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Effect of intersystem crossing rates and optical illumination on the polarization of nuclear spins
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Several efforts have been made to polarize the nearby nuclear environment of nitrogen-vacancy (NV) centers
for quantum metrology and quantum information applications. Different methods showed different nuclear spin
polarization efficiencies and rely on electronic spin polarization associated to the NV center, which in turn
crucially depends on the intersystem crossing. Recently, the rates involved in the intersystem crossing have
been measured leading to different transition rate models. Here, we consider the effect of these rates on several
nuclear polarization methods based on the level anticrossing, and precession of the nuclear population while the
electronic spin is in the ms = 0 and ms = 1 spin states. We show that the nuclear polarization depends on the
power of optical excitation used to polarize the electronic spin. The degree of nuclear spin polarization is different
for each transition rate model. Therefore, the results presented here are relevant for validating these models and
for polarizing nuclear spins. Furthermore, we analyze the performance of each method by considering the nuclear
position relative to the symmetry axis of the NV center.
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I. INTRODUCTION

Nuclear spins are promising candidates for storing and pro-
cessing quantum information [1,2] due to their isolation and
consequential long coherence times. For such applications, the
state of nuclear spins must be initialized and read out with
high fidelity, a difficult task due to the small magnetic moment
of nuclear spins. However, they can be accessed through an
ancillary electronic spin. For instance, carbon (13C with spin
1/2) and nitrogen (14N with spin 1 or 15N with spin 1/2) in
diamond are accessible through the ancillary electron spin of
the nitrogen-vacancy (NV) center [3,4] by optical means and
through several methods. The performance of these methods
crucially depend on the dynamics of the NV electronic spin.

The electronic spin of NV centers have been widely used
in quantum metrology and quantum information process-
ing [5–10] due to its long coherence time in a wide range
of temperatures, and its accessibility through optical excita-
tion [11,12]. It is clear that its optical readout is the result of
a spin-dependent intersystem crossing involving metastable
singlet states [13]. However, although several models have
been proposed to describe the optical excitation of the center
and transitions to and from the singlet states [14–18], it is still
not clear which model is valid.

As it will be discussed here, the electron spin polarization
can be transferred to nearby nuclear spins [19–25]. This has
been used to hyperpolarize diamond particles [26], and even
external species on the diamond surface using shallow im-
planted NV centers [27]. Here, we focus on the effect of the

intersystem crossing for transferring the electron spin polar-
ization to nearby nuclear spins based on three methods: the
excited state level anticrossing (ESLAC) [19], precession of
nuclear spin while the electron spin is in its ms = 0 [23], and
while in ms = 1 spin projections [24,28,29]. Although several
other methods exist to polarize nuclear spins, we focus only on
these three methods to illustrate the effect of the intersystem
crossing rates.

In particular, we investigate how four different transition
rate models [14–17] impact the polarization of nuclear spins
nearby the NV center for these three methods. Moreover, we
compare the performance of these three methods by consid-
ering the nuclear position relative to the symmetry axis of
the NV center as several experimental studies have observed
different polarization for different nuclei. We first analyze
the effect of different transition rate models on the degree of
polarization of the electronic spin. Section III describes three
different methods for achieving nuclear spin polarization. We
give special attention to the role of the electronic spin on the
nuclear polarization dynamics for each method. Finally, in
Sec. IV we discuss the nuclear spin polarization efficiency
under different polar position of the nuclear spin relative to
the NV symmetry axis.

II. ELECTRONIC SPIN POLARIZATION

The current understanding for the electronic spin po-
larization of NV centers in diamond is that upon optical
illumination the electronic spin can be predominantly pumped
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FIG. 1. (a) Schematic representation of the seven-level model
used in this study showing transition rates associated to the optical
excitation (k, green arrows), spontaneous decay (γ , red arrows),
crossing transitions due to spin mixing (ek and eγ ), and intersystem
crossing transitions (dashed arrows). (b) Atomic configuration of the
nitrogen-vacancy center representing the electronic spin (blue arrow)
and a nuclear spin (red arrow), making a polar angle θH relative to
the NV axis, z axis, and an azimuthal angle ϕH with respect to the x
axis which is in the plane that contains the NV axis and one of the
three carbon atoms adjacent to the vacancy.

into the ms = 0 state. Initially, it was proposed that only the
electron in its ms = ±1 spin projections undergoes an inter-
system crossing by transiting from the excited state 3E (ae)
with spin projections ms = ±1 to the singlet states (S) and
from the singlet to the ground state 3A2(e2) with spin projec-
tion ms = 0 [14]. We denote these transitions by the rates k±,S ,
and kS,0, respectively (see Fig. 1). As the optical transitions
are taken to be mostly spin conserving, electronic spin will be
mainly polarized in the ms = 0 state after few optical cycles.

However, recent experiments have shown that additional
rates must be included in the intersystem crossing [15–18].
Those experiments showed that electrons with spin projection
ms = 0 on the excited state can also undergo the intersys-
tem crossing with rate k0,S . In addition, and more crucially,
electrons can also relax from the singlet to the ms = ±1 spin
projections with rates kS,±. This has important consequences
on the electronic spin polarization, especially at large optical
powers.

In addition to the intersystem crossing rates, nonspin pre-
serving optical transitions exist due to spin mixing caused by
an intrinsic spin-spin interaction and magnetic field compo-
nents perpendicular to the NV axis. We model the effect of the
intrinsic mixing with parameter e (see Fig. 1) while the spin
mixing caused by magnetic fields can be modeled separately.
This spin mixing increases the population of the singlet, espe-
cially at large optical powers, as the singlet population relaxes
to the ground state at a rate which is about 30 times smaller
than the spontaneous decay rate, denoted by γ .

The models under our consideration are summarized in
Table I. Model 1, adapted from Ref. [14], has no transition
rate from the singlet to ms = ±1 ground states (kS,± = 0).
Therefore, as the optical excitation rate, labeled by k, in-
creases, so does the electronic spin polarization (see Fig. 2).
However, model 1 does not result in complete electronic po-
larization because of nonspin conserving transition rates with
e = 0.019. Models 2, 3, and 4, adapted from Refs. [15–17] re-
spectively, have nonzero kS,± with model 4 having the largest
ratio kS,0/kS,±. For these three models, the electronic spin

TABLE I. Transition rates, based on Refs. [14–17], for the
spontaneous decay γ and intersystem crossing from different spin
projections of the excited state to the single, kms,S , and from the
singlet to the ground state spin projections, kS,ms . The parameter e
is used to allow for optical transitions that do not preserve spin. See
also Fig. 1.

Model 1 Model 2 Model 3 Model 4
[14] [15] [16] [17]

γ (MHz) 77 62.7 63.2 67.4
e 1.5

77 0.01 0 0
k0,S (MHz) 0 12.97 10.8 9.9
k+,S (MHz) 30 80 60.7 91.6
k−,S (MHz) 30 80 60.7 91.6
kS,0 (MHz) 3.3 3.45 0.8 4.83
kS,+ (MHz) 0 2.16

2 0.4 2.11
2

kS,− (MHz) 0 2.16
2 0.4 2.11

2

polarization decreases as the optical excitation rate k in-
creases. Note that, at low k model 4 gives the highest
electronic polarization, because of large ratio kS,0/kS,± ≈ 4.6
and e = 0. However, at large k, model 1 gives the highest
electronic polarization. We note that these models are taken at
room temperature. The intersystem crossing rates may depend
on temperature (see Ref. [30]).

Figure 2 also shows the singlet population for all mod-
els after 2 μs of optical excitation. Transitions from excited

FIG. 2. (a) Sequence for calculating the population of the singlet
(after 2 μs of optical excitation) and the ms = 0 ground state of the
electronic spin (after 2 μs waiting time after excitation so that singlet
population relaxes to the ground state). (b) The singlet population
(solid lines) and the ms = 0 ground state population (dash-dotted
lines) as a function of the optical excitation rate, k, for the models
given in Table I.
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states to the singlet populates the singlet state, which increases
with the optical excitation rate. Therefore, the electronic spin
polarization onto ms = 0 predominantly depends on the rate
between kS,0 and kS,±, i.e. on kS,0/(kS,0 + kS,±).

We here mention a few details about the transition rates
we are using in this work. First, Refs. [15,17] from which we
have adapted models 2 and 4, respectively, use a five-level
model for the electron spin of the NV center, i.e., ms = +1
and ms = 1 states are assumed to be degenerate and is taken
as one state, ms = ±1. Here we use a seven-level model for
the NV center. Therefore, for models 2 and 4 we have divided
by 2 the transition rate given from the singlet to the ms = ±1
states. Second, Refs. [15–17] have measured different rates
for different NV centers. We have used the set of rates that
give the highest electronic and therefore nuclear polarization.

In the following section, we discuss how these transition
rate models affect the nuclear spin polarization for several
polarization methods.

III. NUCLEAR SPIN POLARIZATION METHODS

Nuclear spins can be polarized using the hyperfine interac-
tion between the electronic and nuclear spins in several ways.
The Hamiltonian for an NV electronic spin and a nuclear spin
1/2 is given by (h̄ = 1)

Hi = DiS
2
z + γelB · S + γnB · I + Hi,hf, (1)

where i = g, e denotes the ground and excited electronic
states, Dg/(2π ) = 2.87 GHz (De/(2π ) = 1.42 GHz) is the
ground (exited) zero field splitting between the ms = 0 and
ms = ±1 spin states, and γel/(2π ) = 2.8 MHz/G is the elec-
tronic gyromagnetic ratio [31]. The second and third terms are
the electronic and nuclear Zeeman interactions, respectively.
The gyromagnetic ratio of 13C, 14N, and 15N nuclear spins,
γn/(2π ), are 1.07, 0.3077, and −0.4316 kHz/G, respectively.
The fourth term is the hyperfine interaction Hamiltonian
given by

Hi,hf = A(i)
zz SzIz + A(i)

⊥
4

(S+I− + S−I+)

+ A′(i)
⊥
4

(S+I+e−2iϕH + S−I−e2iϕH )

+ A(i)
ani

2
[(S+Iz + SzI+)e−iϕH + (S−Iz + SzI−)eiϕH ],

(2)

in which ϕH is the azimuthal angle [see Fig. 1(b)]. The pa-
rameters in the above equation depend on the relative position
between the electronic and nuclear spins as follows:

A(i)
zz = Ac − Ad (1 − 3 cos2 θH ), (3)

A(i)
⊥ = 2Ac + Ad (1 − 3 cos2 θH ), (4)

A(i)
ani = 3Ad cos θH sin θH , (5)

A′(i)
⊥ = 3Ad sin2 θH , (6)

where Ac is the contact term contribution which decays expo-
nentially with distance between the electron and nuclear spins,

Ad is the dipole-dipole hyperfine coupling, decaying as 1/r3

for far nuclear spins [32,33], and θH is the polar angle of the
nuclear spin relative to the NV axis [see Fig. 1(b)]. Note that,
in general, the hyperfine matrices are different for the ground
and excited electronic states. It is straightforward to obtain the
hyperfine Hamiltonian, given in Eq. (2), from a description in
Cartesian coordinates [34].

It is through the hyperfine interaction and the intersystem
crossing mechanism that the nuclear spin can be polarized
from thermal equilibrium. The first term in Hi,hf can be con-
sidered as an energy shift of the electronic spin depending on
the nuclear spin state. The second term causes spin flip-flops
between the electronic and nuclear spins when this process
nearly preserves energy. The third term represents nonenergy
preserving spin flips. The last term represents rotation of ei-
ther the electron or the nuclear spin without rotating the other
spin. Some of these terms can lead to nuclear spin polarization
depending on the external optical excitation, magnetic field,
and state of the electronic spin.

Next, we describe the three methods for polarizing a nu-
clear spin. In our simulations we consider a nucleus with spin
1/2, i.e., 13C or 15N nuclear spin. We label the basis states
as |ms, mI〉, where the first component indicates the electron
spin projection, ms = 0,±1, and the second component de-
termines the nuclear spin projection ↑ (↓) corresponding to
mI = ±1/2, respectively. The discussion is also valid for 14N
nuclear spin 1. We note that, in the case of 14N, the Hamilto-
nian has the extra term QI2

z , for the quadrupole interaction of
the nuclear spin in which Q = −4.96 MHz [21].

A. ESLAC

In this approach, an external magnetic field, ≈510 G, is
applied along the NV axis (z axis) so that the energy levels
ms = −1 and ms = 0 in the excited state become very close
[see Fig. 3(a)]. Under this configuration, the second term of
the hyperfine Hamiltonian, Eq. (2), mixes states |0,↓〉 and
| − 1,↑〉 in the excited state. Note that ms = 1 states (|1,↓〉
and |1,↑〉) are not mixed with ms = 0 and ms = −1 states
because they are far away in energy.

This scheme polarizes the nuclear spin to |↑〉, as we now
explain [19]. The optical excitation transfers the electron from
|0,↓〉 ground state to |0,↓〉 excited state. This is shown by
green arrows labeled by k in Fig. 3(a). In the excited state, the
A(e)

⊥ component in He,h f causes precession between |0,↓〉 and
|− 1,↑〉 [shown by the blue arrow in Fig. 3(a)]. During this
precession the electronic spin may go to |0,↑〉 in the ground
state by passing through the meta-stable singlet state (shown
by the red arrow labeled by γ ). This polarization method relies
primarily on the rates from the excited state to the singlet and
secondarily on the rates from the singlet to the ground state.

Figure 3 shows the nuclear spin polarization for 15N. The
hyperfine matrix for this nuclear spin is diagonal for both
ground and excited states (Aani = 0) and are given in Ref. [35]
(see Table II). In Fig. 3(a) we show the sequence for polarizing
the nuclear spin. The dynamics of the nuclear and electronic
polarizations are shown in Fig. 3(b). We indicate the electron
polarization by the population in ms = 0 state, while for the
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FIG. 3. (a) A diagram showing the population of the eigenstates of Sz and Iz which are mainly involved in nuclear polarization at ESLAC
during the laser and waiting time. The dashed arrows, labeled by k and γ , represent the optical excitation and the spontaneous decay,
respectively. (b) Electronic and 15N nuclear spin polarization dynamics for k = 4 MHz for the four transition rate models given in Table I
as in the legends of (c). (c) Nuclear versus electronic spin polarizations parametrized by the excitation rate k. The open markers correspond to
k = 4 MHz, while the filled markers correspond to k = 70 MHz. (d) Electronic and nuclear polarization as a function of k.

nuclear polarization we use

Pn = |ρn(↑,↑) − ρn(↓,↓)|, (7)

where ρn is the reduced density matrix after tracing over the
electronic spin.

We have calculated the density matrix evolution using the
master equation [34,36] assuming no initial polarization for
both the electronic and nuclear spins. After few microseconds

TABLE II. The ground state (GS) and excited state (ES) hyper-
fine components (in MHz) for 15N and families C and H of carbon
nuclear spins.

Family, state Azz Aani A⊥ A′
⊥

15N, GS 3.4 0 7.8 0
15N, ES −58.1 0 −77 0
C, GS −8.822 −0.789 −20.378 0.621
C, ES −3.78 0.749 −14.12 0.680
H, GS 1.933 −0.250 2.067 0.670
H, ES 3.413 −0.349 4.086 0.866

of optical excitation, the nuclear spin is polarized at a rate
proportional to A(e)

⊥ . For more details see Refs. [19,37]. In
our simulations we have taken the transverse and longitudinal
relaxation times of the NV electron spin as T �

2,el = 3 μs (6 ns)
for the ground (excited) state and T1,el = 1 ms, respectively,
and T �

2,n = 1 ms and T1,n = 100 ms for the nuclear spin. We
have also neglected the ionization effects of the NV center due
to optical excitation [38].

As expected, once the optical excitation is turned off the
optical excited and singlet populations relax to the ground
state, increasing the electronic polarization. As the optical ex-
citation rate increases, the nuclear polarization remains almost
unchanged while the electronic polarization increases slightly
for model 1 and decreases for the other models [see Figs. 3(c)
and 3(d)]. Figure 3(c) shows the nuclear polarization achieved
for a specific electronic polarization where polarizations are
parametrized by the optical excitation rate, k. The empty
markers correspond to k = 4 MHz while the filled markers
correspond to k = 70 MHz.

Nonzero rates k0,S , kS,±, and nonspin conserving tran-
sitions, parametrized by e, will result in increasing the
population of ms = ±1 on the ground state, which will
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FIG. 4. (a) Eigenstates of Sz and Iz involved in the polarization based on nuclear precession on ms = 0. The green circles show the
populations during the laser and microwave (MW) sequences. The red dashed arrow γ , represents the spontaneous decay to the ground
state. (b) Electronic and nuclear spin polarization dynamics for k = 4 MHz for the four transition rate models. (c) Nuclear versus electronic
spin polarization parametrized as a function of the optical excitation rate k. Open (filled) markers correspond to k = 4 MHz (70 MHz). The
data on the dashed-gray line correspond to the electron spin polarization after the first waiting time and nuclear spin polarization after the
MW. The data that does not sit on the dashed-gray line correspond to the polarizations at the end of the sequence. (d) Electronic and nuclear
polarization at the end of the sequence as a function of k. This figure is plotted for a 13C nuclear spin in family C (see Sec. III B).

contribute to the polarization of the opposite nuclear spin pro-
jection. Therefore, the model for which k±,S/k0,S and kS,0/kS,±
are larger and e is smaller, result in a higher nuclear polar-
ization. Figure 3 shows that model 4 gives the highest 15N
nuclear polarization, ≈95%, at ESLAC, very close to the
experimentally observed value 96% [19]. Note that, although
model 1 has k0,S = kS,± = 0, nonspin conserving transitions
in this model contribute to depolarization of the nuclear spin,
resulting in a lower nuclear polarization. In the Supplemental
Material [34] we compare our simulations for the 15N nuclear
polarization for a range of magnetic fields with the experimen-
tal data of Ref. [19].

B. Polarization by nuclear spin precession on ms = 0

In this method, the electron spin is first optically pumped.
After waiting for the population to decay to the ground state,
indicated by the red arrow labeled by γ in Fig. 4(a), a selective
microwave pulse is applied in order to transfer the population
from |0,↓〉 to |1,↓〉. Meanwhile, the nuclear spin precesses
between |0,↑〉 and |0,↓〉, due to a perpendicular magnetic

field [indicated by the blue arrow in Fig. 4(a)]. Finally a laser
pulse, followed by a waiting time, is used to leave the electron
spin mostly in its ms = 0 ground state [final red arrow labeled
by γ in Fig. 4(a)].

This approach is a variation of the method proposed in
Ref. [23]. In that work, a selective microwave π pulse is used,
while here microwave excitation and nuclear precession take
place simultaneously [34]. Optimizing the microwave time
results in a higher nuclear polarization. This time is given by
tmw ≈ π/(

√
2|�|) where � is the coupling between |0,↑〉 and

|0,↓〉 [34]. This approach can be also understood by means of
coherent population trapping (see Ref. [39] for details).

Figure 4(b) shows the dynamics of the NV electronic
spin and a 13C nuclear spin in family C for a perpendicular
magnetic field component of Bx = 10 G and a small parallel
component of Bz = 0.5 G. The classification of nuclear spins
to families is proposed in Refs. [41,42] (see Ref. [42] for a
diagram of 13C families in the diamond lattice). The hyperfine
components of this nuclear spin is given in Table II. The high-
est nuclear spin polarization is achieved after the microwave
pulse and is proportional to the electron spin polarization
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achieved due to the first optical excitation. Figure 4(c) shows
the electron and nuclear polarizations parametrized by the op-
tical excitation rate, k. Similar to the ESLAC case, the empty
markers correspond to k = 4 MHz and the filled markers cor-
respond to k = 70 MHz. This method crucially depends on the
electronic spin polarization. This dependence can be clearly
observed by comparing the nuclear polarization at the end of
the microwave with the electronic polarization at the end of
the first waiting time, shown by the points on the dashed gray
line. Here, also the highest nuclear polarization is achieved for
model 4. Model 1 shows higher nuclear polarization at larger
optical excitations. However, models 2 to 4 show the opposite
behavior.

The points that do not sit on the dashed gray line are
polarizations at the end of the sequence, and show how the
nuclear spin depolarizes under optical excitation [40]. We
have chosen the time of the second laser pulse, 300 ns, in
such a way that we achieve polarization for both the electron
and the nuclear spin at the end of the sequence. The second
waiting time is chosen sufficiently large so that the nuclear
spin can be recovered due to its precession, i.e., ≈1/(2|�|). It
can be noted that during the second waiting time, the direction
of the nuclear polarization changes due to the precession of
the nuclear spin about the external magnetic field Bx.

Figure 4(d) shows the nuclear and electronic polarizations
at the end of the sequence as a function of the excitation rate k.
Due to the short time of the second laser pulse, as k increases,
the electronic polarization increases for all models at small
k. On the other hand, the nuclear polarization increases for
model 1, while it decreases for the other models. The second
optical excitation results in depolarization of the nuclear spin.
However, after the first waiting time, increasing k results in a
higher (lower) electronic polarization for model 1 (model 2-4)
and therefore a higher (lower) nuclear polarization after the
microwave. This observation together with an experimental
realization of the nuclear polarization as a function of the
optical power can be used to test the validity of the transition
rate models. Note that, for this method, the second highest
nuclear polarization is achieved with model 1, as opposed to
the ESLAC method where the second highest is achieved by
model 2. This is because the nonspin conserving transition
rates in model 1 are higher than model 2, which result in
depolarization of the nuclear spin in ESLAC.

In our simulations, we have used the secular approxima-
tion, i.e., we have only kept terms in the Hamiltonian [Eq. (1)]
proportional to Sz and have ignored the terms that contain Sx

or Sy. We have taken the effect of the nonsecular terms pertur-
batively by adding the following Hamiltonian [34,43,44]:

Hsoc =
(
3S2

z − 2
)
D + SzγelBz

2
(
D2 − γ 2

elB
2
z

) M̂ +
(
2 − S2

z

)
γelBz − SzD

2
(
D2 − γ 2

elB
2
z

) N̂,

(8)

where

M̂ = 2γel [(AxxBx + AyxBy)Ix + (AxyBx + AyyBy)Iy

+ (AxzBx + AyzBy)Iz] + γ 2
elB

2
⊥1 + ( 	A+ · 	A−)1, (9)

and

N̂ = i( 	A+ × 	A−) · 	I. (10)

Here, 	I is a vector for which its components are the nuclear
spin matrices 	I = (Ix, Iy, Iz ), and 1 is the 2 × 2 identity matrix.

Note that |↑〉 and |↓〉 are the eigenstates when the elec-
tronic spin is in ms = 1 of the ground state. For ms = 0
electron spin, the hyperfine Hamiltonian is zero and the off-
axis magnetic field [shown by the blue arrow in Fig. 4(a)]
together with the correction given in Eq. (8) determine the
quantization axis of the nuclear spin. The precession rate is
given by γnB(1 − |n̂ms=0 · n̂ms=1|) where n̂ms is the unit vector
that indicates the quantization axis of the nuclear spin while
the electron is in the ms state. n̂ms=0 is mostly determined by
the external magnetic field while n̂ms=1 is mostly determined
by Az + γnB. There is an optimal perpendicular magnetic
field that results in a higher polarization at the end of the
sequence. If the magnetic field is too low, it results in a
lower polarization after the microwave. While if the magnetic
field is too high, both quantization axes are similar and the
precession does not take place. Nuclear spins with diagonal
hyperfine matrices and/or high contact term, i.e., small Aani

component, can be polarized with this method as we will
discuss in Sec. IV.

We finish this section by noting that the nuclear polariza-
tion can be improved by repeatedly applying the sequence in
Fig. 4(a) [23].

C. Polarization by nuclear spin precession on ms = 1

Nuclear spins with Aani 
= 0 can be polarized by using
their precession while the electronic spin is in the ms = 1
state [24]. In this case, it makes sense to consider a nuclear
spin basis given by the eigenstates while the electronic spin is
in the ms = 0 state. The precession relies on the anisotropic
component of the hyperfine interaction, which depends on the
relative orientation of the nuclear spin with respect to the NV
axis [see Eq. (5)]. This precession effectively takes place if
we apply a magnetic field along the NV axis that brings the
ground states |1,↑〉 and |1,↓〉 close, i.e., Bz = −Azz/γn.

For nearby nuclear spins, which have Azz of the order of
few MHz, this method requires very large magnetic fields, of
the order of few thousand Gauss. Therefore, this method may
be experimentally more accessible for far 13C nuclear spins
which have Azz of the order of few hundred kHz, e.g., for
family J and families further away [45], for which magnetic
fields below 1000 G are required [see Fig. 6(f)].

Figure 5(a) illustrates a typical configuration of this pro-
tocol. After the optical excitation and spontaneous decay
[indicated by the red arrow labeled by γ in Fig. 5(a)], the
electron is polarized to the ms = 0 ground state. Following
that, a selective microwave excitation transfers the population
from |0,↑〉 to |1,↑〉. Due to the anisotropic component of the
hyperfine interaction, the nuclear spin precesses between the
states |1,↑〉 and |1,↓〉. This process effectively transfers the
electronic polarization to the nuclear spin polarization.

Figure 5(b) shows the dynamics for a 13C nuclear spin in
family H with its hyperfine components given in Table II. It is
clear that if the electronic polarization is not perfect, neither
is the nuclear polarization. This effect can be seen in Fig. 5(c)
where both polarizations are plotted parametrized by the ex-
citation rate. Similar to the method based on precession in the
ms = 0 state, data points on the dashed gray line correspond
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FIG. 5. (a) The eigenstates of Sz and Iz which are mainly involved in the polarization based on nuclear spin precession on ms = 1. The
green circles show the population of the states during the laser and microwave pulses. The red dashed arrow, γ , represents the spontaneous
decay. (b) Electronic and nuclear spin polarization dynamics for k = 4 MHz for the four transition rate models. (c) Nuclear versus electronic
spin polarization parametrized by the optical excitation rate k. The open (filled) markers correspond to the optical excitation rate k = 4 MHz
(70 MHz). The data on the gray dashed line correspond to the electron spin polarization after the first waiting time and nuclear spin polarization
after the MW. The data that does not sit on the dashed-gray line corresponds to the polarizations at the end of the sequence. (d) Electronic and
nuclear polarization at the end of the sequence as a function of k. In this figure we have considered a 13C nuclear spin in family H.

to the electronic polarization after the first waiting time and
the nuclear polarization after the microwave. The data points
that sit outside the dashed line correspond to the polarizations
at the end of the sequence. Here, we have chosen the time of
the second laser pulse and waiting time similar to the method
based on precession on the ms = 0 state. The discussion for
Figs. 4(c) and 4(d) is also relevant here. We note that, in
our simulations, we have used secular approximation, keeping
only terms that contain Sz in the Hamiltonian.

In the following section we discuss the efficiency of
the methods for different angular positions of the nuclear
spins.

IV. ANISOTROPY DEPENDENCE OF NUCLEAR
SPIN POLARIZATION

Each of the discussed methods relies on different com-
ponents of the hyperfine interaction, which in turn depends
on the angular position of the nuclear spin relative to the
NV axis. In this section we discuss the nuclear polarization

performance as a function of the polar distribution of the
nuclear spins relative to the NV axis. Moreover, we estimate
the nuclear spin polarization for a range of families.

The method based on ESLAC takes advantage of the
perpendicular component of the hyperfine interaction, A⊥,
to cause flip-flops between the electron and nuclear spins.
If Ac > Ad , A⊥ is nonzero for all angles θH . For Ac � Ad ,
there are two angles for which A⊥ = 0. For the zero contact
term (Ac = 0), we have A⊥ = 0 if θH = ± arccos(1/

√
3) ≈

±54 deg. For far nuclear spins A⊥ decreases, and as a result,
the nuclear polarization rate decreases, requiring longer times
to achieve polarization. On the other hand, the final nuclear
polarization decreases as the A′

⊥ and Aani components of the
hyperfine interaction increase [34]. Therefore, the achieved
nuclear polarization depends on the polar angle θH [Fig. 6(a)].
Figure 6(b) shows the nuclear polarization for 15N and fami-
lies A to H of 13C, whose hyperfine matrices are taken from
Ref. [35]. The nuclear polarization is smaller for families
that have Aani and A′

⊥ components comparable to A⊥. In the
Supplemental Material we compare our simulated nuclear
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FIG. 6. Nuclear polarization versus θH for the method based on ESLAC (a), precession in ms = 0 (c), and precession in ms = 1 (e). In
these plots we have respectively used the contact and dipole terms corresponding to families C, C, and H, setting ϕH = 0. In (b), (d) and (f)
we show the nuclear polarization achieved with different methods for a range of families. In these figures, the upper horizontal axes show the
magnetic field for each family.

polarization for those families with the experimental data of
Refs. [19,41,42].

The methods based on nuclear precession while the elec-
tronic spin is in ms = 0, and ms = 1 depend on an external
magnetic field perpendicular to the nuclear quantization axis
�1 = Az + γnB, where Az = (Aani cos ϕH , Aani sin ϕH , Azz ).
In other words, defining �0 = γnB, the magnetic field should
be chosen such that

�1 · �0 = 0. (11)

As we have taken ϕH = 0 [34], a magnetic field that
satisfies Eq. (11) is B = Bx̂ = −(Aani/γn)x̂. This perpendic-
ular magnetic field could be very large for nuclear spins
with Aani of the order of few hundred kHz. As this mag-
netic field is present during the whole sequence, we choose
it smaller than 50 G in order to achieve a high electronic
polarization in the method based on precession on ms = 0.
In addition, the magnetic field should be taken such that it

does not change the quantization axis of the nuclear spin,
i.e., B � |Az|/γn when the electronic spin is in ms = 1. On
the other hand, the precession rate on ms is proportional to
	ms , therefore even for Aani = 0, a magnetic field larger than
zero is needed for the polarization method based on ms = 0
precession.

Figure 6(c) shows a small dependence on θH because the
correction term for the Hamiltonian [Eq. (8)] depends on
nondiagonal elements of the hyperfine matrix, which in turn
depend on θH . In fact, a relatively lower nuclear polarization
is achieved for family H, for which this correction reduces the
nuclear spin precession [see Fig. 6(d)].

For the method based on precesssion on ms = 1, the mag-
netic field is taken along the z axis (�0 = 	0ẑ), and following
Eq. (11), is given by B = −Azz/γn. Having the magnetic field
along the NV axis, results in a higher electronic spin polar-
ization as non-spin-preserving transitions are minimized. For
this method, the precession between the nuclear spin states
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occurs due to the anisotropic component of the hyperfine in-
teraction Aani, which is zero at θH = {0, π/2, π} (see Fig. 1).
At these angles, no precession takes place and no nuclear spin
polarization is achieved [see Fig. 6(e)].

Figure 6(f) shows the nuclear polarization for families H to
O2. We have taken the hyperfine matrix for families I to O2
from Ref. [45]. In that work, the hyperfine matrix is only given
for the ground state of the NV center. As an approximation,
we have used the same hyperfine matrix for the excited state.
A lower nuclear polarization is achieved for families K2 and
M. Family K2 has a small anisotropic term resulting in a low
nuclear polarization. For family M, Aani is large enough that
can cause transitions between |0,↓ (↑)〉 and |1,↓ (↑)〉, there-
fore, reducing the nuclear polarization. This method cannot be
used to polarize the 15N nuclear spin as its hyperfine matrix is
diagonal and the anisotropic term is zero.

As a summary, for nuclear spins close to the NV center,
nuclear polarization can be achieved using methods based on
ESLAC and precession of electron spin while being on the
ms = 0 state. For such nuclear spins the method based on
precession in ms = 1 requires very large magnetic fields and
therefore is more susceptible to magnetic field misalignments.
For far nuclear spins the methods based on ms = 0 and ms = 1
precession could be used. The ESLAC method for far nuclear
spins requires a very long laser time and it will be limited by
non-spin-preserving transitions.

V. CONCLUSIONS

We have shown that the nuclear spin polarization might
crucially depend on the transition rates involved in the in-
tersystem crossing depending on the polarization method. In
particular, the rates from the singlet to the ms = ±1 spin
projections cause a strong power dependent polarization of the
electronic spin, which in turns affect the nuclear polarization.
The nuclear polarization method which is less affected by

the optical power is that based on the ESLAC for which the
nuclear polarization changes very slightly for all the transition
rate models. The other two methods that rely on nuclear spin
precession on the ground state (either ms = 0 or ms = 1) are
greatly affected by a finite electronic spin polarization. This
is because during the precession, at most, the electron spin
polarization is transferred to the nuclear spin polarization.

Due to the lack of experimental data, we were only able
to compare our simulations with the experimental data of the
ESLAC method. Using the experimental data of Ref. [19]
for this method, we showed that model 4 fits better to the
experimental data.

We have also compared the polarization performance of
these three nuclear polarization methods depending on the
angular position of the nuclear spin relative to the NV axis.
This analysis could give directions to achieve larger nuclear
spin polarization and/or design experiments to further inves-
tigate the intersystem crossing rates using the nuclear spins as
a measuring tool. Enhancing the polarization of nuclear spins
could result in the enhancement of the NMR and magnetic
resonance imaging. Moreover, it could enhance the coherence
time of the NV electron spin.
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