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Magnon-polaron formation in XXZ quantum Heisenberg chains
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We study the formation of magnon-polaron excitations and the consequences of different timescales between
the magnon and lattice dynamics. The spin-spin interactions along the one-dimensional lattice are ruled by
a Heisenberg Hamiltonian in the anisotropic form XXZ, in which each spin exhibits a vibrational degree of
freedom around its equilibrium position. By considering a magnetoelastic coupling as a linear function of the
relative displacement between nearest-neighbor spins, results provide an original framework for achieving a
hybridized magnon-polaron state. Such a state is characterized by high cooperation between the underlying
excitations, where nondispersive profiles of the magnon wave function and the lattice deformations exhibit a
bound dynamics. Traveling or stationary formation of a magnon-polaron depends on the effective magnetoelastic
coupling, and the critical amount (χc) separating both regimes is shown. Different characteristic timescales of
the magnon and the vibrational dynamics unveiled the threshold between such behaviors, as well as a limit
value of critical magnetoelastic interaction, above which the magnon velocity no longer interferes at the critical
magnetoelastic coupling capable of inducing the stationary regime.
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I. INTRODUCTION

Collective excitations in the magnetic ordering of a mate-
rial result in the well-known spin waves, the quanta of which
are called magnons. The prospects of using magnons for
wave-based computation and data transfer have been studied
[1–5], and recent advances such as magnon transistors [1],
spin-Hall oscillators [3], and spin-wave diodes [4] have been
reported. Although magnonics is a promising approach [6,7],
designing and controlling such quantum processes for long-
time dynamics primarily requires an understanding of the role
played by different ingredients.

Lattice vibrations are a key topic in condensed-matter
physics, as they have remarkable effects on charge transport
in polymers [8] and molecular crystals [9,10]. Although the
first studies of the magnetoelastic coupling of magnons and
lattice vibrations were performed some time ago [11–13],
such aspects have been actively studied in both experimental
[14–25] and theoretical frameworks [26–30]. Studies of mag-
netoelastic coupling in ferromagnetic manganese perovskites
have shown that spin-wave softening and broadening are re-
lated to the nominal intersection of the magnon and optical
phonon modes [14]. Experimental probing in ferrimagnetic
insulators such as yttrium iron garnet (YIG) revealed evi-
dence for the presence of magnon-phonon coupling [16], as
well as the conversion of magnons into phonons with spin
[17]. Nickel nanomagnet arrays were used experimentally to
study the simultaneous formation of both elastic and magnetic
modes; the results confirm that the coupling between the spin
dynamics and the excited acoustic wave is responsible for
the magnetic response of the system [18]. Signatures of the
interaction between spin and phonon have been reported for
magnetothermal transport measurements in p-doped Si [19],

as well as the layered semiconducting ferromagnetic com-
pound CrSiTe3 explored by Raman scattering experiments
[20]. The magnon-phonon coupling and the formation of an
optically excited magnon-polaron with high cooperation were
described for a metallic ferromagnet with a nanoscale peri-
odic surface pattern, where the symmetries of the localized
magnon and phonon states have been reported as decisive for
the hybridized state formation [21]. A strong coupling be-
tween magnons and phonons has been detected in the thermal
conductivity of the antiferromagnet Cu3TeO6 [23]. Magnetic
images have also shown skyrmions induced by propagating
surface acoustic waves in multilayer films of Pt/Co/Ir [25].

From a theoretical point of view, magnetoelastic cou-
pling has been theoretically studied to excite spin waves
in magnetostrictive films through surface acoustic waves on
piezoelectric substrates, in which driven spin waves were able
to propagate up to 1200 μm [26]. Magnon-polaron excita-
tions that exhibit magnon-phonon coupling controllable by
the strength of the magnetic field gradient have been pro-
posed for spin chains of arbitrary (anti)ferromagnets ruled
by nearest-neighbor Heisenberg exchanges [28]. By using the
coupled-mode theory, the conversion of an acoustic wave to
a spin wave, as well as a backward conversion, were re-
ported for a one-dimensional periodic structure (a so-called
magphonic crystal) [29]. The problem of a two-dimensional
antiferromagnet in the presence of magnetoelastic coupling
was investigated in Ref. [30]. The authors demonstrate that
the magnon and phonon bands are hybridized due to magnon-
phonon coupling, with the properties of the magnon-phonon
excitations suggesting a nontrivial SU(3) topology.

Another exciting experimental development involving the
interaction between magnons and lattice vibrations was the
spin Seebeck effect [31–33] and the bottleneck accumulation
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of hybrid magnetoelastic bosons [34]. The former describes
a spin current that appears in magnetic metal systems
under the effect of a thermal gradient; this effect is enor-
mously enhanced by nonequilibrium phonons [33]. The
bottleneck accumulation phenomenon for a magnon-phonon
gas demonstrates how magnon-phonon scattering can signif-
icantly modify the formation of a Bose-Einstein condensate
of an ensemble of magnons, providing a novel condensation
phenomenon with a spontaneous accumulation of hybrid mag-
netoelastic bosonic quasiparticles [34].

Previous studies have exemplified how the interaction
between magnons and vibrational lattice modes became a
hot topic of research. This interaction is considered to be
a powerful method for spin control, and it can potentially
be used as transduction from magnon signals to electrons
[35]. With regard to the promising character of magnonics,
we note the recent advent of advanced materials exhibit-
ing high-frequency magnons, which has brought about the
development of a new class of ultrafast spintronic devices
[36–39]. Such studies have reported terahertz magnons in
the two-dimensional (2D) Ising honeycomb ferromagnet CrI3

[36], the ultrathin film of iron-palladium alloys [37], lay-
ered iron-cobalt magnonic crystals [38], and noncollinear
magnetic bilayers [39]. As we consider all the previous as-
pects, we are faced with the following question: How does
magnetic excitation behave under different timescales of the
magnon and the lattice vibrations? In fact, the magnon ex-
citation in a magnetoelastic lattice has an interdependent
relaxation mechanism, and the formation of the magnon-
polaron lacks a greater understanding. What would be the
consequences of a spin transport that is as fast as the lattice
dynamics?

To answer these questions, we offer a systematic investi-
gation of a quantum Heisenberg model, in which each spin
of a one-dimensional lattice exhibits a vibrational degree of
freedom around its equilibrium position. Such character is
described by a standard Hamiltonian of coupled harmonic
oscillators, the magnetoelastic coupling of which is described
by an exchange interaction that depends on the lattice de-
formations. By considering an intrinsic anisotropy-mediated
magnetoelastic coupling, we explore the Heisenberg spin-
spin coupling within an XXZ framework, the results of
which demonstrate an original method for achieving a hy-
bridized state referred to as a magnon-polaron. Such a state
is characterized by high cooperativity between the underlying
excitations, in which a traveling or stationary formation de-
pends on the magnetoelastic interaction. We reveal the critical
amount of the magnon-lattice interaction (χc) necessary for
the emergence of the static magnon-polaron quasiparticle.
Below the critical magnetoelastic interaction, the magnon-
polaron excitation develops two fronts that propagate with
constant velocity, with the spatial matching of their wave
distributions exhibiting a selection of particular modes. Their
velocities decrease continuously with the power-law depen-
dence as the magnon-lattice interaction grows. By exploring
the ratio between the characteristic timescales of the magnon
and the vibrational lattice, we unveil a limit value of the
critical magnetoelastic coupling, which is achieved as the
magnon dynamics becomes much slower than the lattice
dynamics.

FIG. 1. Schematic drawing of the unidimensional spin lattice
with effective harmonic springs coupling nearest-neighbor spins. The
exchange interaction along the field direction (JZ

n,n+1) is considered to
be affected by the deviation of the spin from its equilibrium position
(un). Thus, the magnetic excitation contributes to the emergence of
vibrational components, the interaction of which is mediated by the
magnetoelastic coupling that excites the magnon-polaron formation.

II. MODEL AND FORMALISM

The problem consists of analyzing a one-dimensional mag-
netoelastic lattice, in which spins 1/2 are located at lattice
sites (see Fig. 1). We consider an elastically isotropic crystal
described by identical oscillators distributed along the lattice
sites, which are ruled by a nearest-neighbor elastic coupling.
Thus, the total Hamiltonian is comprised of magnetic and
vibrational components,

H = Hmag + Hlatt, (1)

with the vibrational contribution of the system Hlatt given by

Hlatt =
∑

n

p2
n

2M
+ κ

2
(un+1 − un)2. (2)

Here, M represents the mass of the ions, and κ is the effective
spring constant. Further, pn = Mu̇n describes the conjugated
momentum for the nth spin. By considering the spin lattice
along the x axis, we parametrize the Hamiltonian in terms of
the displacement un = a′

n − an, with a′
n and an denoting the

respective position and equilibrium position of ion n. We con-
sider ωh̄ << kBT , in which ω = √

κ/M, kB is the Boltzmann
constant, and T is the temperature. In this framework, the
lattice dynamics can be treated within the classical mechanics
formalism.

The magnetic component is governed by a quantum
Heisenberg Hamiltonian, in which the spin-spin interactions
are described by a nearest-neighbor exchange. We study the
XXZ model,

Hmag = E0 + gμBNH

+
∑

n

2h̄S
(
JZ

n,n+1 + JZ
n,n−1

)
c†

ncn

−2h̄SJXY
n,n+1c†

n+1cn − 2h̄SJXY
n,n−1c†

n−1cn, (3)

with S = h̄/2, JZ
n,m denoting the exchange anisotropic compo-

nent between the nth and mth spins, and JXY
n,m describing the

exchange-coupling components in the XY plane. The ground-
state energy in the presence of a uniform external magnetic
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field is given by E0 = −gμBNHS − S2 ∑
n JZ

n,n±1. Here, we
will focus on the propagation of magnetic excitation. Thus, c†

n
and cn are, respectively, the creation and annihilation opera-
tors at the nth site. Whenever the creation operator is applied
to the ground state, it leads to the excited state with the spin at
site n flipped.

The underlying mechanism to magnetoelastic interaction
is complex and needs further understanding, which has mo-
tivated theoretical and experimental studies. The magnetic
anisotropy has been identified as being able to influence
the dynamics of magnons arising at surface acoustic wave
propagation in YIG films [40]. Recent experiments report
the magnetoelastic interaction as strongly anisotropic and
dependent on the direction of the external magnetic field
[41,42]. On the other hand, exchange interactions between
two neighboring spins depending on the interion distance
have been experimentally evidenced [43,44], and they have
been reported from an analytical and numerical study in bulk
ferromagnetic insulators [45] and for the development of a
Boltzmann transport theory of coupled magnon-phonon trans-
port in ferromagnetic insulators [46]. Following the above
scenarios, we consider an intrinsic anisotropy-mediated mag-
netoelastic coupling, such that the spin-spin coupling in the
direction of the external magnetic field depends on the effec-
tive displacements between neighboring spins. We assume a
regime of small-amplitude oscillations described by

JZ
n,n+1 = J0 + α(un+1 − un),

JXY
n,n+1 = J0, (4)

where α denotes the effective spin-lattice coupling affect-
ing the longitudinal spin-spin interactions. Such a framework
gives a ground-state energy (E0 = −gμBNHS − S2NJ0) that
is independent of the vibrational modes of the spin chain.

We analyze two key parameters: (i) the effective coupling
between magnetic properties and vibrational modes (i.e., the
magnon-lattice interaction), χ = h̄2α2/J0κ; and (ii) the ratio
of the characteristic timescales of a magnon (tm = 1/h̄J0) and
an ionic chain (tl = 1/ω), written as τ = tm/tl . The ground
state of the system |0〉 is given by all spins pointing in the
same direction, such that a spin deviation at a site n is de-
scribed by |n〉 = S−

n |0〉. Thus, by employing the magnon wave
function |�(t )〉 = ∑

n ψn|n〉 and a normalized spin position

xn =
√

κ/h̄2J0un, the set of equations that describe the dy-
namics of both magnon and lattice vibrations can be written,
respectively, as

itmψ̇n = 2ψn − ψn+1 − ψn−1 − √
χ (xn+1 − xn−1)ψn

and

t2
m

τ 2
ẍn = xn+1 + xn−1 − 2xn − √

χ (|ψn−1|2 − |ψn+1|2). (5)

The above set of differential equations was solved by using a
standard Runge-Kutta method with a time step that is small
enough to maintain the wave-function norm conservation
(|1 − ∑

n |ψn|2| � 10−12) along the entire time interval con-
sidered. We concentrate our study by considering the initial
state as a single spin flip fully localized and centered at rest
in the static lattice center (n = 0 will be taken as the center
of the chain). Such an initial state is a superposition of all

eigenstates within the allowed frequencies, including those
less susceptible to the spread inhibitors [47–49]. The numer-
ical integration was performed considering a self-expanding
algorithm of the lattice size in order to avoid finite-size
and border effects. Furthermore, we consider the character-
istic timescale tm as the relevant time unit. Ferromagnetic
structures usually exhibit lattice dynamics with characteristic
timescales on the order of picoseconds or shorter [21,22,50].
The magnon dynamics is typically slower (nanoseconds)
[21,50,51], but recent materials displaying high-frequency
magnons allow this range of timescales to extend to picosec-
onds [36–39]. Thus, we decided to investigate here the regime
in which τ ranges from 1 to 100. Through the above-described
procedure, we computed typical quantities that can provide
information about the wave-packet time evolution, as will be
detailed below.

III. RESULTS

Using the numerical method described above, we start by
examining the time evolution of an initially fully localized
magnon wave packet at the center of a lattice initially at
rest (xn = 0 and ẋn = 0), with τ = 100.5. In Fig. 2 we plot
the time evolution of the wave-function profile |ψn|2 and its
respective lattice deformation xn − xn−1 for some representa-
tive values of magnetoelastic coupling χ . In the absence of
magnon-lattice interaction (χ = 0), we observe the magnon
wave function spreading ballistically over the entire lattice,
which remains static. The scenario is significantly modified
when we consider the interaction between magnon and lattice.
For weak magnetoelastic coupling, nondispersive breathing
magnon modes emerge and propagate with constant velocity,
while a fraction of the magnon wave radiates through the
lattice [see Figs. 2(b) and 2(c)]. By following such propa-
gating solitonlike wave-function profiles and their respective
lattice deformations, we observe a spatial matching with a
nonvanishing profile of mechanical deformations propagat-
ing along the time. This holding behavior is consistent with
the correlated dynamics between the excitation and the lattice
deformation [52–55], which here represent signatures of the
magnon-polaron formation. Magnon-polaron modes become
slower as we increase the magnetoelastic coupling. A strong
enough coupling (nearly half the magnon bandwidth) induces
a significant fraction of the magnetic excitation to remain
trapped around its initial location [see Fig. 2(d)]. Such be-
havior is also characterized by a spatial matching between
the spin-mode and lattice deformation distribution. Thus, we
observe a high degree of cooperation between the underlying
excitations as a signature of the hybridized magnon-polaron
state.

To better understand this rich set of dynamical profiles, we
explore the participation function for the magnon [55,56],

ξ (t ) =
∑

n

1/|ψn(t )|4, (6)

and the lattice vibrations [55,57],


 =
(∑

n(xn+1 − xn)2 + ẋ2
n

τ 2

)2

∑
n

[ (xn+1−xn )2

2 + (xn−xn−1 )2

2 + ẋ2
n

τ 2

]2 . (7)
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FIG. 2. Time evolution of the magnon wave function |ψn|2 vs time and n (n = 0 represents the center of the chain). The local deformation
xn+1 − xn−1 of the chain is also investigated (see the density plots in the bottom parts). Calculations were done considering τ = 100.5.
(a) In the absence of magnon-lattice coupling (χ = 0.0), the chain remains static and the magnon propagates ballistically along the chain
(b),(c) considering χ = 0.5 and 1 as the coupling between the lattice and the spin-waves promotes the appearance of a solitonlike mode
traveling along the lattice. (d) For χ = 1.5, the wave packet remains trapped around the center of the chain.

Such traditional quantities provide, respectively, an esti-
mate of the number of lattice sites over which the magnon
wave function is spreading at time t , and the number of
disturbed lattice sites at time t . Their scaling behavior can
be used to distinguish the different dynamical regimes. The
asymptotic participation function becomes size-independent
for localized wave packets. On the other hand, 〈ξ (t → ∞)〉 ∝
N and 〈
(t → ∞)〉 ∝ N correspond to the regime where the
magnon wave packet and the lattice vibrations are uniformly
distributed over the lattice. In Fig. 3 we compute the long-
time behavior of the participation function for the magnon
[〈ξ (t → ∞)〉] and the lattice dynamics [〈
(t → ∞)〉] versus
the effective magnetoelastic coupling χ . Here, we explore
the timescales of magnon and lattice vibrations. Calculations
were done for τ = 100.5 up to 101.5. Magnon and lattice vibra-
tions decrease the propagation as the magnetoelastic coupling
increases. This aspect corroborates the previous scenario of
magnon-polaron formation, characterized by nondispersive
modes of spin and lattice vibrations exhibiting a constant
velocity that decays as the magnetoelastic coupling increases.
We further note the emergence of a kink singularity, which
reveals an abrupt decrease at participation functions as χ

increases even more. Such behavior signals the critical point
that establishes the beginning of the stationary regime, cor-
roborated by full agreement exhibited between the asymptotic
dynamics of the magnon and the lattice vibrations. Fur-
thermore, the long-time participation function is vanishingly
small as the magnetoelastic coupling increases even more, i.e.,
the degree of trapping is enhanced. The critical magnetoelastic
coupling increases as the τ = tm/tL grows, a consequence of
the propagation of vibrational modes.

In Fig. 4(a), we display snapshots of the magnon wave
packet and the corresponding lattice deformations for χ = 1.0
and τ = 100.5. In addition to magnon and lattice deformations
exhibiting nondispersive modes with perfect spatial agree-
ment, the lattice deformations are spreading over the lattice
by developing wavefronts. With the magnon approximately as
fast as the lattice dynamics, disturbances originating from the
lattice wavefronts that extend along the tails inhibit the prop-
agation of the magnon wave packet. Thus, a smaller coupling
between magnetic and mechanical components is required for

the stationary formation of the magnon-polaron. This charac-
ter is better understood when looking at Figs. 4(b) and 4(c),
where we remain with χ = 1.0, but we explore a range of
τ . Figure 4(b) shows the wavefront velocity of the lattice
deformations exhibiting a linear growth with τ . Figure 4(c)
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FIG. 3. Average participation function for both magnon and lat-
tice vibrations at the long time limit vs χ , exploring τ = 100.5 up to
101.5. Data suggest a kink singularity developed at χc, above which
the magnon-polaron formation stays stationary. Furthermore, such
critical magnetoelastic coupling χc changes with different τ .
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FIG. 4. With χ = 1.0 and (a) τ = 100.5, the spatial profile of the
magnon wave function and lattice deformations describe the spatial
matching and bound dynamics of the magnon-polaron formation,
while (b) the wavefront velocity of the lattice vibrations vs τ shows
a linear increase with τ . (c) The asymptotic participation functions
around the initial magnetic excitation reveals a more pronounced
spreading as τ increases. Thus, we observe that the lattice vibrations
contribute to the magnon trapping and the consequent formation of a
stationary magnon-polaron.

displays the asymptotic participation functions around the
initial site of magnon excitation [n0 − 100 � n � n0 + 100].
A small ratio between the characteristic timescales of magnon
and lattice vibration favors the stationary magnon-polaron
formation, described by 〈Pini(t → ∞)〉 ≈ 1. With the magnon
spreading slowly enough, the magnetoelastic coupling is un-
able to establish stationary formation.

We also explore the asymptotic regime of the return prob-
abilities for the magnon and the lattice deformation:

R0(t ) = |ψn=0(t )|2 and ρ0(t ) = |x1(t ) − x−1(t )|. (8)

Such measures offer the probability of finding the magnon
wave packet or the lattice deformations at the position corre-
sponding to the initial magnetic excitation. Thus, their scaling
behaviors can also be used to distinguish between local-
ized and delocalized wave packets in the long-time regime,
with R0(t → ∞) → 0 and ρ0(t → ∞) → 0 connoting the
magnon wave function and the lattice deformations escaping
from its initial position, respectively. On the other hand, the
return probability saturates at a finite value for a stationary
regime of the magnon-polaron. We observe in Fig. 5 the
asymptotic behavior of both return probabilities corroborating
the previous results. For χ < χc, the magnon and the lattice
deformations exhibit a vanishingly small return probability,
which confirms a predominant spreading through the lattice.
Above a critical magnetoelastic coupling, the asymptotic re-
turn probabilities become significantly larger than 1/N . Allied
to the monotonic growth of both return probabilities, such be-
havior reinforces the emerging self-trapping regime described
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FIG. 5. The asymptotic return probabilities of (a) the magnon
and (b) the lattice vibrations exhibit clear signatures of a phase transi-
tion between the traveling and stationary regimes of magnon-polaron
formation, which corroborates the results shown in Fig. 3. Above the
critical magnetoelastic coupling χc, magnon and lattice vibrations
become significantly clustered around the site of the initial magnetic
excitation.

earlier. Both quantities exhibit a trend (χ − χc)0.5, and they
confirm a dependence on the parameter τ (see the inset).

The magnon-polaron formation and its threshold between
traveling and stationary regimes have also been identified
by exploring the magnon-polaron velocity. For Fig. 6(a), we
measure the mean velocity of the magnon-polaron modes
at the long-time regime [〈vtra(t → ∞)〉], and we investigate
its relationship with χ . Data show the velocity decreas-
ing as the effective magnetoelastic coupling increases, up
to the threshold at which (χ � χc) vanishes. In addition
to the critical magnetoelastic coupling showing full agree-
ment with the measures of participation function (see Fig. 3)
and return probability (see Fig. 5), the traveling velocity of
the magnon-polaron decreases with 〈vtra(t → ∞)〉 ∝ (χc −
χ )0.5, the same exponent exhibited by the asymptotic return
probability after the critical point.

To better understand such hybridized excitation of a
magnon-polaron, in Figs. 6(b) and 6(c) we show profiles of
the magnon wave function and the matching lattice defor-
mation in a snapshot achieved during the time evolution for
a system ruled by τ = 100.5 and χ = 1.0, 1.5. The magnon
wave packet follows the standard solitonic profile sech2[λ(n +
vt/tm)] [9,10], either for the traveling [see Fig. 6(b)] or the
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FIG. 6. The dynamics of the traveling formation of a magnon-
polaron, with (a) the velocity vs χ and its respective scaling analysis.
The best power-law fit provides v ∝ (χc − χ )1/2. The spatial profile
of the magnon wave function and the matching lattice deformation
for the magnon-polaron state, whether (b) traveling or (c) station-
ary, corroborates the characteristic spatial profile from the breathing
bright solitons (fitting curves in solid lines).

stationary excitations [see Fig. 6(c)]. Such magnetic compo-
nents are bound to a lattice structural kink that also exhibits
the well-known breathing bright solitonlike spatial profile.

The consequences of different timescales of the magnetic
and vibrational components are exhibited in Fig. 7, in which
we extend our numerical experiments in order to offer a di-
agram of χc versus τ . For greater accuracy, data have been
computed by analyzing the participation function, the return
probability, as well as the magnon-polaron velocity. Systems
in which the dynamics of magnons is comparable to the lattice
dynamics show an increase in the critical magnetoelastic cou-
pling χc as τ increases. However, when considering systems
with an ever slower magnon dynamics, this behavior leads
χc monotonically to a limit value that is on the order of half
the magnon bandwidth [χc ≈ 1.82(1)]. Above this magnitude,
no matter how much the lattice dynamics is faster than the
magnon dynamics, the stationary magnon-polaron formation
will be present. By analyzing the critical magnetoelastic cou-
pling versus τ , the best fitting provides χ lim

c ≈ 1.825(5) and
(χ lim

c − χc) ∝ τ−2 (see the inset).

IV. SUMMARY AND FINAL CONSIDERATIONS

In this work, we study how the lattice dynamics influences
the dynamics of initially localized one-magnon excitations.
We consider a quantum anisotropic Heisenberg ferromagnetic
chain, in which the spins 1/2 belong to a chain of coupled
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FIG. 7. Plot of χc vs τ phase diagram. Corroborating previous
results, the magnetoelastic coupling necessary to the stationary for-
mation of a magnon-polaron increases as τ grows. However, such
behavior is restricted to the small enough τ regime. The continued
increase in the ratio of characteristic timescales unveils a limit value
χ lim

c , above which the critical coupling becomes indifferent to τ . The
best fitting is achieved for χ lim

c = 1.825 (on the order of half the
magnon bandwidth).

harmonic oscillators. The magnon-elastic coupling was in-
troduced by considering the longitudinal spin-spin exchange
coupling as a linear function of the effective displacement
between nearest-neighbor spins. By exploring the numerical
solutions of the set of equations that govern the system, our
results exhibit a framework for obtaining the magnon-polaron
formation, features of which are ruled by effective mag-
netoelastic coupling. The characteristics of this hybridized
state, with high cooperation between magnetic and mechan-
ical components, are closely related to the magnetoelastic
coupling. Weak enough couplings promote the formation of
traveling magnon-polarons, the velocity of which depends on
the strength of the magnetoelastic coupling. When analyzing
stronger couplings, we are faced with a localization sce-
nario in which the magnon-polaron formation remains trapped
around the position of the initial magnetic excitation. This sce-
nario was described by different physical quantities, such as
the participation function, the probability of return, as well as
the velocity of the traveling formation of a magnon-polaron.
By exploring lattice and magnon characteristic timescales, we
reveal that the critical magnetoelastic coupling that separates
the stationary and traveling regimes is related to how much
slower the magnon is compared with the lattice vibrations.
The critical magnetoelastic coupling increases proportionally
with the timescale of the magnon until a limit value is reached,
above which the magnon dynamics no longer interferes at
the coupling that can induce the stationary magnon-polaron.
The current numerical results provide accurate estimates of
the critical point and the respective singularities of the rele-
vant quantities associated with the transition to the stationary
regime. Although we focused our study on a single spin
flip that is fully localized in lattices with open boundary
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conditions, we claim that this same phenomenology extends to
initially wide wave functions (such as Gaussian wave packets)
as well as for periodic boundary conditions. Based on previous
studies involving elastic lattices [58–60], propagating modes
corresponding to the low-frequency region within a band of
allowed energies are more susceptible to the aspects shown.
Our study aims to contribute with the emergent development
of a new class of ultrafast spintronic devices, and the con-
sequent applications of a magnon-polaron. Considering that
the present status of experiments with cold atoms trapped in
optical lattices allows the study of Heisenberg XXZ and a
fine control of a wide collection of anisotropies including the
XX and XXX limits [24], we believe in the feasibility of the
scheme proposed here. To conclude, it would be interesting

to have these results derived from an analytical framework,
which would bring valuable new insights into the general dy-
namics involved in magnon-polaron formation. Future works
that explore the solitonlike profile of magnon-polaron forma-
tion, such as coherence properties and binary collisions, may
contribute to a better understanding and applicability.
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