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Quantum tricritical point emerging in the spin-boson model with two
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We study the spin-boson model (SBM) with two spins in staggered biases by a numerically exact method
based on variational matrix product states. Several observables such as the magnetization, the entanglement
entropy between the two spins and the bosonic environment, the ground-state energy, as well as the correlation
function for two spins are calculated exactly. The characteristics of these observables suggest that the staggered
biases can drive the second-order quantum phase transition (QPT) to the first-order QPT in the sub-Ohmic SBM,
while the Kosterlitz-Thouless QPT in the Ohmic SBM goes directly to the first-order one. A quantum tricritical
point, where the continuous QPT meets the first-order one, can then be detected. It is found that the staggered
biases would not change the universality of the phase transition in this model below the quantum tricritical point.
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I. INTRODUCTION

In the light-matter interacting systems, it is well known
for a long time that the prototype Dicke model [1] and the
spin-boson model (SBM) [2—4] can display quantum phase
transitions (QPTs) at strong coupling between the two-level
systems (qubits) and the cavity or the bosonic baths. Recently,
it has even been proposed that the quantum Rabi model only
consisting of one qubit and a single-mode cavity can undergo
a QPT in the infinite ratio of the qubit and cavity frequencies
[5], which further inspires a surge of studies for the so-called
finite-component QPT [6-10]. It is generally accepted that the
Dicke model and the quantum Rabi model only experience a
single QPT from the normal to the superradiant phase with the
same critical behavior, and the SBM exhibits the single QPT
from the delocalized to the localized phases with the spectra
function dependent critical exponents [11].

Theoretically, to obtain a rich phase diagram of quantum
phases in the light-matter interacting systems, one can gener-
alize these prototype models to their variants. Generally, the
QPT only appears in the Dicke model in the thermodynamic
limit, i.e., the qubit number N — oo, exhibiting the mean-
field critical behavior. The generalized Dicke models, such as
the anisotropic Dicke model [12—14], the anisotropic Dicke
model with the nonlinear Stark coupling terms [15], and the
Dicke model where infinite atoms are separated equally into
two parts each experiencing the opposite equal biases [16]
have been recently studied by several groups. In these general-
ized Dicke models, both the first- and second-order QPTs are
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observed. More recently, the existence of the finite-component
multicriticality is demonstrated in a generalized Dicke model
with a finite number of atoms at an extremely large detuning
[17].

A quantum tricritical point (QuTP) [18] is seldomly sup-
ported in the solid-state materials and is almost impossible to
appear in the prototype models of the light-matter interacting
systems. Interestingly, it has been found to exist in anisotropic
Dicke model [13] and the isotropic Dicke model with stag-
gered biases [16]. In the former model, the QuTP lies at the
symmetric line of the superradiant “electric” and “magnetic”
phases, which can be mapped mutually by interchanging the
rotating-wave term and the counterrotating one, while in the
latter model, it was demonstrated that the field can drive
the second-order QPT to the first-order one, thus the second-
order critical line can meet the first-order critical line at the
QuTP [16].

In the SBM with single qubit, the second-order QPT from
the delocalized phase, where spin has equal probability in the
two states, to the localized phase, in which the spin prefers
to stay in one of the two states, has been studied extensively
[11,19-30]. Recently, the anisotropic sub-Ohmic SBM has
also been studied by the present authors [31]. It is generally
accepted that the continuous QPT with mean-field exponents
is found for the power of the bath spectral function s <
1/2 [19,20,22], with nontrivial exponents for 1/2 <s < 1
[11,21]. The Kosterlitz-Thouless (KT) phase transition occurs
for s = 1 [2], and no phase transition happens for s > 1.

The SBM has been generalized by increasing the number
of spins, such as the SBM with two spins [32,33], and a finite
number of spins even in the limit N — oo [34]. It has been
found that the critical behavior of QPT is not changed with
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the increasing number of spins. Only in the limit N — oo,
the universality class of the transition changes into mean-field
behavior.

We will study the criticality of the generalized SBM with
two spins in staggered biases. Our goals are twofold. Since
the staggered biases result in the QuTP in the generalized
Dicke model [16] and even multicriticality in a finite number
of qubits collectively coupled to a single mode cavity at an
extremely large detuning [17], we first explore whether the
QuTP can emerge in the two-qubit SBM with staggered bi-
ases. In the original SBM, the continuous QPT occurs in the
sub-Ohmic baths [11,19-22,24] where the critical exponents
are bath dependent, while the KT phase transitions in the
Ohmic bath [2,35]. This picture is not changed for the SBM
with a finite number of spins without biases [32-34]. We then
examine whether the presence of the staggered biases would
change the universality class of these continuous QPTs in the
SBM with two spins.

In this paper, we will extend the variational matrix prod-
uct state (VMPS) approach [24] to study the two-spin-boson
model (2SBM) with both sub-Ohmic and Ohmic baths. The
paper is organized as follows. In Sec. II, we introduce the
2SBM in the staggered biases for two spins along the oppo-
site directions and the VMPS approach briefly. In Sec. III,
we study the QPTs of the 2SBM in both sub-Ohmic and
Ohmic baths with the staggered biases. For the sub-Ohmic
bath, we choose two typical powers of the spectra function of
the bath, which are, respectively, corresponding to the mean-
field and interacting critical nature of the QPTs in the single
SBM. The order parameter and the entanglement entropy
between the two qubits and the bosonic bath are extensively
calculated. The critical exponents for the order parameter are
also analyzed. A QuTP separated by the second-order (KT
type) critical lines and the first-order ones for the sub-Ohmic
(Ohmic) baths are revealed by several independent evidences
from different observables. Finally, we present a brief sum-
mary in the last section.

II. 2SBM WITH STAGGERED BIASES AND
METHODOLOGIES

The 2SBM Hamiltonian can be written as (the reduced
Planck constant is set i = 1)

N 1 .
H = Z E(Aof — (—1)’60;‘) + Zwka}:ak

i=1,2 k

1
+§zk:gk(a£+ak)(of‘+a§), 1)

where ol.j: 12 (j =x,,7) are the Pauli matrices for spins 1

and 2, A is the qubit frequency, (—1)'e before o} represents
the staggered biases along the x axis for the two spins, a
(aZ) is the bosonic annihilation (creation) operator which can
annihilate (create) a boson with frequency wy, and g; denotes
the coupling strength between the qubit and the bosonic bath,
which is usually characterized by the power-law spectral den-
sity J(w),

Jw)=m Zgi(S(a) —w) = Znaa)cl_saf@(a)c —w), (2
k

FIG. 1. Illustration of the two-spin-boson model with staggered
biases e along the x direction. The two spins denoted by red spheres
interact with a common continuous bosonic reservoir represented by
the big blue region. No direct interaction between spins is considered.

where « is a dimensionless coupling constant, w, is the cutoff
frequency, and ®(w, — w) is the Heaviside step function. The
power of the spectral function s classifies the reservoir into
super-Ohmic (s > 1), Ohmic (s = 1), and sub-Ohmic (s < 1)
types. This model is illustrated in Fig. 1 where the x axis is in
a horizontal line.

The introduced staggered biases to the two spins do not
break the parity (Z;) symmetry in the 2SBM. The parity
operator is defined as

papy4
= [% — (o) 0, + ala;)i| exp <irr Za}:ak>,
k
3)
where o, , = (0f £i0’)/2. Note that in the pres-
ence of the staggered Dbiases, the parity operator
is more complicated than that for € =0, flezo =
exp it (), a};ak + (o{ +03)/2 + 1)], due to the absence of
the collective spin. The parity operator IT has two eigenvalues
41, corresponding to the even and odd parity in the symmetry
conserved phases. The average value of the parity may
become zero due to the quantum fluctuations in the symmetry
broken phase.

To apply VMPS in the 2SBM in staggered biases, the loga-
rithmic discretization of the spectral density of the continuum
bath [11] with discretization parameter A > 1 is performed
first, followed by using orthogonal polynomials as described
in Ref. [36], the 2SBM can be mapped into the representation
of an 1D semi-infinite chain with nearest-neighbor interaction
[37]. Thus, Hamiltonian (1) can be written as:

A
Hepain = 5(0'1Z + O'ZZ) + %(O’f - O‘;)

CO X X
+ E(bo + b)) (o7 +03)

L-2
+ Z[Snbzbn + tn(b;anrl + bj,_an)]v (4)
n=0

where b;fl (by) is the creation (annihilation) operator for a new
set of boson modes in a transformed representation with &,
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describing the frequency on chain site n, f, the nearest-
neighbor hopping parameter, and ¢ the effective coupling
strength between the spin and the new effective bath. For more
details, one may refer to Ref. [36].

Then as introduced in Refs. [38,39], we employ the stan-
dard matrix product representation with the optimized boson
basis |7;) through an additional isometric map with truncation
number dop K d, like in Refs. [24,37] to study the quantum
criticality of 2SBM. Each site in the 1D chain can be described
by the matrix M, which is optimized through sweeping the 1D
chain iteratively to obtain the ground state, and D, is the bond
dimension for matrix M, with the open boundary condition,
bounding the maximal entanglement in each subspace.

For the data presented below, we typically choose the same
model parameters in Refs. [24,31,40], as A = 0.1, o, = 1,
the logarithmic discretization parameter A = 2, the length
of the semi-infinite chain L = 50, and optimized truncation
numbers dqp = 12. In addition, we adjust the bond dimension
as D = 20, 40, and 20 for s = 0.3, 0.7, and 1, respectively,
which are sufficient to obtain the converged results for the
problems concerned. Actually, the convergence thresholds for
the bond dimensions are D = 12 for s = 0.3, and D = 20 for
s =0.7 and 1 for the all observables. Only in the critical
regime, we use larger bond dimensions D = 20 for s = 0.3
and D = 40 for s = 0.7 to improve computational accuracy
where the relative error is less than 10~ for the energy and
1073 for the magnetization, so that we can evaluate the critical
exponents precisely. The evidence for the full convergence of
our VMPS results here is similar to that demonstrated in the
Appendix of Ref. [40] and will not be repeated in this paper.

The information of the ground state can also be described
by the von Neumann entropy Sg of the 2SBM, which charac-
terizes the entanglement between two spins and the bosonic
bath

Sg = _Tr(pspin log :Ospin)’ )

where pgin is the reduced density matrix for the two spins.
The averaged total magnetization

M = ([of) +(03))/2 ©)

can be regarded as the order parameter, which can be used
to characterize the essential nature of the second-order QPTs.
However, M is hardly employed to distinguish the KT and the
first-order QPTs, because it would suddenly drop to zero in
both cases.

III. RESULTS AND DISCUSSIONS
A. Sub-Ohmic bath (s < 1)

The single SBM expects a mean-field critical behavior for
s < 1/2 and a nonclassical one for s > 1/2, so we focus
on two typical powers of the spectral function s = 0.7 and
0.3 for the sub-Ohmic case. The entire critical lines can be
mapped out by the onset of the nonzero order parameter
M = ({of) + (05))/2. By this criterion, the phase diagrams
of 2SBM with staggered biases are summarized in the € — «
plane in the upper panels of Fig. 2 for s = 0.3 (left) and
0.7 (right), respectively. To confirm the phase diagram more
convincingly, we also display the entanglement entropy Sg
between the two spins and the bath, an alternative widely used
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FIG. 2. (Upper panels) Phase diagram in the € — « plane for
2SBM drawn from the magnetization M: delocalized phases (M = 0)
and the localized phase (M # 0). (Lower panels) Entanglement en-
tropy Sg. The power of the spectral function is (left) s = 0.3 and
(right) 0.7. A =0.1, w. = 1. The QuTP is marked by a red dot,
which separates the intersection of the second- and first-order phase
transition. The parameters used in the VMPS approach are A = 2,
L =50,dy =12,and D =20 for s = 0.3,0.7.

tool in the location of QPTs, in the lower panels of Fig. 2. The
entropy displays a sharp nonanalyticity at the phase transition
[23,41,42]. The ridge line of Sg obviously shows a sharp
nonanalyticity, which exactly coincides with the critical line
obtained by the order parameter. At either infinite coupling
strength or infinite bias, the entanglement becomes zero due
to the decoupling of systems and environments in two extreme
cases.

To explore the nature of QPTs with different staggered
biases, we will discuss the order parameter and the entan-
glement entropy in detail. We extract the data of the order
parameter and the entropy as a function of coupling strength
a alonge =0.1,0.2 fors = 0.3,and € = 0.5,0.7 for s = 0.7,
and replot in the upper panels of Figs. 3 and 4, respectively. It
is found that the order parameter (blue line) becomes nonzero
continuously for ¢ = 0.1 at s = 0.3 and € = 0.5 at s = 0.7,
indicating a second-order QPT, while it suddenly jumps to
a finite value fore =02 at s=0.3 and ¢ =0.7 at s = 0.7,
suggesting a first-order QPT. By extensive calculations in a
similar way, we can immediately locate a critical point that
splits the whole critical line into the first- and second-order
critical lines, as indicated in the upper panels of Fig. 2 with
red dots. This is just a QuTP, similar to that observed in the
generalized Dicke model in the staggered biases [16].

The same picture can also be drawn from the entanglement
entropy indicated with red lines in the upper panels of Figs. 3
and 4. Fore = 0.1 ats =0.3 and ¢ = 0.5 at s = 0.7, the en-
tropy of entanglement Sg displays a cusplike behavior, similar
to that observed in the single sub-Ohmic SBM [23,42], thus
demonstrating the second-order QPT. Whereas, for large e,
e.g.,fore =0.2 at s =0.3 and € = 0.7 at s = 0.7, although
the entropy still displays a sharp nonanalyticity at the transi-
tion point, it suddenly drops to a finite value, in contrast to
the second-order QPT for small € where Sg falls off gradually
on both sides of the phase transition point. As shown in the

205106-3



WANG, HE, DUAN, AND CHEN

PHYSICAL REVIEW B 103, 205106 (2021)

s=0.3
1 1
0.3 0.3
/
0.2 1 0.2
0. .
(@): e=0.1 (b):e=02 |
g
-—=M ,. 0.1 -=M : 0.1
-— S ,' -~ Se !
0 0o 0 0
0017 0018 0019 002 0021 0022 003 0.032 0.034 0.036
—— 0 1 0
| ———]
]
T i -5000
-2 ) 2 "
1 [
1 -500 1l -10000
4 (€):e=01 | 4 (d): e=0.2 !
. / .
- = OEloa |}/ - = 0E/a ] 15000
-~ FE/ea?|’ - - Pee?] |
X -6
0.017 0.018 0.019 002 0.021 0.022 0.03 0.032 0.034 0.036
« «

FIG. 3. Magnetization M, entanglement entropy Sg (upper pan-
els), the first- and second-order derivatives of the ground-state energy
(lower panels) as a function of « for e = 0.1 (left) and € = 0.2 (right)
for the sub-Ohmic bath with s = 0.3 by VMPS approach. A = 0.1,
w, =1, A=2,L=50,dy, =12, and D = 20.

upper left panels of Figs. 3 and 4, the sudden drop of the
entropy occurs simultaneously at the sudden jump of the order
parameter at the same €, thus both suggesting the first-order
QPTs.

The first-order and second-order QPTs can also be directly
discerned by the first- and second-order derivatives of the
ground-state energy with respect to the coupling parameter
o. The results at the same model parameters are presented
in the lower panels of Figs. 3 and 4. At the two smaller
staggered bias (lower left), the first-order derivatives of the
energy are continuous around the transitions, while at the two
larger staggered biases (lower right), they are discontinuous
at the critical points, whereas the second-order derivatives of
energy are discontinuous for smaller ¢ and diverge for the
larger € at the phase transition points for each bath exponent
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FIG. 4. Magnetization M, entanglement entropy Sg (upper pan-
els), the first- and second-order derivatives of the ground-state energy
(lower panels) as a function of « for e = 0.5 (left) and € = 0.7 (right)
for the sub-Ohmic bath with s = 0.7 by VMPS approach. A = 0.1,
w.=1,A=2,L=50,dy, =12, and D = 20.
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FIG. 5. The correlation function (ojo3) as a function of the
coupling strength for the sub-Ohmic bath by VMPS approaches at
€ =0.1,0.2 for s = 0.3 (left) and € = 0.5,0.7 for s = 0.7 (right).
Other parameters: A = 0.1, w. =1, A =2,L =50,do, = 12,D =
20.

s, respectively. The observations based on the ground-state
energy are obviously in accord with the original criterion of
the second- and first-order phase transitions, justifying again
the existence of QuTP in the phase diagram based on the order
parameter and the entropy.

To provide further evidence of the existence of the QuTP
separating the first- and second-order critical lines, we calcu-
late the two spin correlation function (o703). The results are
shown in Fig. 5 for s = 0.3 (left) and 0.7 (right), at small and
large biases, which are the same as those in Figs. 3 and 4. It
is observed that the (o{'c5) is continuous (discontinuous) for
small (large) staggered biases, also demonstrating the second-
(first)-order QPTs at the corresponding bias.

Since the staggered biases can drive the second-order QPTs
to the first-order ones, can it alter the universality class in
the second-order critical lines? In order to answer this ques-
tion, we present the log-log plot of the magnetization M =
((o7) + {05))/2 as a function of @ — a, in Fig. 6 where the
parameters are the same as those in Fig. 5. The critical ex-
ponents 8 can be determined by fitting power-law behavior,
Mo(a — a.)P. For two smaller biases below the QuTP, as
displayed in the upper panels of Fig. 6, very nice power-law
behavior over three decades is demonstrated for both cases,
yielding 8 = 0.484 for s = 0.3 and g = 0.303 for s = 0.7,
which are very close to those in the single SBM for the same
s by the VMPS approaches [24]. This is to say, the critical
exponents of the order parameter are not different from those
in the single SBM. In other words, as long as the second-order
QPTs occur in the 2SBM with the staggered biases, the critical
exponent is only the bath dependent, and remains unchanged
with €. At the first-order critical line in the large € regime, as
shown in the low panels of Fig. 6, 8 = 0, consistent with the
first-order phase transition nature.

B. Ohmic bath (s = 1)

It is well known that the single SBM with the Ohmic
bath undergoes the continuous QPTs of KT type [2]. In the

205106-4



QUANTUM TRICRITICAL POINT EMERGING IN THE ...

PHYSICAL REVIEW B 103, 205106 (2021)

® s=0.3,6=0.1 1 ® s=0.7,=05
|- =B, =0484=£ 0044 — —B,, = 0.303+ 0.032
EO 0 seeses = aaee
g - f
2L 1 L &
(a): a = 0.0191809 (b): a, = 0.1860969
-3 2
GJ_ 6 5 4 3 2 4 7 6 5 4 B 2 A
® s=0.3,e=0.2 .. ® s=07,=07 o
_ -0.02 _
-0.05|= =B =0 .o - =B, =0 )
= Q
S ° -0.04 .
To-01 ) Q)
g o _OIOGM- - -
0-1°¢oaseconceceent® _ _ _ _ _ -0.08
(c): o= 0.0333826 (d): a, = 0.2569763
-0.2 -0.1

7 -6 5 4 3 2 A 7 6 5 -4 3 2 -
|Og10(a-ac) |Og10(a'—ac)

FIG. 6. The log-log plot of the magnetization M as a function of
a—a. ate =0.1,0.2 for s = 0.3 (left panels) and € = 0.5, 0.7 for
s = 0.7 (right panels). The numerical results by VMPS are denoted
by black circles and the power-law fitting curves are denoted by
the red dashed lines, which indicates the second-order QPT takes
place in the smaller staggered biases and gives similar critical be-
haviors compared to the standard spin-boson model, while the larger
staggered biases induce the first-order QPT and vanishing of the
critical exponent 8. A = 0.1, w. =1, A =2,L = 50, dop = 12, and
D = 20, 40 for s = 0.3, 0.7, respectively.

language of the quantum-to-classical mapping, s = 1 corre-
sponds to the low critical dimension of the long-ranged Ising
model [43]. As shown in the last section, in the sub-Ohmic
2SBM, the staggered biases can drive the second-order QPT to
the first-order one. Then what is the effect of these staggered
biases on the KT phase transitions in the Ohmic 2SBM? Could
the staggered biases drive the KT phase transitions to the
second-order or/and the first-order ones? To address these
issues, we also extend to study 2SBM in the Ohmic bath
with the staggered biases using the VMPS in this subsection.
In the literature, the entanglement entropy is usually studied in
the SBM with the Ohmic bath, because KT phase transitions
are of infinite order, and less observables can be used to
distinguish KT from other kinds of phase transitions. In the
KT phase transition of the single SBM for s = 1, the entropy
increases in the weak coupling regime, then saturates to a
plateau, and drops suddenly at the KT critical point [35]. The
sudden drop of the entanglement entropy signifies the onset of
an emergent new phase. In the second-order QPTs, the entropy
falls off gradually on both sides of the critical point [23,42],
displaying different behavior from those in both the KT and
the first-order QPTs.

We calculate the entanglement entropy for several stag-
gered biases from € = 0 to 1.5 in Fig. 7. We find that for all
values of €, the entropy suddenly drops at a critical point,
exhibiting a sharp nonanalyticity, and therefore signifying
the emergence of a different phase. The sudden drop of the
entropy demonstrates either the first-order or KT phase tran-
sitions, thus excluding the second-order QPT.

With the increasing staggered biases, the flat plateau grad-
ually changes into a broad peak and shrinks considerably at
rather large €. To be more clear, we replot the entropy at

s=1
T T T T T T T
12 |-=-e=0 -~ -e=0.1 €=0.5 -+ -¢=0.9 -~ -e=1.2 e=1.5 7
1h ’ i .
3 )
08 i ' 7
w i, '
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| i %
| + 2:
041 lﬁl i 1 b
) N L
0 L :
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FIG. 7. Entanglement entropy S as a function of « in the ground
state for the Ohmic bath (s = 1) at ¢ =0,0.1,0.5,0.9, 1.2, 1.5 for
s = 1by VMPS approach. A = 0.1, w, =1, A =2, L =50, dop, =
12, and D = 20.

two typical staggered biases € = 0.5 and 0.9 in the enlarged
view in the upper panels of Fig. 8. Interestingly, at € = 0.5,
the entropy shows a broad peak before dropping abruptly at
the transition point, different from that in the single SBM at
s = 1 where the entropy saturates at a wide coupling range
before a sudden drop at the transition point [35]. We argue
that the coherence is lost already before the system becomes
localized [32] due to the presence of the staggered biases,
so the flat plateau decays to a broad peak at the finite but
small €. At € = 0.9, the maximum point of the narrow peak
is very close to but still not at the transition point, in contrast
to the sub-Ohmic SBM where the maximum of entanglement
signifies the second-order phase transition. In these cases, the
phase transition is still of KT type, as will be shown below.
To explore the possible new phase transitions of the 2SBM
in the Ohmic bath driven by the large staggered bias €, we
also plot the entropy at rather large fields in the upper panels
of Fig. 9. The entropy drops abruptly at the transition points
for these large staggered biases. However, for small staggered
biases in the upper panels of Fig. 8, the entropy decreases with

s =1

1 —_— 1
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- 1 -
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FIG. 8. Magnetization M, entanglement entropy Sg (upper pan-
els), the first- and second-order derivatives of the ground-state energy
(lower panels) as a function of « in the Ohmic bath (s = 1) for a
weak bias € = 0.5 (left panels) and strong bias € = 0.9 (right panels),
representative of the KT transition, by VMPS approach. A = 0.1,
w.=1,A=2,L=50,dy, =12, and D = 20 for s = 1.
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FIG. 9. Magnetization M, entanglement entropy Sg (upper pan-
els), the first- and second-order derivatives of the ground-state energy
(lower panels) as a function of « in the Ohmic bath (s = 1) for
two strong biases € = 1.5 (left panels) and € = 3 (right panels),
representative of the first-order phase transition, by VMPS approach.
A=010.=1,A=2,L=50,dy =12,and D = 20 for s = 1.

o just before the abrupt drop, contrary to the case at large
staggered biases indicated in the upper panels of Fig. 9, where
the entropy increases monotonically before sudden drops. The
different behaviors should be originated from different kinds
of phase transitions. The order parameters are then collected
in the upper panels of Figs. 8§ and 9. However, the order pa-
rameter jumps suddenly for all cases at the transition points, so
one could not employ it to discriminate between the first-order
and the KT type QPTs.

To show the nature of the phase transition in this model,
we thus resort to the first-order and second-order derivatives
of the ground-state energy with respect to «, as demonstrated
in the low panels of Figs. 8 and 9 with the same model pa-
rameters. It is found that for small staggered biases, the first-
and second-order derivatives of the ground-state energy at the
transition point are continuous and do not exhibit any exotic
behavior. Even the further high order derivative would not
exhibit any discontinuity at the transition points, displaying
the infinite-order KT phase transition nature. However, for
two larger staggered biases, the first-order derivative drops
suddenly, showing discontinuity at the transition point, which
is just the typical characteristics of the first-order phase tran-
sition.

So in the Ohmic 2SBM with staggered biases, the KT
phase transitions can be directly driven to the first-order one
by increasing the staggered biases. Therefore the QuTP also
exists in this model, which separates the first-order and KT
critical lines. It is roughly estimated to be € &~ 1.18.

Finally, combining with the observations in the sub-Ohmic
case in the last subsection, we can reach a conclusion that the
staggered biases can drive the original QPTs to the first-order
ones in 2SBM with both Ohmic and sub-Ohmic baths directly
and could not change the universality of continuous phase
transitions including the KT phase transitions. We believe that

this conclusion can be generalized to the finite even number
of dissipative spins in the staggered biases.

The universality in the QuTP in the present model is
also a challenging issue. According to the Landau theory, it
should be different from those in other critical points. But
it is difficult to use any numerical approaches to distinguish
this isolated point from others. If the analytical treatment
formulated from the Feynman path-integral representation of
the partition function for the single SBM [2,44-46] can be
extended to this model, then it may be probable to clarify this
issue.

Very interestingly, increasing the staggered biases can
make the transition discontinuous in both the spin-boson
model and the Dicke model [16]. It appears that there should
be a common explanation for the first-order transitions in both
models. There is possibly a third order term proportional to
a power of the bias in the Ginzburg-Landau effective action
in the Feynman path-integral representation. With increasing
biases, the order parameter jumps from zero to a finite value
and results in the first-order transition directly. We believe that
the topic along this line deserves further careful study.

IV. CONCLUSION

We have found rich quantum phase transitions in the 2SBM
with both the sub-Ohmic and the Ohmic baths in the staggered
biases by the VMPS approach. The phase diagram has been
composed in terms of the coupling strength and the bias mag-
nitude. For the sub-Ohmic bath, we find that the second-order
critical lines meet the first-order ones at the QuTP. For the
Ohmic bath, we observe that the KT phase transitions can
be driven directly to the first-order phase transitions. For all
cases, if the first-order phase transition does not emerge, the
universality of the phase transition could not be changed by
the applied staggered biases.

The recent superconducting circuit QED system has al-
lowed for the SBM in both the Ohmic and the sub-Ohmic bath
[47-50], thus the 2SBM is experimentally feasible. Unlike the
conventional cavity QED systems, the static bias of the qubit
present in the circuit QED systems is ubiquitous and can be
easily introduced and manipulated by an externally applied
magnetic flux [51,52], which provides an additional dimen-
sion to exhibit the rich QPTs. Generalized Dicke models
without the nonlinear Stark coupling undergo the second-
order QPT in the thermodynamic limit (i.e., infinite atomic
number N — 00) [16], while the finite-component QPT re-
quires us to implement an extremely large detuning (i.e.,
infinite frequency ratio A/w — 00) [5,9,17], so the present
considered phase transition in the 2SBM in the staggered
biases might be easier to realize experimentally. We believe
that the 2SBM would become a potential platform to test the
rich quantum criticality and the QuTP.
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