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Removal of core hole distortion from ionization edges in electron energy loss spectroscopy
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The near-edge fine structure in electron energy loss spectra is used to probe the electronic bonding environment
of materials at high spatial resolution. Often, however, deviations from the ground state electronic properties
are observed, due to the core hole created within the ionized atom. A method is proposed to remove core
hole distortion from experimental electron energy loss spectra by calculating the electrodynamic work done
in separating the moving, incident electron from the oppositely charged core hole. Dynamic screening of the
core hole is modeled using the material dielectric properties. The resulting energy gain spectrum is deconvolved
from the experimental measurement to give a “fully screened” spectrum that is free of core hole distortion. The
method is tested on core loss edges in elemental Si, SiC, and SiOx . Despite assuming classical electrodynamics,
the fundamental principle of an energy gain correction can be shown to be consistent with quantum mechanics,
although shortcomings in some of the assumptions made on the nature of the core hole are also identified.
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I. INTRODUCTION

In electron energy loss spectroscopy (EELS), and the
similar technique of x-ray absorption spectroscopy, the fine
structure observed in the core loss edge onset region is
used to probe the local bonding environment of the ionized
atom [1–4]. The fine structure should, in principle, yield
information on the angular-momentum-resolved, unoccupied
electronic density of states of the solid in the ground state.
However, there is a substantial body of work (e.g., Refs. [5–9])
providing evidence to the contrary. The deviation from the
ground state is due to the interaction between the atomic
electron that is promoted to the conduction band and the par-
tially screened charge of the atomic nucleus, i.e. the hole left
behind in the core electronic level by the excited electron. This
core hole interaction causes the final state wavefunction of
the excited electron to be localized [10]; the stronger overlap
between initial and final electronic states results in higher
intensity at the edge threshold. If the binding energy of the
core exciton is particularly strong, the edge onset may also
be shifted to lower energy losses [11–13]. As a general rule,
there is a direct correlation between the core hole interaction
and degree of electronic screening within the material [14].

There are several approaches for including core hole in-
teractions in EELS fine structure calculations, such as the
two-body Bethe-Salpeter equation [15,16] and the compu-
tationally less expensive Z + 1 approximation [5–9], where
the ionized atom is replaced by the next element along the
periodic table. Even for the latter the computation time is
increased due to the need for a relatively large supercell
that minimizes interaction between neighboring core holes,
resulting from periodic boundary conditions in the simulation
[17]. Since the strength of the core hole interaction depends

on the level of screening, it is also not always clear if the
Z + 1 approximation is the best choice for a given material.
For example, in MgO half-occupied Slater transition states
have been found to provide a better match to experiment
[18]. Therefore, what is desirable is a way to remove core
hole effects from experimental EELS spectra. This would
then enable interpretation of EELS data via the ground state
properties of the solid, which can be calculated using, for
example, density functional theory (DFT) methods.

In this paper, a straightforward method to remove core
hole effects from EELS spectra is proposed. We calculate the
energy gain of the incident electron along its trajectory due to
Coulomb attraction with the core hole, which is dynamically
screened by the electron “gas” in the solid. The dielectric
function for the material is used to calculate screening. Strictly
speaking, the energy gain here is smaller than the ionization
loss and should therefore be interpreted as a “correction” to
the overall EELS energy loss fine structure, rather than a di-
rectly measurable phenomenon, such as, for example, phonon
energy gain spectroscopy [19] or the photon-induced near-
field electron microscopy (PINEM) effect [20]. An energy
gain spectrum can be derived based on the impact parameter
distribution for the incident electron, which is governed by the
illumination and detection conditions for the measurement.
Deconvolving the energy gain spectrum from the experimen-
tal EELS spectrum gives a result that is more representative
of the ground state. The advantage of this method is that it
is easy to implement, with the deconvolved EELS spectrum
being more amenable to simulation using electronic struc-
ture methods. The energy gain spectrum can also be used to
gauge the strength of the core hole interaction, either in terms
of screening within the bulk material or reduced screening
within confined volumes or surfaces [21–24]. The mathemat-
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FIG. 1. (a) Schematic of inelastic scattering at the moment of
core hole creation (time t = 0). The incident electron is traveling
at speed v along the z axis with impact parameter b. The distance
of separation between the electron and core hole along the z axis is
z0. (b) The scattering geometry for scanning transmission electron
microscopy (STEM). An incident ray within the objective aperture
has wavevector α and is inelastically scattered to the wavevector
β with scattering vector q. Only scattered rays within the electron
energy loss spectroscopy (EELS) spectrometer entrance aperture are
detected.

ical details of the method and its comparison with quantum
mechanics are presented in Secs. II and III, respectively, fol-
lowed by application of the technique to experimental silicon
L and K edges in elemental Si, hexagonal SiC, and amorphous
SiOx (Sec. V), which have varying degrees of screening as
evidenced by their respective dielectric functions [25–27].
The limitations in the method are discussed in Sec. VI.

II. ENERGY GAIN SPECTRUM DUE TO CORE HOLE
INTERACTION

Figure 1(a) is a schematic of the incident electron and
ionized atom when the core hole is created at time t = 0. For
simplicity, the ionized atomic electron is not considered; this
omission is justified, since all the other electrons in the solid
can effectively screen the core hole. The electron is traveling

at speed v along the z axis with impact parameter b from the
ionized atom measured along the x axis. The core hole is at a
position −z0 along the z axis when it first appears, i.e. z0 is the
distance the incident electron travels during the time it takes
for the electronic transition to happen. By the uncertainty prin-
ciple, z0 is ∼(vh̄/�E), where h̄ is the reduced Planck constant
and �E is the energy loss. It is assumed that the core hole
interaction has a negligible effect on the trajectory and speed
v of the swift electron; this will be discussed in more detail in
Sec. III. Therefore, if φ(r,t) is the instantaneous electrostatic
potential at position vector r due to the core hole, the work
δW done over an infinitesimal path of the electron trajectory
is given by the change in potential energy:

δW = −qe

[
∂φ

∂t
δt + ∂φ

∂z
δz

]
= −qe

[
∂φ

∂t
+ v

∂φ

∂z

]
δt, (1)

with qe being the electronic charge magnitude. It is convenient
to express the potential as an inverse Fourier transform:

φ(r, t ) = 1

2π

∫
φ(q, ω)exp[2π iq · r − iωt]dqdω, (2)

where q is a reciprocal vector, and ω is the angular frequency.
Substituting in Eq. (1) and integrating δW over the entire
electron trajectory (i.e. points x, y = 0 and z = vt), we obtain
for the total work done

W (b) = − iqe

2π

∫ ∞

0

{ ∫
(2πqzv − ω)φ(q, ω)

× exp[i(2πqzv − ω)t]dqdω

}
dt, (3)

Note that the infinite upper limit to the time integral effec-
tively ignores the finite lifetime of the core hole, which can
decay by Auger or radiative recombination [28]. This is justi-
fied since, for typical core hole lifetimes in EELS, the distance
of separation between the core hole and incident electron is
large enough to assume zero interaction. For instance, for a
0.015 eV (resp. 0.48 eV) lifetime broadening of the silicon
L edge (resp. K edge) [28], a 60 kV incident electron would
be 5878 nm (resp. 184 nm) away from the core hole when it
decays. The time integral has the following solution:∫ ∞

0
exp[i(2πqzv − ω)t]dt

=
∫ ∞

−∞
H (t )exp[i(2πqzv − ω)t]dt

= πδ(2πqzv − ω) + i

(2πqzv − ω)
, (4)

where H(t) is the Heaviside unit step function, and δ is the
Dirac delta function. It then follows that

W (b) = qe

2π

∫
φ(q, ω)dqdω. (5)

The core hole potential is obtained by Fourier transforming
the Poisson equation [29]:

φ(q, ω) = ρ f (q, ω)

4π2q2εoε(q, ω)
. (6)

Here, ε0 is the permittivity of free space, ε(q,ω) is the di-
electric function, and the free charge due to the core hole ρ f is
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given by ρ f (r, t ) = qeδ(x−b)δ(y)δ(z + z0)H (t ); see Fig. 1(a).
Therefore,

ρ f (q, ω) =
∫

ρ f (r, t )exp(−2π iq · r + iωt )drdt

= qeexp(−2π iqxb)exp(2π iqzz0)
[
πδ(ω) + i

ω

]
,

(7)

where qx and qz are x, z components of q, respectively. Sub-
stituting Eqs. (6) and (7) into Eq. (5) gives

W (b) = q2
e

8π3ε0

∫
exp(−2π iqxb)exp(2π iqzz0)

q2ε(q, ω)

×
[
πδ(ω) + i

ω

]
dqdω. (8)

First consider the ω integral. Since ε(r,t) is a real quantity,
we have ε(q,−ω) = ε(q,ω)*, where the asterisk denotes a
complex conjugate. Therefore,∫ ∞

−∞

[
πδ(ω) + i

ω

] dω

ε(q, ω)

=
∫ 0

−∞

[
πδ(ω) + i

ω

] dω

ε(q, ω)
+

∫ ∞

0

[
πδ(ω)+ i

ω

] dω

ε(q, ω)

=
∫ ∞

0

[
πδ(ω)− i

ω

] dω

ε(q, ω)∗
+

∫ ∞

0

[
πδ(ω)+ i

ω

] dω

ε(q, ω)

= 2

{
πRe

[
1

ε(q, 0)

]
+

∫ ∞

0
Im

[ −1

ε(q, ω)

]
dω

ω

}
, (9)

where Re and Im denote the real and imaginary part of a
complex number. Substituting in Eq. (8) gives

W (b) = q2
e

4π3ε0

{
π

∫
exp(−2π iqxb)exp(2π iqzz0)

q2

× Re

[
1

ε(q, 0)

]
dq +

∫
exp(−2π iqxb)exp(2π iqzz0)

q2ω

× Im

[ −1

ε(q, ω)

]
dωdq

}
, (10)

where the ω integral is now evaluated from 0 to �. The first
and second terms within the curly brackets are the static and
dynamic contributions to the core hole interaction. The static
term indicates that the energy gain correction is small for
materials with a large refractive index, consistent with the
trend of weaker core hole effects in the presence of increased
screening [14]. The dynamic term consists of the loss func-
tion [1], Im[−1/ε(q, ω)], divided by ω. It follows that low
loss inelastic scattering events, such as plasmon excitations,
could have an important effect on the dynamic screening
and therefore core hole interaction. Next consider the local
approximation, i.e. ε(q,ω) is independent of q. The scattering
vector can be expressed as q = (q⊥, qz ), where q⊥ is the
transverse component and qz the component along the optic
z axis. The integral over qz in Eq. (10) is [30]∫

exp(2π iqzz0)

q2
z + q2

⊥
dqz

=
∫ ∞

−∞

cos(2πqzz0)

q2
z + q2

⊥
dqz = π

q⊥
exp(−2πz0q⊥), (11)

Furthermore, for an EELS spectrometer aperture centered
on the optic axis, and expressing q⊥ in polar coordinates
(q⊥, α),∫

exp(−2π iqxb)

[
π

q⊥
exp(−2πz0q⊥)

]
dq⊥

=
∫

exp(−2π iq⊥bcosα)

[
π

q⊥
exp(−2πz0q⊥)

]
q⊥dq⊥dα

= 2π2
∫

J0(2πq⊥b)exp(−2πz0q⊥)dq⊥, (12)

where J0 is the zero-order Bessel function of the first kind.
The energy gain in the local approximation is therefore

W (b) = q2
e

2πε0

{
πRe

[
1

ε(0)

]
+

∫
1

ω
Im

[
− 1

ε(ω)

]
dω

}

×
∫

J0(2πq⊥b)exp(−2πz0q⊥)dq⊥. (13)

The maximum energy gain Wmax is obtained for zero
impact parameter (b = 0), when the Coulomb attraction is
strongest. From Eq. (13),

Wmax = q2
e

4π2ε0z0

{
πRe

[
1

ε(0)

]
+

∫
1

ω
Im

[
− 1

ε(ω)

]
dω

}

× [1 − exp(−2πqEELSz0)], (14)

with qEELS denoting the maximum scattering vector magni-
tude imposed by the EELS spectrometer. Equation (14) is an
upper limit to the core hole interaction energy. For a very
large EELS collection angle and a nonabsorptive medium {i.e.
Im[ε(ω)] = 0}, Eq. (14) gives a Wmax value of qe

2/(4πε0εrz0),
which is in agreement with the classical screened Coulomb
potential energy (εr is the relative permittivity).

Thus far, we have only considered a single impact param-
eter b, although in an EELS experiment, there will be a range
of impact parameter values depending on the illumination and
detection conditions. For focused probe illumination in scan-
ning transmission electron microscopy (STEM), the impact
parameter distribution P(b) for a single atom in free space is
given by [31,32]

P(b) ∝
∫

A(α)A(α′)D(β)exp{i[χ (α′) − χ (α)]}

× exp[2π ib · (α′ − α)]
S(q, q′,�E )

q2q′2 d2αd2α
′
d2β,

(15)

where χ is the lens aberration function, and S(q,q′,�E) is the
dynamic form factor. Here, α, α′ represent any two transverse
STEM probe wavevectors, and β is an EELS spectrometer
entrance aperture wavevector [Fig. 1(b)]. The aperture func-
tions for the STEM probe and EELS spectrometer are A(α)
and D(β). In the small angle, small energy loss limit the
scattering vector q is given by [k0θE z + (β–α)], where k0 is
the wavenumber of the incident electrons of primary energy
E0, θE is the characteristic scattering angle (= �E/2E0), and
z is a unit vector along the optic axis [1]. A similar expression
is valid for the scattering vector q′, but with α′ replacing α.
Furthermore, in the dipole limit, the dynamic form factor is
proportional to q·q′ for nonmagnetic atoms [32].
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It is now possible to calculate an energy gain spectrum due
to the core hole interaction. For a given impact parameter,
W(b) determines the energy gain and P(b) the intensity of
the spectrum. For simplicity, we ignore the fact that many
of the partial plane waves within a STEM probe are not
fully parallel to the optic z axis, unlike the situation de-
picted in Fig. 1(a). The error this introduces is believed to be
small for the mrad convergence semi-angles typical of STEM
probes [33]. Deconvolving the energy gain spectrum from
the background-subtracted, experimental EELS edge would
yield a “fully screened” spectrum that is, in principle, free
of core hole effects. Importantly, the fully screened spectrum
is determined by the ground state properties of the solid and
can therefore be directly calculated using electronic structure
theory.

III. COMPARISON WITH QUANTUM MECHANICS

The previous section introduced an electrodynamic theory
of scattering where the core hole interaction is modeled as an
energy gain correction due to a change in potential energy.
Here, it will be shown that this approach is consistent with
quantum mechanics under certain conditions. According to
the Ehrenfest theorem, the expectation value of an operator
Q̂ has the following time dependence [34]:

∂〈Q̂〉
∂t

= i

h̄
〈[Ĥ , Q̂]〉 +

〈
∂Q̂

∂t

〉
, (16)

where Ĥ is the Hamiltonian, and the symbols [ ], < >

denote the commutator and expectation value of operators,
respectively. Consider the energy of the incident electron in
a time-varying potential field V(r,t), such as, for example,
the field due to a dynamically screened core hole, which
is suddenly created through inelastic scattering. Since the

Hamiltonian Ĥ = ∑
j

P̂2
j

2m − qeV , where P̂j = −ih̄ ∂
∂x j

is the
momentum operator along the x j Cartesian axis, the energy
expectation value becomes

∂〈Ĥ〉
∂t

= −qe

〈
∂V (r, t )

∂t

〉
. (17)

Therefore, the energy of the incident electron is not fixed
when the potential varies with time, unlike a closed system
where energy is conserved due to the Hamiltonian being time
independent. An example of a closed system would be an
incident electron and a stationary positive charge in vacuum;
as the electron moves away from the positive charge, the gain
in potential energy is balanced by a loss in kinetic energy, such
that the total energy is conserved. However, within a solid, the
positive charge (i.e. the core hole) must first be created and
is then screened by the background electron gas, resulting in
an open system with time-dependent potential. A net energy
change in the incident electron is therefore allowed.

From Eq. (16), we have

∂〈V 〉
∂t

= i

h̄
〈[Ĥ ,V ]〉 +

〈
∂V

∂t

〉
= i

2mh̄

∑
j

〈[
P̂2

j ,V
]〉 +

〈
∂V

∂t

〉
.

(18)

It is easy to show that [P̂j,V ] = P̂jV −V P̂j = −ih̄ ∂V
∂x j

, so
that

[
P̂2

j ,V
] = P̂j (P̂jV ) − (V P̂j )P̂j = −ih̄

[
P̂j

∂V

∂x j
+ ∂V

∂x j
P̂j

]
.

(19)
The expectation value of the commutator is therefore

〈[
P̂2

j ,V
]〉 = −h̄2

[〈
∂2V

∂x2
j

〉
+ 2

〈
∂V

∂x j

∂

∂x j

〉]
. (20)

Substituting in Eq. (18), we obtain

∂〈V 〉
∂t

= − ih̄

2m
[〈∇2V 〉 + 2〈 �∇V · �∇〉] +

〈
∂V

∂t

〉
. (21)

Equation (17) then becomes

∂〈Ĥ〉
∂t

= −qe

{
∂〈V 〉
∂t

+ ih̄

2m
[〈∇2V 〉 + 2〈 �∇V · �∇〉]

}
. (22)

The first term on the right-hand side is the time derivative
of the potential energy expectation value. Since the Coulomb
force F is proportional to �∇V , the second term can be in-
terpreted as the divergence of the force (i.e. �∇ · F), while
the third term is attributed to the instantaneous power F · v,

where v is the incident electron velocity (this follows from
the definition of the momentum operator P̂ = −ih̄ �∇ and the
fact that momentum is proportional to the velocity). If the
Coulomb force is small, the energy change is simply equal
to the change in potential energy due to the time-dependent
part of the potential, which is precisely what is calculated in
Sec. II. Furthermore, the speed of the incident electron can
also be treated as being constant, as was assumed in Eq. (1)
(Sec. II). For the Coulomb force to be small the incident
electron and core hole must be well separated, so that the
method is only accurate for small energy losses, where z0

is large and where delocalization gives rise to large impact
parameters.

IV. EXPERIMENTAL METHODS

EELS spectra from [110]-Si, [112̄0]-SiC, and amorphous
SiOx (glass) were acquired using the Nion UltraSTEM 100
MC Hermes microscope at the SuperSTEM facility, Dares-
bury. The microscope operating voltage was 60 kV, and the
energy resolution was set to 120 meV by adjusting the beam
monochromator slit. Low loss and silicon L, K core loss edges
were acquired at 0.05 eV/channel dispersion. The EELS spec-
trometer collection semi-angles were 18 and 36 mrad; for the
Si K edge, however, only the larger collection angle was used
due to the low count rate. The STEM probe semiconvergence
angle was 31 mrad. EELS data were acquired by scanning the
electron beam over a small area, typically a few nanometers
in dimension, to minimize any electron beam damage as well
as average over any potential sample inhomogeneities. For
the crystalline samples, EELS spectra were acquired with the
beam along the zone axis as well as the sample tilted off
zone axis. Strictly speaking, Eq. (15) for the impact parameter
distribution is valid for kinematic scattering and therefore
cannot be applied to the zone axis data. However, the on-
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FIG. 2. (a) Low loss spectrum for elemental silicon showing a surface plasmon peak at 10 eV (arrowed feature). The Kramers-Kronig
extracted dielectric function is shown in (b), with ε1 and ε2 being the real and imaginary parts, respectively. (c) The effective number of
electrons as a function of energy loss.

and off-zone axis spectra were almost identical, and therefore,
only the results for the former are presented.

The background under the core loss edges was subtracted
using a power-law fit [1]. Furthermore, the long counting
times for the Si K edge spectrum resulted in “spikes” due
to stray x-rays, which were removed by replacing them with
the average value of the counts on either side of the spike.
The dielectric function was extracted from a Kramers-Kronig
analysis of the low loss spectrum [1], with the data normalized
using refractive index values of 3.5, 2.5, and 1.5 for Si, SiC,
and SiOx, respectively [25–27]. Before Kramers-Kronig anal-
ysis, the low loss spectrum was Fourier log deconvolved by
fitting the zero-loss peak to a logarithmic function, as defined
in the Gatan Digital Micrograph software. The Kramers-
Kronig specimen thickness for elemental Si and SiC was in
the region of 20–25 nm. The thin specimen, as well as the
relatively low electron beam energy, reduces any Čerenkov
radiation [35], although for core hole screening calculations,
these artifacts should have a negligible effect, since Čerenkov
losses are mainly present at energies close to the band gap
where the EELS spectrum intensity is low [see Eq. (13)].
Since the specimens were thin, it was also assumed that the
measured core loss spectra were largely free of multiple in-
elastic scattering. The amorphous SiOx specimen thickness
was, however, in the range of 55–70 nm, so that the core loss
edges were Fourier log deconvolved before analysis.

V. RESULTS AND DISCUSSION

Results for elemental silicon will be discussed first. Fig-
ure 2(a) shows the silicon low loss spectrum acquired with
an 18 mrad EELS spectrometer aperture and Fig. 2(b) the
real (ε1) and imaginary (ε2) parts of the dielectric function
extracted from a Kramers-Kronig analysis. The dielectric
function was similar for both 18 and 36 mrad EELS spectrom-
eter apertures, and therefore, only the results for the former are
shown. The gross features of the EELS extracted dielectric
function are similar to previous optical measurements [25],
although the quantitative agreement is unsatisfactory. This
could be due to the contribution of larger scattering angles
in the EELS data, as well as the presence of residual surface
losses, as evidenced by the surface plasmon loss peak at
10 eV in Fig. 2(a) [25]. Although the Kramers-Kronig anal-

ysis considered surface losses, some contribution remained,
judging by the shape of the ε1 curve. Furthermore, it is highly
likely the silicon had a thin, native surface oxide layer. The
surface quality of silicon is known to have an important ef-
fect on dielectric property measurement using spectroscopic
ellipsometry [36] and may similarly influence EELS measure-
ments as well. The effective number of electrons as a function
of energy loss is shown in Fig. 2(c) and is in reasonable agree-
ment with the theoretical value of 203 valence electrons/nm3

at energy losses slightly above the bulk plasmon peak at
19 eV [Fig. 2(a)].

Using the EELS dielectric function, it is possible to calcu-
late the energy gain spectrum for the experimental conditions.
From Eq. (14), the maximum energy gain Wmax is 0.92 eV for
the silicon L edge and 18 mrad EELS spectrometer aperture.
Only 0.19 eV is due to the static Coulomb interaction [first
term in Eq. (14)], while most of the energy gain is due to
incomplete dynamic screening. Figure 3(a) plots the dynamic
contribution [second term in Eq. (14)] as a function of energy
loss and indicates that the largest energy gain correction oc-
curs at the bulk plasmon frequency, with lower frequencies
above the band gap also contributing. In fact, from Eq. (14),
any inelastic scattering mechanism at energy h̄ω will give
rise to an energy gain, the magnitude of which is inversely
proportional to the frequency ω. In the case of collective ex-
citations, such as a bulk plasmon, this has a relatively simple
explanation. Plasmon oscillations in the electron density give
rise to alternatingly higher and lower screening of the core
hole charge, provided the separation between the incident
electron and core hole is less than the plasmon wavelength. If
the plasmon frequency is large, the rapid changes in the elec-
tron density will average out any fluctuations in the screening
over the incident electron trajectory, so that there will only
be a small contribution to the dynamic energy gain. Similar
mechanisms may be responsible for the energy gain from
single electron excitations. For example, resonance of the
electron gas occurs at well-defined natural frequencies of the
solid. Outside these natural frequencies, any oscillations in the
electron gas will rapidly be dampened, so that the screening is
like the static case.

The impact parameter distribution P(b) in Eq. (15) is
also important for the energy gain spectrum. Figure 3(b)
shows P(b) for the silicon L edge at 18 and 36 mrad EELS
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FIG. 3. (a) Dynamic contribution [i.e. second term in Eq. (14)] to the energy gain for the Si L ionization event at zero impact parameter
in elemental silicon. The energy of the incident electron beam is 60 keV. The Si L edge impact parameter distributions P(b) for a 60 kV, 31
mrad, aberration-free scanning transmission electron microscopy (STEM) probe and 18, 36 mrad electron energy loss spectroscopy (EELS)
collection semi-angles are shown in (b), with (c) being the corresponding energy gain spectra. (d) The energy gain spectrum for the Si K edge
at 36 mrad EELS semi-angle.

collection semi-angles (the STEM probe convergence semi-
angle is 31 mrad, and all electron-optic aberrations are
assumed to be zero). The former has a lower probability for
ionization at small impact parameters, resulting in a “volcano”
profile [37]. This is because small impact parameters result in
larger scattering angles, as evidenced by P(b) for the 36 mrad
EELS aperture, which shows a monotonic decrease with im-
pact parameter. P(b) for the silicon L and K edges at 36 mrad
EELS semi-angle and 31 mrad STEM probe semi-angle are
found to have similar profiles. Figure 3(c) shows the energy
gain spectra for Si L at 18 and 36 mrad EELS semi-angles cal-
culated from the P(b) profiles and Eq. (13). The former shows
a sudden decrease in intensity at high energy losses due to
the volcano profile of P(b), but otherwise, the two spectra are
similar and cover a narrow range in energy gain. On the other
hand, the energy gain spectrum for the Si K edge at 36 mrad
EELS collection semi-angle is much broader and has a max-
imum energy gain of 15.4 eV [Fig. 3(d)]. Although the P(b)
profiles for the Si L and K edges at 36 mrad EELS semi-angle
are similar, there is a large difference in the minimum distance
of separation [z0; Fig. 1(a)] between the incident electron and
core hole for the two ionization events. For example, at 60 keV
beam energy, z0 is 8.9 Å for Si L at 99 eV energy loss and 0.5
Å for Si K at 1839 eV energy loss. The smaller z0 for the latter

results in a larger energy gain due to an increased Coulomb
interaction [Eq. (13)].

Figure 4(a) shows the measured 18 mrad EELS semi-
angle, Si L edge in elemental silicon superimposed with the
fully screened spectrum obtained after deconvolving the en-
ergy gain spectrum [Fig. 3(c)]. The edge onset for the fully
screened spectrum is shifted to higher energy loss, consistent
with previous observations from electronic structure theory
that indicate core holes lead to stronger overlap between initial
and final electronic states, thereby enhancing the intensity at
the edge onset [10–13]. Although the fully screened spec-
trum is related to the measured spectrum by a convolution
operation, the two spectra in Fig. 4(a) appear to be shifted
with respect to one another by ∼1 eV. This is because the
corresponding energy gain spectrum covers only a narrow
energy range with a maximum energy of 0.92 eV; since it
approximates to a delta function, convolution is similar to a
shifting of the measured spectrum by the energy gain value.
Duscher et al. [11] have performed pseudopotential electronic
structure calculations of the Si L edge in elemental silicon
with and without a core hole (the former using the Z + 1 ap-
proximation). The edge onset for the spectrum without a core
hole is delayed by ∼0.5–1.0 eV, although there is no simple
shifting of the two spectra, i.e. in addition to the delayed onset,
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FIG. 4. Measured and fully screened Si L edges in elemental silicon are shown for (a) 18 mrad and (b) 36 mrad electron energy
loss spectroscopy (EELS) collection semi-angles. The area of the two spectra in each plot are normalized for direct comparison. (c) The
corresponding figure for the Si K edge in elemental silicon and 36 mrad EELS collection semi-angle. Here, the maximum intensity, rather than
the area, is normalized due to the large energy shift between the measured and fully screened spectra.

there are also changes to the edge shape (see Fig. 1 of [11]).
Although it is difficult to define a single value for the edge
onset delay due to the change in edge shape, the estimated
value for the electronic structure results in Ref. [11] is similar
in magnitude to that obtained from our model. Close exami-
nation of Fig. 4(a) also reveals a small shoulder at the edge
onset (feature marked by an arrow), which has been attributed
to a core exciton [13,38]. Since this feature is due to the core
hole interaction it should not be present in the fully screened
spectrum, although this is clearly not the case in Fig. 4(a). By
comparison, the core exciton feature is absent from electronic
structure calculations performed without a core hole, but is
otherwise observed in the Z + 1 approximation [11]. This
indicates that the calculated energy gain spectrum is not fully
accurate; specifically, the energy gain peak should be broader
than the width of the exciton peak (∼0.8 eV) to produce
a noticeable change in edge shape during deconvolution, in
addition to the energy shift observed in the present results.

The measured and fully screened Si L edge, 36 mrad EELS
semi-angle spectra for pure silicon are shown in Fig. 4(b).
The results are similar to Fig. 4(a), which is not surprising
given the similarity in the energy gain spectra for the two
experimental conditions [Fig. 3(c)]. Results for the Si K edge,
36 mrad EELS semi-angle data are presented in Fig. 4(c)
and show large differences between the measured and fully
screened spectra. Deconvolution of the energy gain spectrum
from the measured spectrum resulted in amplification of any
experimental noise; to minimize this artifact the measured
spectrum had to be binned several times, so that the dispersion
was reduced from 0.05 to 0.80 eV/channel. The edge onset for
the fully screened spectrum is delayed by ∼14 eV [Fig. 4(c)].
In comparison, the edge onset delay is only ∼5 eV in Duscher
et al. (see Fig. 6 in [11]). It should be noted that our model
is not expected to give accurate results for high energy loss
ionization events, such as the Si K edge. Apart from the
arguments presented in Sec. III, the value of z0 for the Si K
edge is similar to the Bohr radius, so that it is doubtful if core
hole screening can be accurately calculated using a continuum
model.

The results for SiC will now be presented. Figure 5(a)
shows the SiC dielectric function extracted from a low loss
EELS spectrum acquired with 18 mrad collection semi-angle

(the results for a 36 mrad spectrometer aperture were similar
and are therefore not shown). The gross features are consistent
with optical measurements [26], although there are differ-
ences in the numerical values for ε1 and ε2. Unlike elemental
silicon, no surface plasmon peaks were observed for SiC, even
though the Kramers-Kronig derived specimen thicknesses
were similar for the two materials (i.e. 20–25 nm). The effec-
tive number of electrons plot is shown in Fig. 5(b). Hexagonal
SiC has a valence electron density of 194 electrons/nm3. This
is considerably lower than the value of 294 electrons/nm3 for
30 eV maximum energy loss, which includes the bulk plasmon
peak, obtained from Fig. 5(b). Therefore, there are likely to be
significant errors in the EELS extracted dielectric function.

The SiC energy gain spectra for the Si L edge at 18 and
36 mrad EELS collection semi-angles are shown in Fig. 5(c),
while the Si K edge, 36 mrad EELS semi-angle energy gain
spectrum is shown in Fig. 5(d). The energy gain for the Si
L edge has a narrow distribution, with a maximum energy
gain (1.00 eV) slightly higher than elemental silicon, due to
SiC being more insulating. Consequently, the fully screened
spectra for Si L at 18 and 36 mrad EELS semi-angles are
largely energy shifted, with no significant change in edge
shape compared with the measurement [Figs. 6(a) and 6(b)].
The energy shift is of a similar magnitude compared with the
electronic structure calculations of Duscher et al. (see Fig. 9
in [11]). The fully screened spectrum for the Si K edge in
SiC is shown in Fig. 6(c) (the measured spectrum was binned
to a dispersion of 0.8 eV/channel to prevent any noise being
amplified during deconvolution). Large changes in edge shape
and onset are observed between the measurement and fully
screened spectrum, due to the much broader energy range of
the gain spectrum [Fig. 5(d)].

Figures 7(a) and 7(b) show the real and imaginary parts
of the dielectric function for amorphous SiOx, extracted from
the 18 and 36 mrad collection semi-angle EELS spectra. The
18 mrad results are in good quantitative agreement with pre-
vious optical measurements (see Fig. 7 in Ref. [27]). The
effective number of electrons as a function of energy loss is
shown in Fig. 7(c). The valence electron density for crystalline
α- and β-SiO2 are 214 and 203 electrons/nm3, respectively.
The electron density for amorphous SiOx will naturally be
different to the crystalline forms, so that care must be taken
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FIG. 5. (a) Kramers-Kronig extracted dielectric function for SiC and (b) the effective number of electrons as a function of energy loss. In
(a) ε1 and ε2 are the real and imaginary parts of the dielectric function. Energy gain spectra for the Si L edge in SiC for 18 and 36 mrad electron
energy loss spectroscopy (EELS) collection semi-angles are shown in (c). (d) The gain spectrum for the Si K edge in SiC at 36 mrad EELS
semi-angle. The scanning transmission electron microscopy (STEM) probe parameters are 60 kV accelerating voltage, 31 mrad convergence
semi-angle, and zero electron-optic aberrations.

in comparing experimental results with the calculated values.
The high energy cutoff of the SiOx plasmon is at ∼35 eV
(full-width at half-maximum measure); from Fig. 7(c), the
effective number of electrons for the 18 mrad results at 35
eV is 247 electrons/nm3, which compares favorably with the

calculated values, given the uncertainties noted above. The
18 mrad EELS dielectric function for amorphous SiOx is
therefore considered reasonably accurate. Unlike elemental
Si and SiC, however, the dielectric function extracted from
the 36 mrad EELS spectrum for amorphous SiOx does not

FIG. 6. Measured and fully screened Si L edges in SiC for (a) 18 mrad and (b) 36 mrad electron energy loss spectroscopy (EELS) collection
semi-angles. The area of the two spectra in each plot are normalized for direct comparison. (c) The corresponding figure for the Si K edge
in SiC at 36 mrad EELS collection semi-angle. Here, the maximum intensity, rather than the area, is normalized due to the large energy shift
between the measured and fully screened spectra.
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FIG. 7. (a) and (b) The real and imaginary parts of the dielectric function for amorphous SiOx extracted from 18 and 36 mrad collection
semi-angle electron energy loss spectroscopy (EELS) spectra. The effective number of electrons as a function of energy loss is shown in (c),
while (d) plots the energy gain spectra for the Si L edge. The scanning transmission electron microscopy (STEM) probe parameters are 60 kV
accelerating voltage, 31 mrad convergence semi-angle, and zero electron-optic aberrations. (e) and (f) The measured and fully screened Si
L edges for 18 and 36 mrad EELS collection semi-angles, respectively. The area of the two spectra in each plot are normalized for direct
comparison.

converge with the 18 mrad results, although the difference is
small for most energies (the difference between ε1/ε2 for the
two spectra was no more than 1.6).

Figure 7(d) shows the calculated energy gain spectra for
the Si L edge in amorphous SiOx for 18 and 36 mrad EELS
collection semi-angles. Due to the insulating nature of SiOx,
the energy gain is slightly larger than elemental Si or SiC.
Furthermore, the energy gain at 36 mrad is greater than at 18
mrad, which is due to the more localized inelastic scattering,
as well as the slightly weaker static screening for the former
(the static ε1 value is 2.2 and 1.8 for the 18 and 36 mrad EELS
spectra, respectively). The measured and fully screened Si L
edge spectra at 18 and 36 mrad collection semi-angles are
shown in Figs. 7(e) and 7(f), respectively. The core exciton
feature (arrowed) is more prominent in amorphous SiOx due
to the reduced screening [38]. Furthermore, the core exciton
has undergone doublet splitting, which is readily apparent in
Fig. 7(e), the spacing between the doublet being ∼0.5 eV.
A similar result was observed for α-SiO2 using soft x-ray
reflectivity measurements in a synchrotron [12], as well as
EELS [38,39]. The doublet is due to excitons formed between
the electron promoted to the 3s energy level and core hole in
the 2p shell with j = 3

2 and 1
2 spin-orbit energies [12]. The

higher energy resolution of monochromated STEM is critical
for revealing fine structure in the excited state of the solid and
produces results comparable with synchrotron x-rays, but with
much better spatial resolution. However, as before, the core

exciton is still visible in the fully screened spectrum, due to
the narrow energy range in the gain spectrum largely giving
rise to an energy shift during deconvolution with the experi-
mental measurement. The generalized oscillator strength for a
(ground state) silicon atom gives rise to a delayed maximum,
partly due to the centrifugal barrier [40]. Although the bond-
ing environment for silicon atoms in SiOx is different to a free
atom, the delayed maximum will tend to obscure any multiplet
splitting; hence, a more featureless edge onset is expected for
the fully screened Si L spectrum. The ∼1 eV shift in threshold
energy for the fully screened spectrum is smaller than the
∼4–5 eV shift obtained from electronic structure simulations
for crystalline quartz (see Fig. 3 in Ref. [11]). The maximum
energy gain for the 36 mrad, Si K edge for amorphous SiOx

was 21.6 eV. With such a large energy gain, attempts to extract
a fully screened spectrum for the Si K edge were unsuccessful;
specifically, parts of the fully screened spectrum had negative
intensity.

VI. LIMITATIONS OF THE MODEL

There are several limitations to the core hole model, which
will now be discussed. Firstly, it is based on classical elec-
trodynamics, and a comparison with quantum mechanics
shows that this approach is only valid for small energy losses
(Sec. III). Fully screened spectra for the Si K edge in elemen-
tal silicon and SiC appear to confirm this, since agreement
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with the electronic structure calculations of Duscher et al.
[11] is a lot worse than the lower energy Si L edge (Sec. V).
The minimum separation z0 between the incident electron and
core hole is also only 0.5 Å for the Si K edge; it is therefore
doubtful if continuum models of screening are applicable at
these short length scales. Furthermore, we have not considered
the plasmon wake trailing behind the incident electron [41].
The density oscillations in the electron gas due to the plasmon
wake can potentially alter the core hole screening, especially
for weakly bound core excitons [38].

However, the dominant error in the model appears to arise
from the estimation of the z0 parameter, i.e. the minimum
separation between incident electron and core hole. Here, z0

is estimated based on the energy-time form of the Heisenberg
uncertainty relationship. The residual exciton peak apparent in
the Si L edge fully screened spectrum indicates that the energy
gain spectrum used for deconvolution is too narrow (Sec. V).
This suggests that z0 should be smaller than the current esti-
mate. In fact, this can be justified using quantum mechanics
as well. Consider a time-dependent Hamiltonian represent-
ing ionization of an atom, i.e. H (ra, t ) = Ho(ra) + H ′(ra, t ),
where Ho(ra) is the time-independent Hamiltonian, and ra

represents the position coordinates of the atomic electrons.
The perturbation term H ′(ra, t ) = qeE(rN , t ) · (ra − rN ) is
the potential energy of an electric dipole in the presence of
an electric field E(rN , t ) at the atom position rN . The electric
field is due to the incident electron and is assumed to be
approximately constant in the vicinity of the atom. If the
initial state eigenfunction of the atom is ui(ra), then from
time-dependent perturbation theory, the probability Pfi that the
atom will be in the final state u f (ra) at time T is given by [34]

Pfi(T ) =
∣∣∣∣ 1

ih̄

∫ T

0
H ′

fi(t )exp(iωfit )dt

∣∣∣∣
2

, (23a)

H ′
fi(t ) =

∫
u f (ra)∗H ′(ra, t )ui(ra)dra, (23b)

where h̄ωfi = E f − Ei is the energy difference between the
initial and final states. Derivation of Eq. (23a) assumes u f (ra)
is an eigenfunction of Ho(ra); this is not strictly true in the
presence of a strong core hole, but let us ignore this subtlety
for the moment. The electric field in the solid can be calcu-
lated using standard electrodynamic methods [42,43]. For an
electron moving along the z axis with speed v, the charge
density ρ f (r, t ) = −qeδ(x)δ(y)δ(z−vt ), so that the Fourier
transform of the electrostatic potential is

φ(q, ω) = −qeδ(2πqzv − ω)

4π2q2εoε(q, ω)
. (24)

Inverse Fourier transforming the (non-retarded) electric
field E(q, ω) = −2π iqφ(q, ω) gives

E(rN , t ) = iqe

8π3vεo

∫
q′exp(2π iq′ · rN )

ε(q′, ω)
[
q2

⊥ + (
ω

2πv

)2]
× exp(−iωt )dq⊥dω, (25)

where q′ = (q⊥, qz = ω
2πv

). Substituting in Eqs. (23a) and
(23b), the time integral has the form

∫ T

0
exp[i(ωfi − ω)t]dt = sin [(ωfi − ω)T ]

(ωfi − ω)

+ i
sin2[(ωfi − ω)T/2]

(ωfi − ω)/2
. (26)

For infinitely large T, the time integral has a pole at ωfi =
ω [see Eq. (4)], consistent with the fact that energy must
be conserved during ionization. However, for small T and
ωfi = ω, the time integral is equal to T, meaning that the atom
has a non-zero probability of being ionized by the incident
electron at distances smaller than the estimated value of z0. To
be consistent with quantum mechanics, we should therefore
have a core hole charge that gradually builds up to its final
value +qe, rather than assuming a sudden appearance of the
core hole in its final form at a fixed point in time. However,
such a “partial” core hole is difficult to treat analytically and
is also complicated by the fact that the transition probabil-
ity [Eq. (23a)] assumes a final state eigenfunction that is
unaffected by the core hole. The shape of the energy gain
spectra in our calculations tend to mirror the electron impact
parameter distribution of the measurement [see, for example,
Fig. 3(a)]. However, the gain spectrum for a more complex
partial core hole should contain additional fine structure that
carries information on the time evolution of the core hole.
This could potentially be explored through ultra-fast core
loss spectroscopy, such as the work on graphite reported in
Ref. [44], although in that study, the EELS fine structure was
dominated by the lattice dynamics due to heating from the
laser beam.

VII. SUMMARY

An electrodynamic model is proposed that, in principle,
removes core hole distortion from electron energy loss spec-
tra. An energy gain spectrum, based on the work done by
the incident electron against the Coulomb attraction of the
dynamically screened core hole, is calculated and decon-
volved from the measured EELS spectrum. The resulting fully
screened spectrum is easier to predict using electronic struc-
ture theory, since it only relies on the ground state properties
of the solid. Quantum mechanics indicates that this classical
approach is approximately valid for low energy loss ionization
events. Application of the method to the Si L edge in ele-
mental silicon, SiC, and amorphous SiOx showed promising
results, especially when compared with previous electronic
structure calculations. However, residual core hole distortion
remained, as evidenced by the fact that the core exciton fea-
ture in the Si L edge was not completely removed in the
fully screened spectrum. Further analysis showed that this
was due to assuming that the core hole appears suddenly
at a fixed point in time, although quantum mechanically,
there is a nonzero probability for the core hole to form at
any point in time; effectively a partial core hole that over
time develops into the final core hole configuration. Despite
this limitation, the model is still useful for evaluating the
effect of the core hole on an EELS edge shape. The fully
screened spectrum is also better suited for electronic structure
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calculations, which typically are only valid for the solid in
its ground state. Recently, machine learning techniques, in
the form of artificial neural networks, have been applied to
predict excited state EELS spectra, starting from the ground
state electronic density of states [45]. This approach can help
identify key parameters influencing the excited state, such as,
for example, the role of the material band gap on core hole

screening in silicon oxides [45]. It may be possible to combine
machine learning techniques with our method to explore, say,
the role of plasmons and interband transitions on core hole
screening for different classes of materials. Furthermore, the
electrodynamic model can easily be adopted to more complex
core hole screening geometries, such as free surfaces [21–24].
This will be the subject of a separate paper.

[1] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Elec-
tron Microscope (Plenum Press, New York, 1996).

[2] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-
Lutterodt, and G. Timp, Nature 399, 758 (1999).

[3] Q. M. Ramasse, C. R. Seabourne, D. M. Kepaptsoglou, R. Zan,
U. Bangert, and A. J. Scott, Nano Lett. 13, 4989 (2013).

[4] B. G. Mendis, M. MacKenzie, and A. J. Craven,
Ultramicroscopy 110, 105 (2010).

[5] N. Jiang and J. C. H. Spence, Phys. Rev. B 69, 115112 (2004).
[6] D. N. Jayawardane, C. J. Pickard, L. M. Brown, and M. C.

Payne, Phys. Rev. B 64, 115107 (2001).
[7] S. Nufer, T. Gemming, C. Elsässer, S. Küstlmeier, and M.

Rühle, Ultramicroscopy 86, 339 (2001).
[8] C. Elsässer and S. Küstlmeier, Ultramicroscopy 86, 325 (2001).
[9] K. van Benthem, C. Elsässer, and M. Rühle, Ultramicroscopy

96, 509 (2003).
[10] T. Mizoguchi, W. Olovsson, H. Ikeno, and I. Tanaka, Micron

41, 695 (2010).
[11] G. Duscher, R. Buczko, S. J. Pennycook, and S. T. Pantelides,

Ultramicroscopy 86, 355 (2001).
[12] W. L. O’Brien, J. Jia, Q-Y. Dong, T. A. Callcott, J-E.

Rubensson, D. L. Mueller, and D. L. Ederer, Phys. Rev. B 44,
1013 (1991).

[13] M. Altarelli and D. L. Dexter, Phys. Rev. Lett. 29, 1100 (1972).
[14] S-P. Gao, C. J. Pickard, M. C. Payne, J. Zhu, and J. Yuan, Phys.

Rev. B 77, 115122 (2008).
[15] E. L. Shirley, J. Electron Spectrosc. 144, 1187 (2005).
[16] W. Olovsson, I. Tanaka, T. Mizoguchi, P. Pusching, and C.

Ambrosch-Draxl, Phys. Rev. B 79, 041102(R) (2009).
[17] C. R. Seabourne, A. J. Scott, R. Brydson, and R. J. Nicholls,

Ultramicroscopy 109, 1374 (2009).
[18] T. Mizoguchi, I. Tanaka, M. Yoshiya, F. Oba, K. Ogasawara,

and H. Adachi, Phys. Rev. B 61, 2180 (2000).
[19] M. J. Lagos and P. E. Batson, Nano Lett. 18 (2018) 4556.
[20] B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462

(2009) 902.
[21] L. Siller, S. Krishnamurthy, L. Kjeldgaard, B. R. Horrocks, Y.

Chao, A. Houlton, A.K. Chakraborty, and M. R. C. Hunt, J.
Phys.: Condens. Matter 21, 095005 (2009).

[22] G. J. Lapeyre and J. Anderson, Phys. Rev. Lett. 35, 117 (1975).
[23] V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. Lett.

36, 158 (1976).

[24] M. Altarelli, G. Bachelet, and R. Del Sole, J. Appl. Phys. 16,
1370 (1979).

[25] B. W. Reed, J. M. Chen, N. C. MacDonald, J. Silcox, and G. F.
Bertsch, Phys. Rev. B 60, 5641 (1999).

[26] J. Petalas, S. Logothetidis, M. Gioti, and C. Janowitz, Phys.
Status Solidi B 209, 499 (1998).

[27] G-L. Tan, M. F. Lemon, and R. H. French, J. Am. Ceram. Soc.
86, 1885 (2003).

[28] J. C. Fuggle and J. E. Inglesfield, Unoccupied Electronic States:
Fundamentals for XANES, EELS, IPS and BIS (Springer-Verlag,
Berlin, 1992).

[29] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt,
Rinehart and Winston, 1976).

[30] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series
and Products (Academic Press, New York, 1980).

[31] H. Kohl and H. Rose, Adv. Electron. Electron Phys. 65, 173
(1985).

[32] D. A. Muller and J. Silcox, Ultramicroscopy 59, 195
(1995).

[33] A. Howie and R. H. Milne, J. Microsc. 136, 279 (1984).
[34] A. I. M. Rae, Quantum Mechanics, Fifth Edition (Taylor &

Francis, New York, 2008).
[35] M. Stöger-Pollach, H. Franco, P. Schattschneider, S. Lazar, B.

Schaffer, W. Grogger, and H. W. Zandbergen, Micron 37, 396
(2006).

[36] D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[37] E. C. Cosgriff, M. P. Oxley, L. J. Allen, and S. J. Pennycook,

Ultramicroscopy 102, 317 (2005).
[38] P. E. Batson, Phys. Rev. B 47, 6898 (1993).
[39] O. L. Krivanek, T. C. Lovejoy, N. Dellby, and R. W. Carpenter,

Microscopy 62, 3 (2013).
[40] R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem. Phys. 72,

1232 (1980).
[41] P. M. Echenique, R. H. Ritchie, and W. Brandt, Phys. Rev. B 20,

2567 (1979).
[42] R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[43] B. G. Mendis, Electron Beam-Specimen Interactions and Simu-

lation Methods in Microscopy (Wiley, New Jersey, 2018).
[44] R. M. van der Veen, T. J. Penfold, and A. H. Zewail, Struct.

Dyn. 2, 024302 (2015).
[45] S. Kiyohara, M. Tsubaki, and T. Mizoguchi, npj Comput. Mater.

6, 68 (2020).

205102-11

https://doi.org/10.1038/21602
https://doi.org/10.1021/nl304187e
https://doi.org/10.1016/j.ultramic.2009.09.013
https://doi.org/10.1103/PhysRevB.69.115112
https://doi.org/10.1103/PhysRevB.64.115107
https://doi.org/10.1016/S0304-3991(00)00124-8
https://doi.org/10.1016/S0304-3991(00)00123-6
https://doi.org/10.1016/S0304-3991(03)00112-8
https://doi.org/10.1016/j.micron.2010.05.011
https://doi.org/10.1016/S0304-3991(00)00126-1
https://doi.org/10.1103/PhysRevB.44.1013
https://doi.org/10.1103/PhysRevLett.29.1100
https://doi.org/10.1103/PhysRevB.77.115122
https://doi.org/10.1016/j.elspec.2005.01.191
https://doi.org/10.1103/PhysRevB.79.041102
https://doi.org/10.1016/j.ultramic.2009.07.002
https://doi.org/10.1103/PhysRevB.61.2180
https://doi.org/10.1021/acs.nanolett.8b01791
https://doi.org/10.1038/nature08662
https://doi.org/10.1088/0953-8984/21/9/095005
https://doi.org/10.1103/PhysRevLett.35.117
https://doi.org/10.1103/PhysRevLett.36.158
https://doi.org/10.1103/PhysRevB.60.5641
https://doi.org/10.1002/(SICI)1521-3951(199810)209:2<499::AID-PSSB499>3.0.CO;2-M
https://doi.org/10.1111/j.1151-2916.2003.tb03577.x
https://doi.org/10.1016/S0065-2539(08)60878-1
https://doi.org/10.1016/0304-3991(95)00029-Z
https://doi.org/10.1111/j.1365-2818.1984.tb00534.x
https://doi.org/10.1016/j.micron.2006.01.001
https://doi.org/10.1103/PhysRevB.27.985
https://doi.org/10.1016/j.ultramic.2004.11.001
https://doi.org/10.1103/PhysRevB.47.6898
https://doi.org/10.1093/jmicro/dfs089
https://doi.org/10.1063/1.439184
https://doi.org/10.1103/PhysRevB.20.2567
https://doi.org/10.1103/PhysRev.106.874
https://doi.org/10.1063/1.4916897
https://doi.org/10.1038/s41524-020-0336-3

