken from the weak-interaction regime (pink background,
U/t < 3) with L = 18 and N = 6, while the test data are calcu-
lated in the medium- and strong-interaction regimes (3 < U/t < 30).
Green circles, blue crosses, and red boxes are respectively the results
obtained by a naive linear regression method, by data augmentation
(DA) during the training process, and by the transfer learning (TL)
model for a larger system size with L = 72 and N = 24. See the text
for more details of these calculations.

mate of the critical exponent even if using the data outside the
critical regime.

VII. DISCUSSION

A. Comparison between random sampling neural
network and linear regression

Although we have demonstrated the effectiveness for the
RSNN method to simulate the functional relationship between
the sampled Hamiltonian matrix elements and the desired
physical quantities, it is still instructive to compare the ob-
tained results to those given by a naive linear regression
method, which uses linear or other simpler functions with
fewer parameters to fit the training data and then extrapolates
the results in the test regime. In Fig. 6, we show the obtained
accuracy of the regression result for 1D FHM with L = 18
and N = 6 (green circles). We find that, although the training
data are well fit, the extrapolation accuracy falls off quickly
as expected in the strong-interacting regime. On the other
hand, as we have shown in Fig. 4(d), the accuracy of RSNN
results could be kept larger than 97% even in the strongly
interacting regime. As a result, the powerful simulation results
of RSNN cannot simply be reproduced by a naive regression
and extrapolation method.

B. Data augmentation for fewer training data

In the applications of the RSNN method, we usually need
many training data [Ntrain ∼ O(103)] to achieve satisfactory
prediction results. It may be a serious drawback of RSNN
because the computational time of these training data may be
very long for a nonintegrable model without analytic solutions
available. To overcome this problem, we could utilize the data
augmentation (DA) method, which has been widely applied in
computer vision or other machine-learning applications [46].
As an example to demonstrate DA, we again consider the
energy spectrum prediction of 1D FHM by using five training
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data only in the training regime. We then use linear inter-
polation to simulate other data points in the training model.
As have been shown above, the interpolated results are very
close to the exact solutions in the training regime and therefore
could be used for the model training process.

However, different from the results of regression shown in
the last section, we do NOT extrapolate these results in the
test regime directly. On the other hand, the test data here are
predicted by the RSNN model after using data augmentation
in the training process. In Fig. 6, we find that the obtained
accuracy (blue crosses) is almost the same (>97%) as the
results obtained by using exact solutions as the training data
[see Fig. 4(d)]. Therefore, by using such a simple data aug-
mentation method, we could demonstrate that the time to
generate training data could be strongly reduced (from 2000 to
5 in this case) almost without any loss of accuracy. Note that
this result also applies to nonintegrable models because, from
a machine-learning point of view, such a data-driven approach
(such as RSNN) does not rely on any specific form of the
Hamiltonian.

C. Transfer learning for larger system sizes

In the theoretical studies of many-body physics, how to
apply numerical methods to systems of large sizes in the
thermodynamic limit is always a challenging problem be-
cause the required computational time and memory grows
significantly. In the application of RSNN we proposed here,
however, this situation could be handled differently by taking
advantage of neural networks through the transfer learning
(TL) method [47], which consists of two stages: We first use
the abundant data of a smaller system to pretrain a RSNN
model; second, we fix the parameters of the obtained RSNN
model in the first few neural layers and then train the param-
eters in the last few layers by using fewer training data in a
larger system. By taking this two-step training process, our
RSNN model could then catch most of the important physics
even when the available training data in a larger system size
are much fewer.

As an example, in Fig. 6 we show TL results for the 1D
FHM: The pretraining data are from a small system size with
L = 18, N = 6, and Ntrain = 1000 in the weakly interacting
regime, while we could obtain the results with a pretty high
accuracy (≈97%, see the red boxes) in the strongly interacting
regime even for a larger system size (L = 72 and N = 24).
Note that, in the second stage of training, we use only four
training data to get the parameters in the last year of RSNN
to get this surprising result. Therefore, we demonstrate that
our RSNN model could be easily extended to study a larger
system size with a much fewer training data through the ap-
plication of transfer learning method. This is a very unique
advantage for the RSNN method in the application of many-
body physics.

VIII. SUMMARY

Motivated by the pattern-recognition method in computer
vision, we propose an approach to predict the physical quanti-
ties of a general many-body system by randomly sampling the
whole system Hamiltonian through a self-supervised learning

process. The training data could be obtained by perturbation
theory or other existing numerical methods in the weakly
interacting regime (or any certain parameter regimes). We
have systematically investigated its applicability in several 1D
exactly solvable models and demonstrate how it could provide
pretty good prediction results of the ground-state energy, the
momentum-energy spectrum, magnetization (or other order
parameters), as well as the quantum phase-transition point
and the associated critical exponents. One of the most im-
portant advantages of RSNN is that one just needs to train
the model one time in the training regime and then gets
an arbitrary amount of data immediately in the test regime,
even in the strongly correlated regime or near the quantum
phase-transition point. We further show that, by using data
augmentation and transfer learning methods, one could apply
RSNN easily to a larger system with much fewer training data,
which could be provided more easily and quickly by existing
numerical methods. Therefore, we believe that RSNN is a very
effective and important approach to complement the existing
numerical methods for exploring quantum many-body prob-
lems in a much wider parameter space.

We evaluate our models on Google Colaboratory cloud
computing platform, which specifies two cores Intel(R)
Xeon(R) CPU @ 2.20 GHz and NVIDIA Tesla P100 GPU.
We provide Github code [49] for the application of RSNN in
a 1D Ising model with a transverse field.
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APPENDIX A: MODEL PARAMETERS OF RANDOM
SAMPLING NEURAL NETWORK

In the construction of the RSNN, as introduced in Sec. II,
we have two types of hyper-parameters: one is about the pro-
cess for random sampling and the other is about the structure
of the CNN structure, which accepts the input of random
sampling matrices and outputs the expected physical quan-
tities through neural networks (see also Fig. 1). Since we
have mentioned the parameters used for random sampling
in the text for each model (say, matrix size M, number of
sampling matrices, NS , number of training data, Ntrain, and
training regime, Rtrain), here we provide further information
about the hyper-parameters used for the second part in the
CNN structure.

As for the final output layer, we use a loss function to con-
strain the output to be our desired values for a self-supervised
learning process. For example, if the output is to simulate the
three lowest exactly known eigenenergies of the 1D IMTF
system as shown in Sec. III, the loss function we used is
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TABLE I. Hyper-parameters used for the CNN part of RSNN
in the examples of this paper (see text). Lconv refers to the number
of convolutional layers, Lfc refers to the number of fully connected
layers, and Nneurons is the number of neurons for each layer, as shown
in the list.

Case parameter Lconv Lfc Nneuron

IMTF (eigenenergies) 2 2 [1250,10]
IMTF (magnetization) 2 2 [625,100]
FHM (holon spectrum) 2 6 [625,102,102,

102,102,102]
XXZ (spinon spectrum) 2 6 [625,102,102,

102,102,102]
XXZ (spinon gap) 2 3 [625,40,20]

designed as follows:

Loss = |Pred − �EED| + β
∑

i

(
W 2

i + b2
i

)
, (A1)

where Pred is the predicted results of the neural network for
each run and �EED ≡ [EED

0 , EED
1 , EED

2 ] are the lowest three
eigenstate energies provided by exact diagonalization (or by
results known before). The first term is taken as the batch
average, and second term is to constrain the magnitudes of
weighting (Wi) and bias (bi) of all neurons (with index i)
from over-fitting. β > 0 is an empirical parameter. The op-
timization process is done by Adam method [48] with the
corresponding model parameters shown in Table I.

APPENDIX B: EXPONENT zν BY BETHE-ANSATZ

To extract the critical exponent of the 1D XXZ model, we
calculate it from the Bethe-ansatz solution in the thermody-
namic limit (L → ∞). For λ < −1, the dispersion relation in
thermodynamics limit can be expressed in integral form as
follows [3]:

E (P) = 2K (m) sinh φ(λ)

π

√
1 − m sin2 P, (B1)

where E (P) is the energy dispersion of momentum P, λ =
− cosh φ, φ ≡ πK ′(m)/K (m), the parameter m = k2 with k
being the elliptic modulus, and K (m) is the complete elliptic
integral of first kind:

K (m) =
∫ π/2

0

dθ√
1 − m sin2 θ

. (B2)

With a fixed λ, we can obtain the value of m by solv-
ing the differential equation cosh−1(−λ) = πK ′(m)/K (m),
which evaluates the dispersion function (B1). Such a function
exists at the lowest energy gap at P = π/2, thus the gap
function �(λ) is defined as

�(λ) ≡ E (π/2) = 2K (m) sinh φ(λ)

π

√
1 − m, (B3)

which has a fitting parameter (exponent) zν = 2.16 for the
form |λ − λc|zν with λc = −1.
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