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Constrained electronic-structure theories enable the construction of effective low-energy models consisting of
partially dressed particles. However, the interpretation and physical content of these theories is not straightfor-
ward. Here, we carefully explore the properties of downfolding theories for electron-ion problems, in particular
constrained density-functional perturbation theory (cDFPT). We show that the dipole selection rules determine
whether the partially dressed phonons satisfy Goldstone’s theorem, and we prove that electronic screening always
lowers the phonon frequencies. We illustrate the theory with cDFPT calculations for minimal example systems:
the nitrogen and benzene molecule as well as graphene.
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I. INTRODUCTION

Electrons and nuclei together determine the microscopic
properties of materials and molecules. The quantitative un-
derstanding of this interplay is a formidable task, since it is
a many-body problem involving a large number of quantum
particles.

Ab initio–derived low-energy models are a way to address
this problem [1]. The electronic structure is divided into high-
and low-energy states. The high-energy states are integrated
out, leaving an effective low-energy model. The “bare” parti-
cles that enter the low-energy model are in fact the partially
dressed particles of the full system. These low-energy degrees
of freedom can subsequently be analyzed in more detail. For
example, a detailed and computationally expensive treatment
of electronic [2] and electron-ion [3,4] correlations as well as
complex dynamical and nonequilibrium phenomena is often
only feasible for the low-energy model.

Ab initio–based low-energy models also form the basis for
including environmental effects like screening [5] and hy-
bridization [6]. This two-step approach has the big advantage
that the changes in the environment only enter the second
step of the evaluation, which can be substantially cheaper to
evaluate than the full calculation.

One way for establishing low-energy models based on ab
initio calculations are the so-called “constrained” methods. In
these methods, the low-energy degrees of freedom are frozen,
so that the effective interaction is screened only by processes
involving high-energy electrons. In this way, the constrained
density-functional perturbation theory (cDFPT) [4] creates a
low-energy model consisting of partially screened phonons,
low-energy electrons, and an electron-phonon interaction.
These three quantities can all be extracted from ab ini-
tio calculations. Similar constrained theories exist for the
electron-electron interaction [7], in particular the constrained
random-phase approximation [8]. Together, these approaches
have allowed for the investigation of the combined effect of
electron-electron and electron-phonon interactions, e.g., in the

fullerides [4,9–13]. The cDFPT has been applied to several
materials with electron-phonon coupling [6,14–16]. While
these works provide answers to the physical problems they
address, they naturally also raise questions regarding potential
perks and pitfalls of the theory itself.

Here, our aim is to improve the understanding of the
general structure and properties of downfolding theories for
electron-ion problems in general and of cDFPT in particular.
We show that Goldstone’s theorem does not generally apply
to partially dressed phonons but that symmetry-based selec-
tion rules allow us to construct electronic target spaces that
satisfy Goldstone’s theorem. We also show that the electronic
screening reduces the phonon frequencies and consider the
basis transformation between bare and dressed phonons, i.e.,
harmonic mode-mode coupling.

To illustrate these findings, we have calculated the
electron-ion coupling in small molecules. The equations of
cDFPT are matrix relations in terms of both electronic and
vibronic/phononic modes. In a crystalline solid, this means
that all objects carry momentum labels in addition to their
mode label and accurate calculations require a dense mo-
mentum grid. On the other hand, in molecules there is no
momentum, the Hilbert space is finite, and all calculations
are substantially easier. This allows us to elucidate important
aspects of cDFPT in unprecedented detail.

The setup of this paper is as follows: First, we construct
a general framework for the calculation of partially and fully
dressed phonon properties within the Born-Oppenheimer ap-
proximation. We then show how cDFPT fits in this general
framework and prove several properties of cDFPT. Subse-
quently, we illustrate the theory with numerical calculations
for nitrogen, benzene, and, as a brief outlook towards periodic
systems, graphene.

II. METHOD

Let us start with some remarks on terminology: We will
generally use the term phonons for the ionic displacement
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eigenmodes, even for molecules, where one might also call
them vibrons. We will be calculating the classical energy
landscape corresponding to these displacements. We use the
term ions to denote the nuclei and any core electrons that are
fixed to the nuclei in the electronic-structure calculations. We
set h̄ = 1 and measure all energies and frequencies in eV.

We follow a variational approach to the electron-ion cou-
pling [17–19] and the screening of phonons in general, and
we only specify density-functional theory (DFT) at the end.
We show that the relations between full density-functional
perturbation theory (DFPT) and cDFPT are particularly clear
in this variational description.

A. Ab initio electronic structure

The starting point for our analysis is the Born-
Oppenheimer approximation: ionic and electronic degrees of
freedom are formally separated. The electronic coordinates
are supposed to be much faster, so that we can assume that
they are always relaxed into an instantaneous ground state
corresponding to a specific ionic configuration.

For a system consisting of N ions, there are 3N ionic
coordinates Rμ. The electronic degrees of freedom are writ-
ten as ψ ∈ � where � is a sufficiently smooth manifold. �

could consist, e.g., of wave functions or density matrices,
depending on the electronic-structure method that is used. We
assume that there is an energy functional E (ψ ; Rμ) and that
this functional is sufficiently smooth to calculate all necessary
derivatives. The energy E (Rμ) corresponding to a fixed set of
ionic coordinates Rμ is found as the minimum of the func-
tional E with respect to ψ : E (Rμ) = minψ∈� E (ψ ; Rμ). The
electronic configuration minimizing [20] the energy ψ∗(Rμ),
implicitly defined by E (Rμ) = E (ψ∗; Rμ), depends on Rμ.
Therefore, a variation of Rμ has two effects on the energy
E (Rμ): explicitly, and implicitly via ψ∗(Rμ). The latter de-
scribes the electronic screening of ionic displacements and is
the main purpose of our investigations.

B. Force

The first derivative of the energy is the force F . This is a
3N vector, containing the force on every ion as 3 vectors. The
force corresponding to a specific ionic configuration R0 is

−Fμ(R0) = dE

dRμ

∣∣∣∣∣
R0

(1)

= ∂E
∂Rμ

+ ∂E
∂ψ

∂ψ∗

∂Rμ

(2)

= ∂E
∂Rμ

+ 0 · ∂ψ∗

∂Rμ

. (3)

The last line follows since ψ∗(R0) is the minimum of E . This
equation shows that the force can be obtained from ψ∗(R0)
without having to take into account changes in the electronic
configuration. This is a manifestation of the 2n + 1 theorem
in electronic-structure theory [21–23].

For establishing low-energy models for a given ionic con-
figuration R0, we will use constrained theories. They restrict
the electronic configuration space to some subspace �′(R0) ⊂
�, with ψ∗(R0) ∈ �′. This defines a new energy E ′(Rμ) =

minψ ′∈�′ E (ψ ′; Rμ) and a ψ ′∗(Rμ) with E (ψ ′∗(Rμ); Rμ) ≡
E ′(Rμ). Since the constrained variational space is smaller, the
following relations hold:

E (Rμ) � E ′(Rμ), (4)

E (R0) = E ′(R0), (5)

−F ′
μ(R0) = dE ′

dRμ

∣∣∣∣∣
R0

(6)

= ∂E
∂Rμ

+ 0 · ∂ψ ′∗

∂Rμ

(7)

= −Fμ(R0). (8)

The constrained theory gives the same forces at R0, since the
change in ψ does not enter the equation for the force.

C. Phonons

Important information about the ionic degrees of freedom
is contained in the second derivative of the energy, a 3N × 3N
matrix. The eigenmodes of the dynamical matrix ω̂2, with√

mμmνω̂
2
μν = d2E/dRμdRν , where mμ are atomic masses,

are called phonons and the associated eigenvalues are the
phonon frequencies/energies. Unlike the forces, the dynam-
ical matrix is different in the constrained theory,

ω̂2
μν = 1√

mμmν

d2E

dRμdRν

, (9)

ω̂′2
μν = 1√

mμmν

d2E ′

dRμdRν

, (10)

ω̂2 � ω̂′2. (11)

The last inequality follows from Eqs. (4), (5), and (8).
The inequality should be understood in the usual way for
(symmetric) matrices: the difference �ω̂2 = ω̂′2 − ω̂2 is a
positive-definite matrix.

Equation (11) shows that the phonons in the constrained
theory will always have a higher energy than in the full theory.
The constraints prevent the electrons from completely moving
along with the ions, thus increasing the energy cost of ionic
displacements.

D. Goldstone’s theorem

Goldstone’s theorem states that every spontaneously bro-
ken continuous symmetry creates a massless (ω = 0) bosonic
excitation. In electronic-structure theory, the ions break
the three continuous translation symmetries, creating three
acoustic phonon modes. In addition, molecules can have
spontaneously broken rotation symmetries and corresponding
massless modes.

Goldstone’s theorem for phonons easily follows from our
construction of the dynamical matrix. Assume that there is
a continuous symmetry Tλ parametrized by a real number λ.
The total energy is invariant under this symmetry, E (TλRμ) =
E (Rμ), and it is therefore possible to construct a repre-
sentation of Tλ acting on the ψ ∈ �, with E (Tλψ ; TλRμ) =
E (ψ ; Rμ). Concretely, a translation that acts on both the ionic
coordinates Rμ and the electronic configuration ψ will leave
the total energy unchanged.
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Since Tλ is a continuous symmetry, we can take λ small and
write TλRμ ≈ Rμ + λ �Rμ. The translation defines a direction
in displacement space and the energy is constant in this direc-
tion, E (Rμ) = E (Rμ + λ �Rμ). This displacement is thus an
eigenmode of the dynamical matrix, with eigenvalue (energy)
zero.

This argument does not transfer to the constrained the-
ory [4]. The constraints can break the continuous symmetry
explicitly: Tλψ /∈ �′(R0). In that case, the electronic config-
uration cannot completely move along with the translation
symmetry due to the constraints and E ′(TλR0) 	= E ′(R0) =
E (R0) = E (TλR0). Due to this last equality, we conclude
E ′(TλR0) > E ′(R0). However, this inequality is not yet suf-
ficient to conclude that the Goldstone modes will always
acquire a finite energy in the constrained theory: It is still
possible that constrained and full theory agree to order δR2

and only differ at order δR4 (or higher). In that case, the par-
tially dressed phonons will still satisfy Goldstone’s theorem.
For cDFPT, we show in Sec. II G that dipole selection rules
can be used to construct a �′ that guarantees that the uniform
translation modes stay massless.

E. Bare and dressed frequencies

This brings us to the relation between the bare and dressed
dynamical matrices. Both are second derivatives of the en-
ergy with respect to the displacement, with the subtlety that
the electronic configuration adjusts to the displacement. This
electronic response is where the difference between the full
and constrained theory (i.e., DFPT and cDFPT) originates
from. It is useful to consider this point in detail. We mea-
sure the atomic displacements δR with respect to some initial
ionic positions R0 with electronic configuration ψ0 = ψ∗(R0).
To determine the second derivative, it is sufficient to Taylor
expand the energy functional to second order in δR and δψ .
Summation over repeated indices is implied and we use Latin
indices a, b for the electronic degrees of freedom [24].

E (ψ ; R0 + δR) − E (ψ0; R0)

= ∂E
∂Rμ

δRμ + 1

2
δψa

∂2E
∂ψa∂ψb

δψb

+ 1

2
δRμ

∂2E
∂Rμ∂Rν

δRν + δψa
∂2E

∂ψa∂Rμ

δRμ. (12)

There is no first-order contribution in δψ , as we saw when
calculating the force. For a given displacement δR, there
is a physical (minimal energy) solution ψ∗(δR) defined by
∂E (ψ∗(δR); Rμ)/∂ψa = 0. At small δRμ, δψ∗

b (δR) is linear,
with

0 = ∂2E
∂ψa∂ψb

δψb + ∂2E
∂ψa∂Rμ

δRμ, (13)

δψ∗
b (δR) = −

(
∂2E

∂ψa∂ψb

)−1(
∂2E

∂ψa∂Rμ

)
δRμ (14)

≡ −E−1
ψaψb

EψaRμ
δRμ. (15)

Here, we have introduced the subscript partial-derivative no-
tation Ex = ∂E/∂x, and the inverse is a matrix inversion. We

reinsert this result into the energy functional, Eq. (12),

E (ψ∗(δR); R0 + δR) − E (ψ0; R0)

= ERμ
δRμ + 1

2δRμ

[
ERμRν

− ERμψaE−1
ψaψb

EψbRν

]
δRν . (16)

The term in brackets determines the interatomic force con-
stants,

√
mμmνω̂

2
μν = d2E

dRμdRν

(17)

= d2E (ψ∗(R); R)

dRμdRν

(18)

= ERμRν
− ERμψaE−1

ψaψb
ERνψb . (19)

The first term here is the bare energy cost of displacing ions
with fixed electronic configuration, the second term represents
the screening by the electrons. Note that the second derivative
Eψaψb is the Hessian on the electronic manifold and summation
over the electronic degrees of freedom is implied. Since ψ∗ is
a local minimum of the energy functional, the electronic Hes-
sian Eψψ is positive definite and the second term in Eq. (19)
can be interpreted as an inner product 〈ERμψ , ERνψ 〉E−1

ψψ
. This

shows that the μ = ν part of this term is always negative (due
to the −1 in front of the inner product) and therefore reduces
the eigenvalues of ω̂2. Screening reduces the phonon energies.

The relation between dynamical matrices of the full and the
constrained theory is particularly clear in Eq. (19). The second
term contains an implicit internal sum over the dimensions of
the electronic manifold, and in the constrained theory this sum
is restricted to the submanifold. It can be useful to analyze
this sum term by term, i.e., to perform so-called fluctuation
diagnostics [16,25].

F. Phonons and density-functional theory

Many flavors of ab initio calculations exist, specified by
their electronic coordinate space � and energy functional E .
The relations and proofs given so far do not depend on the
precise choice of E—as long as a single variational functional
is used consistently—although there will of course be quan-
titative differences. In the remainder of this paper, we restrict
ourselves to DFT, but one could also apply these considera-
tions to, e.g., Hartree-Fock or variational Monte Carlo.

The determination of phonons and the electron-phonon
coupling from DFT is done via DFPT. Here, we will only
state the most relevant formulas; more detailed derivations are
found elsewhere [4,26].

In the framework of DFT, the energy is a functional E (ρ; R)
of the electronic density ρ(r) and ionic coordinates R. The
electronic properties are most easily expressed using the
Kohn-Sham basis {|m〉}. In this basis, the electronic density is
represented by a density matrix ρ. In other words, using m, n
to denote the electronic levels, the connection to the previous
sections is ψa ≡ ρmn. Every degree of freedom a in the elec-
tronic manifold corresponds to an electronic transition (mn),
and when there are NKS Kohn-Sham states, the electronic
manifold � consists of NKS × NKS matrices and the number of
electronic degrees of freedom Nel satisfies Nel � NKS × NKS,
where the inequality follows since not every matrix is also a
valid density matrix. See Appendix A for a minimal example.
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The matrix structure is necessary since ionic displacements
generally lead not just to changes in Kohn-Sham energies but
also to the hybridization of Kohn-Sham orbitals.

The interatomic force constants can be expressed in terms
of the electronic ground-state density ρ(r; R) for given R as

d2E (ρ; R)

dRμdRν

=
∫

d3r
∂Vext(r; R)

∂Rμ

∂ρ(r; R)

∂Rν

+
∫

d3r
∂2Vext(r; R)

∂Rμ∂Rν

ρ(r; R) + ERμRν
, (20)

where Vext is the bare external potential of an individual
electron amid the ensemble of ions and ERμRν

is the second
derivative of the ionic repulsion.

The change of the electronic density follows from the
Kohn-Sham equations and reads

∂ρ(r; R) = 2
∑

m,n�NKS

f (εm) − f (εn)

εm − εn

× 〈n|r〉〈r|m〉〈m|∂V̂eff(R)|n〉, (21)

where Veff is the dressed self-consistent potential and |m〉, |n〉
are Kohn-Sham eigenstates. Since ∂Veff depends on ∂ρ, this
equation must be solved self-consistently. With that, we find
the electronic contribution to the interatomic force constants,∫

d3r
∂Vext(r; R)

∂Rμ

∂ρ(r; R)

∂Rν

= 2
∑

m,n�NKS

f (εm)− f (εn)

εm−εn

×〈n|∂V̂ext(R)

∂Rμ

|m〉〈m|∂V̂eff(R)

∂Rν

|n〉.
(22)

This is nothing but the bare electronic susceptibility χ0

weighted with the bare and dressed (DFPT) deformation-
potential matrix elements dμnm = 〈n|∂V̂ext/∂Rμ|m〉 and
d̃νmn = 〈m|∂V̂eff/∂Rν |n〉, respectively. The deformation
potential is related to the electron-phonon coupling as appears
in a Hamiltonian via g = d/

√
2ω′m.

The cDFPT is obtained by picking a target subspace N ′
KS

and restricting the summations in Eqs. (21) and (22) by ex-
cluding summands where both m and n lie in the target space.
This yields the partially screened phonon frequencies. The
relation between the dynamical matrices in DFPT (ω̂2) and
cDFPT (ω̂′2) is [16] given by

√
mμmνω̂

2
μν = √

mμmνω̂
′2
μν + 2

∑
m,n∈target

d∗
μmn

f (εm) − f (εn)

εm − εn
d̃νmn.

(23)

The cDFPT formulation presented here seems to deviate
from the general result Eq. (19). In the latter, both ends of the
self-energy diagram have the same electron-phonon vertex,
which presently would read ERμρmn . These are connected by
a susceptibility ε−1

ρabρcd
, which is a (Nel × Nel ) × (Nel × Nel )

matrix. Here, the full susceptibility is replaced by the bare
susceptibility and the electronic interactions are absorbed into
one of the vertices, as in Fig. 1. The advantage of this ap-
proach is that the bare susceptibility is a diagonal (Nel ×
Nel ) × (Nel × Nel ) matrix and it is sufficient to only consider

>

<
d̃

μ

k2

k1

>

<
d

>

<
χ̂0

Û

>

<d̃

k4

k3

k2

k1

= +

FIG. 1. Relation between dressed and bare electron-phonon
coupling.

the Nel × Nel diagonal elements. The figures in this manuscript
only show these Nel × Nel matrix elements.

G. Saving Goldstone’s theorem via selection rules

The partially dressed cDFPT phonons are not guaranteed
to satisfy Goldstone’s theorem. However, here we show that
suitably chosen target spaces will guarantee massless phonons
corresponding to uniform translations.

First, let us consider systems with an inversion symme-
try, i.e., invariance under x �→ −x. For uniform translations,
∂V/∂R is odd under inversion. Thus, if all target-space or-
bitals are either even (gerade) or odd (ungerade) under
inversion, then the displacement-potential matrix element
d = 〈m|∂V/∂R|n〉 is antisymmetric in total and therefore
zero. In that case, there is no contribution to the phonon
frequency from target-space electronic transitions and the par-
tially dressed phonon has the same frequency as the fully
screened mode, which is massless.

In fact, an even stronger dipole selection rule applies to
uniform-translation phonons. If a uniform translation λ is
performed on the nuclear coordinates, then the Kohn-Sham
eigenfunctions are transformed by applying exp(iP · λ), since
the total momentum operator P is the generator of uniform
translations,

|mλ〉 = eiPλ|m〉, (24)

and the Kohn-Sham eigenvalues are invariant under this trans-
formation by symmetry. The initial density matrix was

ρ =
∑

m

f (εm)|m〉〈m|, (25)

and the density matrix after translation is

ρλ =
∑

m

f (εm)|mλ〉〈mλ|. (26)

We expand up to linear order in λ,

ρλ =
∑

m

f (εm)(1 + iPλ)|m〉〈m|(1 − iPλ),

ρλ − ρ =
∑

m

f (εm)(iPλ|m〉〈m| − |m〉〈m|iPλ), (27)

(ρλ − ρ)ab = iλ( f (εb) − f (εa))〈a|P|b〉.
In the general analysis of Goldstone’s theorem, we stated

that the partially dressed phonon satisfies Goldstone’s theo-
rem if ρλ = Tλρ ∈ �′ for small λ, where �′ is the cDFPT
submanifold consisting of density matrices with the target
space subblock frozen to the initial value. In other words, ρλ

is part of the cDFPT submanifold as long as (ρλ − ρ)ab = 0
for all target states |a〉, |b〉. The previous derivation shows that
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this is the case for uniform translation modes if 〈a|P|b〉 is zero
for any pair of target states |a〉, |b〉, i.e., the Goldstone modes
are preserved if there are no long-wavelength dipole-allowed
[27] transitions possible within the target space.

III. POSITIVITY OF FLUCTUATION DIAGNOSTICS

As we have seen in Eq. (11), dressed phonons have a
lower energy than bare phonons, since electrons can move
along to screen the ionic charges. We have also stated that
�ω̂2 can be interpreted mathematically as an inner product
of electron-phonon vertices, with the metric given by the
electronic susceptibility. Here, we will make this proof more
explicit for cDFPT. This analysis shows that every contribu-
tion �ω̂2

μμ,mn in the fluctuation diagnostics is positive. This
is helpful, since it means that no cancellations occur and the
relative contribution of specific fluctuations can be quantified
easily.

The proof is based on the relation [4,28,29] between d̃ and
d , also illustrated in Fig. 1,

d̃μk1k2 = dμk3k4

[
I

I − χ̂0Û

]
k3k4,k1k2,

(28)

where ki labels the electronic states,

χ̂0
k1k2,k3k4

= δk1k3δk2k4

f (εk2 ) − f (εk1 )

εk2 − εk1

(29)

is the Lindhard bubble in the electronic eigenbasis, and Û is
the electronic interaction kernel [30]. We once again see that
all elements have either two or four electronic state labels,
which motivates us to consider these labels pairwise, as tran-
sitions. If there are Nel electronic states, then dμ is a vector
in CN2

el and both χ̂ and Û are N2
el × N2

el matrices (or rank-4
tensors) [31]. The inverse in Eq. (28) should be understood as
a matrix inversion in this space and I is the identity matrix.

The phonon self-energy �ω̂2
μν = (ω̂2

cDFPT − ω̂2
DFPT)μν is a

matrix in phonon-branch space. The fluctuation diagnostics
looks at the contribution coming from a pair of electronic
states k1, k2, which we denote by �ω̂2

μν,k1k2
.

Looking at a symmetrized combination of the contributions
from k1 and k2, we find

√
mμmν�ω̂2

μν,k1k2
(30)

= −d̃μk1k2 χ̂
0
k1k2,k1k2

d∗
νk1k2

− dμk1k2 χ̂
0
k1k2,k1k2

d̃∗
νk1k2

(31)

= −
∑
k3k4

dμk3k4

[
χ̂0

I − Û χ̂0

]
k3k4,k1k2

d∗
νk1k2

− · · · (32)

= −
∑

k3k4,k5k6

dμk3k4

[
χ̂0

I − Û χ̂0
P̂k1k2

]
k3k4,k5k6

d∗
νk5k6

− · · · (33)

≡ 〈dμ, P̂k1k2 dν〉χ + 〈P̂k1k2 dμ, dν〉χ , (34)

where we have introduced the projection onto k1k2:
[P̂k1k2 ]k3k4,k5k6 = δk3k4,k5k6δk1k2,k3k4 . In the last line, we have in-
troduced the bilinear form corresponding to the operator χ̂ ,
with

χ̂ = − χ̂0

I − Û χ̂0
. (35)

FIG. 2. Electronic and phononic spectra of an N2 molecule. Note
that the 1s electrons are incorporated into the pseudopotential in our
calculations, so they are not shown here.

In Appendix B, we prove that χ̂ is a positive-definite sym-
metric real matrix, so that the corresponding bilinear form is
an inner product. χ̂ can be understood as the susceptibility,
and the fixed sign of χ̂ is then related to thermodynamic
stability, as discussed below Eq. (19). From this, our desired
results follow directly, namely that �ω̂2

μμ,k1k2
� 0 and that

�ω̂2
μμ = ∑

k1k2
�ω̂2

μμ,k1k2
= 〈dμ, dν〉χ/

√
mμmν � 0.

In this proof, k1 and k2 label the electronic eigenstates.
Here, these are the molecular orbitals. In lattice systems,
momentum is a good quantum number and the electronic
states are labeled by momentum k and a band index. The
momentum analysis is simplified by setting k2 = k1 + q and
by then observing that the entire equation is diagonal in q.

IV. COMPUTATIONAL DETAILS

The ab initio calculations in this paper are realized us-
ing QUANTUM ESPRESSO [32,33]. We apply the generalized
gradient approximation (GGA) by Perdew, Burke, and Ernzer-
hof (PBE) [34,35] and optimized norm-conserving Vanderbilt
pseudopotentials [36] from the PSEUDODOJO pseudopotential
table [37] at a kinetic-energy cutoff of 150 Ry. Core elec-
trons are incorporated into the pseudopotential. The electronic
temperature is set to zero (no occupation smearing). Forces
are minimized to below 1 μRy/Bohr. Unwanted interactions
between periodic images of the system are kept small using
a unit-cell size of 15 Å in the respective directions. For the
calculations of graphene in Appendix C, we employ the lat-
tice constant a = 2.46 Å and sample the Brillouin zone with
32 × 32 k and 8 × 8 q points including .

V. NITROGEN MOLECULE

We consider an N2 molecule, consisting of two identical
N ions aligned along the z axis. Explicitly, the atomic coordi-
nates are Rμ = (0, 0,−a/2, 0, 0, a/2), where a = 1.1 Å is the
interionic distance. In our calculation, only the 1s electronic
state is incorporated into the pseudopotential of the ion. The
electronic energy levels are shown in Fig. 2.

There are six atomic coordinates, so the dynamical matrix
is a 6 × 6 matrix and there are six phonons. Table I shows
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TABLE I. The phonon eigenmodes of N2.

x translation y translation z translation rotation around y rotation around x bond stretching
x1 + x2 y1 + y2 z1 + z2 x1 − x2 y1 − y2 z1 − z2

(+1,0,0,+1,0,0) (0,+1,0,0,+1,0) (0,0,+1,0,0,+1) (+1,0,0,−1,0,0) (0,+1,0,0,−1,0) (0,0,+1,0,0,−1)

the displacements of the phonon eigenmodes [38]. These are
the eigenmodes of both the cDFPT and the DFPT spectrum,
so �ω̂2

μν is a diagonal matrix. For the calculation of the bare
phonons, we have fixed all electronic energy levels of Fig. 2.
The resulting cDFPT and DFPT spectra are shown in Fig. 2.
Due to rotation symmetry in the x-y plane, the eigenmodes
with x and y displacements come in degenerate pairs.

The five DFPT modes with vanishing energy are Gold-
stone modes: two spontaneously broken rotation symmetries
(around x and y) and three spontaneously broken translation
symmetries (x, y, z). In contrast, cDFPT considers a system
where the electronic density is fixed. These constraints have
already explicitly broken the symmetries (see Sec. II D) so
there is no spontaneous symmetry breaking and there are no
bare Goldstone modes. This is visible in the cDFPT spectrum;
all five bare phonon modes have a finite energy.

As predicted in Sec. II C, the frequency of the dressed
phonons in Fig. 2 is reduced compared to the bare modes,
although this effect is small and hardly visible for the z1 − z2

mode.

A. Fluctuation diagnostics

In fluctuation diagnostics, one looks at the contribution of
individual electronic states to total change in phonon energy,
thereby extracting the relevant screening processes. Since
there is no phonon-mode mixing in N2 by symmetry, we can
analyze the six phonon-diagonal elements �ω̂2

μμ one by one.
The first ingredient is the bare susceptibility χ0, shown in

Fig. 3, quantifying the electronic transitions possible in the
system. Due to the Pauli principle, only transitions across the
Fermi level are allowed and the susceptibility is largest for
pairs of states close to the Fermi level.

In addition to the purely electronic χ0, there is also the
deformation potential. Figure 4 shows d2 (note that this is
shorthand for the product of a bare and dressed deforma-
tion potential). We observe that d2 is real, positive, and a
symmetric matrix in electronic space. Because of the ro-
tation symmetry, the deformation potential is identical for
the x and y phonon modes (note that we have summed
over degenerate electronic states). The magnitude of d2 for
the bond-stretching mode is approximately one order of
magnitude larger than for the other modes. The deforma-
tion potential for this mode is qualitatively different, since
it is largely diagonal, whereas the other modes only have
off-diagonal elements. Physically, a diagonal deformation po-
tential means that ionic displacements change the energy of

the Kohn-Sham orbitals, whereas off-diagonal elements de-
scribe displacement-induced hybridization between orbitals.
Most matrix elements of the electron-phonon coupling are
zero, reflecting selection rules.

The total phonon renormalization mμ�ω̂2
μμ is obtained by

multiplying χ0 and d2 and summing over the intermediate
electronic states. Fluctuation diagnostics considers these sum-
mands one by one. The results so far show that χ0 is restricted
to transitions across the Fermi level. The bond-stretching
mode has no corresponding electron-phonon coupling, so its
energy is barely renormalized. On the other hand, the five
other modes are substantially renormalized. In fact, this renor-
malization is responsible for breaking Goldstone’s theorem.

From Fig. 4, it is clear that only very few combinations
of electronic states contribute to the phonon renormalization.
For the three uniform translations, it is worthwhile to analyze
in more detail which electronic transitions are responsible for
the phonon renormalization and the absence of Goldstone’s
theorem in the bare phonons. In all cases, it is the electronic
state at 8.2 eV (LUMO) that is responsible for the screening,
combined with either the −3.2 eV or −1.4 eV states, for the
in-plane and out-of-plane displacements, respectively. The

FIG. 3. Bare susceptibility χ 0 of N2. The susceptibility is
nonzero only for transitions across the Fermi level.

205103-6



DOWNFOLDING APPROACHES TO ELECTRON-ION … PHYSICAL REVIEW B 103, 205103 (2021)

FIG. 4. Displacement potential d2 in N2. Every panel stands for the coupling to a single phonon mode; there is no mode-mode coupling in
N2. The colored matrix shows which electronic states couple to the phonon. Degenerate electronic states have been summed over.

displacement x1 + x2 is odd under the reflection x �→ −x,
the twofold degenerate 8.2 eV states are a combination of
px and py orbitals and thus have a px component that is odd
under this reflection, whereas −3.2 eV is a combination of s
and pz orbitals and is even under the reflection. This makes
〈px|(x1 + x2)|spz〉 even and the transition is allowed. Note that
〈px|(x1 + x2)|spz〉 is also even under the reflections y �→ −y
and z �→ −z. The same argument holds for y1 + y2 and py.
Finally, for z1 + z2, the state at −1.4 eV is another twofold
degenerate combination of px and py orbitals and the com-
bination 〈px|(z1 + z2)|px〉 is even under all three inversions
and thus allowed. The structure of the upper panels in Fig. 4
reflects the dipole selection rule for uniform translations: Most
matrix elements are zero by symmetry.

This also provides a recipe for choosing the electronic
target space in such a way that specific partially screened uni-
form translation modes indeed have zero energy. If the state at
−3.2 eV is integrated out and excluded from the constrained
space �′, then the partially screened phonon modes would
already include this coupling. No further coupling to x1 + x2 is
dipole allowed, so the partially screened x1 + x2 phonon needs
to have zero energy. Similarly, integrating out the −1.4 eV
mode would guarantee a zero-energy partially screened z1 +
z2 phonon. This construction of Goldstone-preserving target
spaces based on dipole selection rules can also be applied to
crystalline materials.

Finally, we observe that both −χ0 and d2 are always pos-
itive, so that every summand in the fluctuation diagnostics
gives a positive contribution. This is a numerical confirmation
of the earlier proof of positivity.

VI. BENZENE

We now move on to a more complicated molecule, ben-
zene (C6H6). With 12 atoms, this molecule has 36 phonon

FIG. 5. Selected phonons in benzene. The dressed (DFPT) dy-
namical matrix in the basis of bare (cDFPT) eigenmodes. The target
subspace spans all bands up to π∗

6 . The dynamical matrix is block
diagonal and only a 6 × 6 block is shown here (out-of-plane dis-
placements, even under 180-degree rotation symmetry). The bare
eigenmodes are shown at the top, with their corresponding energies
at the left side of the matrix.
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FIG. 6. DFPT and cDFPT phonons in benzene. x, y (z) labels in-
plane (out-of-plane) modes. The cDFPT phonons exclude screening
from electronic transitions between the six pz states. The out-of-plane
modes are not affected by this constraint due to the mirror-symmetry
selection rule.

modes in total. All atoms lie in a single plane (z = 0). By
symmetry, in-plane and out-of-plane displacements decouple.
We restrict our attention to out-of-plane displacements that
are furthermore symmetric under 180-degree rotation around
the z axis. This leaves a subspace consisting of six phonon
modes. Figure 5 shows the DFPT dynamical matrix ω̂2 in the
basis of cDFPT eigenmodes, where the cDFPT target sub-
space consists of all electronic eigenstates up to the topmost pz

level (π∗
6 ). The presence of off-diagonal elements shows that,

unlike in N2, there is mode-mode coupling. In particular, we
find coupling between modes that differ in the relative direc-
tion of the C and H atoms [39]. In the cDFPT eigenbasis, the

motion of the C and H ions is almost completely decoupled. It
is the electronic chemical bonding that is responsible for the
coherent motion of both types of atoms, and this bonding is
frozen out in cDFPT. An example of this is the z-translation
DFPT Goldstone mode. This mode is a linear combination of
the cDFPT modes at 0.0071 eV2 (translation of C atoms) and
0.0394 eV2 (translation of H atoms).

Comparing the DFPT energies inside the matrix with the
cDFPT eigenenergies (to the left) shows that the magnitude
of the screening is substantial. Note that negative off-diagonal
elements do appear in the matrix; positivity is only guaranteed
for the eigenvalues of ω̂2

cDFPT, ω̂2
DFPT, and ω̂2

cDFPT − ω̂2
DFPT.

A. Partially dressed

So far, we have considered the effect of electronic screen-
ing on phonons by either allowing or forbidding screening
from all electronic states. The resulting modes are called
dressed and bare phonons, respectively. For establishing low-
energy models, one is frequently interested in an intermediate
object, the partially dressed phonons. In that case, screening
by most electrons is allowed and only transitions within a
small “target” subspace close to the Fermi level are excluded.

For benzene, this low-energy subspace is spanned by the
six pz orbitals—analogous to the tight-binding description
of graphene—and there is a considerable Coulomb interac-
tion between these electrons. Minimalist models of benzene
consisting of six electronic states therefore regularly feature
as a testbed for investigating electron-electron interactions
[40–46]. Here, we instead focus on the electron-ion interac-
tions of this subspace.

Figure 6 shows the phonon frequencies of both the fully
screened DFPT phonons and the partially screened cDFPT
phonons. Their difference shows the effect of screening by
the pz orbitals on the phonons. An important observation is
that out-of-plane phonons are not screened by the pz electrons;
their frequencies are identical in DFPT and cDFPT. This is
caused by a symmetry selection rule; all pz orbitals are odd
under mirror symmetry, and this implies d = 0. An equivalent
observation can be made for graphene; see Appendix C.

FIG. 7. (Left) An in-plane phonon (DFPT eigenmode) with substantial coupling to the pz electrons. (Middle) d2 for this mode. (Right)
Bare electronic susceptibility χ 0. d2 and χ 0 are both visualized in terms of the eigenstates of the electronic pz space. The contribution to the
phonon self-energy is obtained as the pointwise product of these two squares.
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By comparing the partially and fully dressed dynamical
matrices, we find that the most substantial renormalization
occurs for the phonon mode shown in Fig. 7, an in-plane mode
where neighboring C atoms move in opposite directions. The
figure also shows the fluctuation diagnostics of this mode. In
the middle, the matrix d2 only has contributions coming from
excitations between the HOMO and LUMO levels, namely
π2 ↔ π∗

5 and π3 ↔ π∗
4 . These are the only combinations of

molecular orbitals that are allowed to be coupled to this mode
by mirror symmetry. Since these excitations are also energeti-
cally favorable for the bare susceptibility χ0 (right), they lead
to a large overall renormalization of this phonon mode.

VII. CONCLUSION

We have constructed a general framework for ab ini-
tio downfolding electron-ion problems within the Born-
Oppenheimer approximation, and we have shown how the
cDFPT fits into this framework. We have shown analytically
that electronic screening lowers the phonon energies. Even
the fluctuation diagnostics—the contributions from specific
electronic states—are sign definite. The constrained theory
can explicitly break symmetries, thereby reducing the number
of Goldstone modes. Dipole selection rules can be used to
construct a low-energy electronic subspace where even the
partially dressed Goldstone modes are guaranteed to have zero
energy. We note that the cDFPT phonon dispersion in Fig. 2(a)
of Ref. [16] indeed satisfies Goldstone’s theorem.

We have illustrated the theorem with cDFPT for molecules
(nitrogen and benzene), since these are among the simplest
and clearest examples of electron-ion coupling. In particular,
they provide a clear view on the orbital structure of the theory.
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APPENDIX A: MANIFOLDS AND DERIVATIVES

In DFPT, the electronic configuration is described by
the density operator ρ̂. The Kohn-Sham electronic energy
functional is E (ρ̂ ) = Trρ̂H , where H is the Kohn-Sham
Hamiltonian. Let us initially assume that H is independent
of ρ̂. One could anticipate that the Hessian matrix, the second
derivative of E with respect to ρ̂, would be zero. However,
at this point it is important to realize that the derivatives are
taken on the manifold of density matrices and the Hessian on
a curved manifold contains additional terms.

To see how this works, we consider a minimal system
of two electronic levels with single-particle energies εa < εb

and corresponding states |a〉, |b〉. The Hamiltonian is H =
εa|a〉〈a| + εb|b〉〈b|. The ground state is given by the ground-
state density operator ρ̂0. If εa and εb are on the same side of

the Fermi level, the system is completely filled or empty. The
most interesting situation occurs when εa < E f < εb. In that
case, the ground-state ρ̂0 = |a〉〈a| is the projection operator
onto a and the total number of electrons is 1. The manifold
of allowed density matrices is given by all density matrices
with total density 1. It is easy to see that ρ̂θ = (cos θ |a〉 +
sin θ |b〉)(cos θ〈a| + sin θ〈b|) lies in this manifold for any θ .
The corresponding energy is

E (ρ̂θ ) = Trρ̂θ H (A1)

= εa cos2 θ + εb sin2 θ, (A2)

which has first derivative zero at θ = 0, and the second deriva-
tive at θ = 0 is

d2E
dθ

∣∣∣∣
θ=0

= 2(εb − εa) = 2
(
χ̂0

ab,ab

)−1
(A3)

= d2E
d ρ̂2

ab

+ d2E
dρ̂2

ba

. (A4)

The inverse bare susceptibility at T = 0 in Eq. (A3) enters
the phonon self-energy. Generalizing the result to higher-
dimensional spaces shows that off-diagonal terms ∂ab∂cd

vanish, so χ̂0
ab,cd is a diagonal matrix, as stated in the main

text.
So far, we have assumed that the Kohn-Sham Hamiltonian

H is independent of ρ̂. In reality, DFT is a self-consistent
theory and the Kohn-Sham Hamiltonian contains the Hartree
and exchange-correlation potentials. It is generally possible to
write

d2E
d ρ̂αβd ρ̂γ δ

∣∣∣∣
ρ̂0

= (χ̂0)−1
αβ,γ δ − Ûαβ,γ δ, (A5)

which here merely acts as the definition of Û . Û accounts
for the electron-electron interactions that are not present in
the auxiliary Kohn-Sham system. In cDFPT calculations, Û is
formally incorporated into d̃ (see Fig. 1) and never calculated
explicitly. Still, this formal relation is necessary for some of
the proofs in the main text.

APPENDIX B: SIGN OF PHONON SELF-ENERGY

From the definition, χ̂0 is diagonal (as a N2
el × N2

el matrix)
and thus also symmetric. The diagonal elements are given
by the Lindhard expression and are negative or zero, since f
is a decreasing function. Thus, −χ̂0 is positive semidefinite.
The matrix Û is real and symmetric. From this, it follows
that χ̂ = −χ̂0/(I − Û χ̂0) is also real and symmetric, which
can be checked order by order as (χ̂0Û χ̂0 . . . χ̂0Û χ̂0)T =
(χ̂0)T Û T (χ̂0)T . . . (χ̂0)T Û T (χ̂0)T = χ̂0Û χ̂0 . . . χ̂0Û χ̂0. As
long as the geometric series is convergent, which corresponds
to thermodynamic stability, it does not change the sign of
eigenvalues and χ̂ will be positive semidefinite and symmet-
ric.

A further detail that is necessary for our proof: P is an or-
thogonal projection with respect to the original inner product
but not with respect to the inner product defined by χ̂ , so it is
not immediately trivial that 〈d, Pd〉χ � 0. Below, χ̂ is written
without hat for convenience. Since P is a projection operator,
we can write d = α + β with α ≡ Pd , Pα = P2d = Pd = α

and β ≡ d − α, Pβ = Pd − Pα = α − α = 0.
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We wish to show that

dT χPd = αT χα + βT χα
?
� 0. (B1)

If βT χα > 0, this is proven immediately, since αT χα > 0.
Otherwise, the trick is to take x = α + λβ with a real number
λ so that

0 � xT χx = αT χα + 2λβT χα + λ2βT χβ

= αT χα + βT χα. (B2)

The last equality is used to solve for λ and a real solution λ

can be found as long as the discriminant D/4 = (βT χα)2 −
(βT χα)(βT χβ ) is positive. But we were studying the case
βT χα < 0, so indeed D > 0, λ can be chosen appropriately,
and the proof of the lemma is finished.

APPENDIX C: GRAPHENE

To illustrate how the presented results for molecules can
be transferred to periodic systems, we consider the example of
graphene. Following up on Sec. VI A, Fig. 8 shows the phonon
dispersion of graphene from DFPT (colored solid lines) and
cDFPT (black dashed lines). We choose as the target subspace
the two pz bands forming the Dirac cones at the K points. As
in Fig. 6, excluding the electronic screening from within the pz

manifold does not alter the out-of-plane modes (orange) at all.

FIG. 8. DFPT and cDFPT phonons of graphene. L/T (Z) labels
longitudinal/transverse in-plane (out-of-plane) modes from DFPT.
The cDFPT phonons exclude electronic screening from within the
two pz bands. Please note that for the out-of-plane modes, we Fourier
interpolated ω̂q instead of ω̂2

q.

By contrast, the frequencies of the in-plane modes (green) are
increased, even in the case of two acoustic modes at . Again,
these partially screened phonons do not satisfy Goldstone’s
theorem.

[1] M. Imada and T. Miyake, Electronic structure calculation by
first principles for strongly correlated electron systems, J. Phys.
Soc. Jpn. 79, 112001 (2010).

[2] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Electronic structure calculations
with dynamical mean-field theory, Rev. Mod. Phys. 78, 865
(2006).

[3] G. Giovannetti, M. Casula, P. Werner, F. Mauri, and M. Capone,
Downfolding electron-phonon Hamiltonians from ab initio cal-
culations: Application to K3 picene, Phys. Rev. B 90, 115435
(2014).

[4] Y. Nomura and R. Arita, Ab initio downfolding for electron-
phonon-coupled systems: Constrained density-functional per-
turbation theory, Phys. Rev. B 92, 245108 (2015).

[5] M. Rösner, C. Steinke, M. Lorke, C. Gies, F. Jahnke, and T. O.
Wehling, Two-dimensional heterojunctions from nonlocal ma-
nipulations of the interactions, Nano Lett. 16, 2322 (2016).

[6] J. Hall, N. Ehlen, J. Berges, E. van Loon, C. van Efferen, C.
Murray, M. Rösner, J. Li, B. V. Senkovskiy, M. Hell, M. Rolf,
T. Heider, M. C. Asensio, J. Avila, L. Plucinski, T. Wehling, A.
Grüneis, and T. Michely, Environmental control of charge den-
sity wave order in monolayer 2H-TaS2, ACS Nano 13, 10210
(2019).

[7] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory
and Mott insulators: Hubbard U instead of stoner I , Phys. Rev.
B 44, 943 (1991).

[8] F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S.
Biermann, and A. I. Lichtenstein, Frequency-dependent local
interactions and low-energy effective models from electronic
structure calculations, Phys. Rev. B 70, 195104 (2004).

[9] O. Gunnarsson, Superconductivity in fullerides, Rev. Mod.
Phys. 69, 575 (1997).

[10] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Strongly
correlated superconductivity, Science 296, 2364 (2002).

[11] Y. Nomura, S. Sakai, M. Capone, and R. Arita, Unified
understanding of superconductivity and Mott transition in
alkali-doped fullerides from first principles, Sci. Adv. 1,
e1500568 (2015).

[12] Y. Nomura, S. Sakai, M. Capone, and R. Arita, Exotics-wave
superconductivity in alkali-doped fullerides, J. Phys.: Condens.
Matter 28, 153001 (2016).

[13] Y. Nomura, Ab Initio Studies on Superconductivity in Alkali-
Doped Fullerides (Springer Singapore, Singapore, 2016).

[14] R. Arita, T. Koretsune, S. Sakai, R. Akashi, Y. Nomura, and W.
Sano, Nonempirical calculation of superconducting transition
temperatures in light-element superconductors, Adv. Mater. 29,
1602421 (2017).

[15] D. Novko, Broken adiabaticity induced by Lifshitz transi-
tion in MoS2 and WS2 single layers, Commun. Phys. 3, 30
(2020).

[16] J. Berges, E. G. C. P. van Loon, A. Schobert, M. Rösner, and
T. O. Wehling, Ab initio phonon self-energies and fluctuation

205103-10

https://doi.org/10.1143/JPSJ.79.112001
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.90.115435
https://doi.org/10.1103/PhysRevB.92.245108
https://doi.org/10.1021/acs.nanolett.5b05009
https://doi.org/10.1021/acsnano.9b03419
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.70.195104
https://doi.org/10.1103/RevModPhys.69.575
https://doi.org/10.1126/science.1071122
https://doi.org/10.1126/sciadv.1500568
https://doi.org/10.1088/0953-8984/28/15/153001
https://doi.org/10.1002/adma.201602421
https://doi.org/10.1038/s42005-020-0299-1


DOWNFOLDING APPROACHES TO ELECTRON-ION … PHYSICAL REVIEW B 103, 205103 (2021)

diagnostics of phonon anomalies: Lattice instabilities from
Dirac pseudospin physics in transition metal dichalcogenides,
Phys. Rev. B 101, 155107 (2020).

[17] X. Gonze, D. C. Allan, and M. P. Teter, Dielectric Tensor,
Effective Charges, and Phonons in α-Quartz by Variational
Density-Functional Perturbation Theory, Phys. Rev. Lett. 68,
3603 (1992).

[18] A. Putrino, D. Sebastiani, and M. Parrinello, Generalized vari-
ational density functional perturbation theory, J. Chem. Phys.
113, 7102 (2000).

[19] K. Refson, P. R. Tulip, and S. J. Clark, Variational density-
functional perturbation theory for dielectrics and lattice dynam-
ics, Phys. Rev. B 73, 155114 (2006).

[20] We assume that the minimum is unique.
[21] X. Gonze and J.-P. Vigneron, Density-functional approach to

nonlinear-response coefficients of solids, Phys. Rev. B 39,
13120 (1989).

[22] X. Gonze, Perturbation expansion of variational principles at
arbitrary order, Phys. Rev. A 52, 1086 (1995).

[23] X. Gonze, Adiabatic density-functional perturbation theory,
Phys. Rev. A 52, 1096 (1995).

[24] � is a manifold and thus locally equivalent to a vector space, so
the derivative δψ can be decomposed into components.

[25] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Fluctuation Di-
agnostics of the Electron Self-Energy: Origin of the Pseudogap
Physics, Phys. Rev. Lett. 114, 236402 (2015).

[26] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Phonons and related crystal properties from density-functional
perturbation theory, Rev. Mod. Phys. 73, 515 (2001).

[27] The name dipole selection rule originates in the relation be-
tween the matrix elements of the momentum operator and the
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