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Electric current noise in mesoscopic organic semiconductors induced by nuclear spin fluctuations
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We demonstrate that the nuclear spin fluctuations lead to the electric current noise in mesoscopic samples
of organic semiconductors, which show the pronounced magnetoresistance in weak magnetic fields. For the
bipolaron and electron-hole mechanisms of organic magnetoresistance, the current noise spectrum consists of
the high-frequency peak related to the nuclear spin precession in the Knight field of the charge carriers and the
low-frequency peak related to the nuclear spin relaxation. The shape of the spectrum depends on the external
magnetic and radio frequency fields, which allows one to prove the role of the nuclei in the magnetoresistance
experimentally.

DOI: 10.1103/PhysRevB.103.195440

I. INTRODUCTION

Organic semiconductors represent a relatively new class
of semiconductors and are currently attracting increasing
interest. Although they are already successfully used in
light-emitting diodes [1,2], organic solar cells [3–5], and
other devices, their transport properties are not completely
understood theoretically yet. Organic semiconductors are
amorphous materials which consist of single molecules or
short polymers. The transport in them typically operates via
hopping of polarons between molecular orbitals [6,7]. It is
quite similar to the hopping conductivity in inorganic semi-
conductors [8]. For this reason in this paper we use the
notations of electrons, holes, and hopping sites.

A unique feature of organic semiconductors is the strong
coupling between electric current and nuclear spins. It was
shown experimentally back in 2003 that light emission from
organic diodes can be significantly modified by application
of magnetic fields as small as 100 mT [9]. Then in 2005 it
was found that the resistivity of organic semiconductors can
be affected by the magnetic fields in the same range [10].
This effect is called organic magnetoresistance (OMAR). It
takes place in a number of different organic materials at liquid
helium as well as at room temperatures.

Qualitatively, OMAR is related to the suppression of the
electron and hole spin relaxation caused by the hyperfine in-
teraction with atomic nuclei [11–13]. Organic semiconductors
are nonmagnetic materials, so at small magnetic fields the
average electron and nuclear spin polarizations are negligi-
ble. However, there are unavoidable nuclear spin fluctuations
which create a stochastic Overhauser field for the electrons.
Due to this, in a zero external magnetic field, the electron spin
precesses with random frequency between the hops, which
results in the spin relaxation [14,15]. By contrast, in the strong
magnetic field, the electron spin precession frequency is equal
to Larmor frequency, which is the same for all hopping sites,
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so the spin relaxation gets suppressed [16]. Recently, some of
us have shown that OMAR can be related to the nonequilib-
rium electron spin correlations [17,18], which appear due to
the applied voltage. The relaxation of these correlations leads
to OMAR.

Nevertheless, to date there is no unambiguous experimen-
tal proof of the nuclear origin of OMAR. At the same time,
the spin-orbit interaction can play an important role in the
hopping conductivity regime [19–21]. In Refs. [22,23] it was
suggested as an origin of OMAR. Some other alternatives
have been also suggested [24]. Therefore it is desirable to
propose an experiment which can evidence the role of nu-
clear spins. In this paper we propose measurement of the
current noise spectra in mesoscopic organic semiconductors.
Although the nuclear spins are often assumed to be static
[12,18,25–27], their dynamics unavoidably takes place due to
the interaction with the electrons. This dynamics is slow and
does not change the average electric current. However, it leads
to the fluctuations of the current in the mesoscopic samples at
small frequencies determined by the nuclear spin dynamics.
These fluctuations can be suppressed by the external magnetic
field similar to OMAR, which allows one to separate them
from shot and 1/ f noises. In this paper we calculate the
current noise spectrum and demonstrate that its measurement
will allow one to prove experimentally the importance of the
hyperfine interaction in OMAR.

The paper is organized as follows. In the next section
we describe the two alternative microscopic mechanisms of
OMAR and establish for them a common relation between
current and nuclear spin correlations. Then in Sec. III we
calculate the current noise spectra in mesoscopic organic
semiconductors. In Sec. IV we discuss the limits of applica-
bility of our theory and summarize our findings.

II. RELATION BETWEEN NUCLEAR SPINS
AND RESISTIVITY

OMAR is caused by the dependence of the resistivity on
the spin relaxation time. Microscopically, there are two main
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FIG. 1. The structure of a mesoscopic sample. Inorganic contacts
(gray areas) are connected to the parts of the percolation cluster
with relatively high conductivity. Together they represent an effective
contact for the critical pair of sites, which controls the conductivity
of the organic layer.

mechanisms of this dependence: (i) In the bipolaron mecha-
nism, it is assumed that each hopping site can be occupied by
two electrons or two holes if they are in the singlet state only
due to the strong exchange interaction [12]. (ii) The electron-
hole mechanism is based on the spin-dependent recombination
of electrons and holes [11]. Its rate is assumed to be dif-
ferent for the singlet and triplet states of the electron-hole
pair. In both mechanisms it is necessary to take into account
correlations between spins of the charge carriers to describe
OMAR [17,18,28]. Below we present the common model for
the description of the conductivity in the mesoscopic sample
and then calculate the electric current for the electron-hole and
bipolaron mechanisms of OMAR. We focus our discussion on
the mesoscopic samples because the current noise in them is
the strongest.

The distribution of the hopping rates in organic semicon-
ductors is exponentially broad due to the following reasons:
(i) The overlap integrals between neighboring hopping sites
differ by several orders of magnitude [29]. (ii) The typical
width of the distribution of site energies in organic semicon-
ductors is 0.1 eV, which is much larger than the thermal energy
at room temperature. Therefore the transport in organic semi-
conductors can be described by the percolation theory [8]. It
stands that the so-called percolation cluster carries most of
the current. The cluster consists of pairs of sites with hopping
rates faster than or comparable with the critical hopping rate.
Most of the hops in the percolation cluster are much faster
than the critical rate and are not essential for the calculation
of conductivity. The conductivity is controlled by the rare
“critical” pairs of sites in the percolation cluster where the
hopping rates are comparable to the critical rate. The typical
distance between these pairs is called a correlation length of
the percolation cluster Lc. If the size of a sample of organic
semiconductor L is smaller than Lc, its conductivity is con-
trolled by a single critical pair of sites. In this case the current
noise in the sample is the strongest. Note that the mesoscopic
sample can still contain a large number of hopping sites,
because Lc is much larger than the typical distance of a single
hop [8].

The structure of a mesoscopic sample is shown in Fig. 1.
The inorganic contacts are connected to the parts of the
percolation cluster with relatively high conductivity. These

parts of the percolation cluster can be considered as parts of
the contacts for the critical pair of sites, which controls the
conductivity of the sample. The local chemical potentials are
formed in these parts of the percolation cluster. In reality they
can differ from the chemical potentials in inorganic contacts
due to the carrier injection. The overall situation as well as
the underlying physics is similar to the double quantum dot
system [30,31].

To describe the effect of the nuclear spins on the current,
the correlations of electron and hole spin directions should
be taken into account. For many charge carriers, there are
extremely many correlations. The effect of different spin cor-
relations was studied in detail in Ref. [18] for the bipolaron
mechanism of OMAR in close-to-equilibrium conditions. It
was found that in the materials where the shape of OMAR
is close to Lorentzian [10], it is enough to take into account
the correlations between the spins in the closest pairs of
sites only. We adopt this approximation and consider the spin
correlations in the critical pair of sites only. We assume that
the occupation numbers and the spin directions at the sites
in the organic parts of the contacts are not correlated with
occupation numbers and spins at the critical pair and between
themselves. The averaged product of occupation numbers is
equal to the product of averaged occupation numbers when
the correlations are neglected. The averaged products of spin
components are equal to zero without the correlations, be-
cause we consider organic semiconductors at high enough
temperature.

The spins of electrons and holes in the critical pair of sites
interact with atomic nuclei. Typical hopping sites (molecular
orbitals) contain dozens of nuclear spins. For example, the
molecule of Alq3 contains 18 hydrogen atoms with nuclear
spins of 1/2, three nitrogen atoms with spins of 1, and one
aluminum atom with spin of 5/2. As a result, a single electron
spin can interact with N nuclear spins at each hopping site,
where N is large. Typically, it is assumed to be infinite so that
the nuclear spin dynamics due to the hyperfine interaction can
be neglected [12,32–35]. In this work, however, we account
for the slow nuclear spin dynamics at the timescale ∝ N
caused by the electron Knight field.

The distribution of the coupling constants strongly depends
on the electron wave function [36]. In this work we abstain
from the description of the complex structure of the hopping
sites and imagine them as some “spinosaurs” carrying nuclear
spins, see Fig. 2. The electrons and holes hop over the backs of
the spinosaurs and uniformly interact with the nuclear spins,
which is usually called a box model. For this oversimplified
model the compact expressions for the nuclear spin dynam-
ics were derived in Ref. [37]. They will be used below to
describe the electric current fluctuations. The applicability of
this model to the general central spin problem is discussed
also in Ref. [37].

Typically the charge-carrier wave functions in organic
semiconductors are composed of the π -type orbitals. How-
ever, the hyperfine interaction is usually dominated by the
admixture of the s-type orbitals [14,35], so we assume it to
be isotropic.

We also assume that the charge-carrier spins at the different
sites of the critical pair interact with the different nuclei.
At each site the electron spin precession frequency �e is
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FIG. 2. Impression of the electron spin (blue arrow) hopping be-
tween complex organic molecules (spinosaurs), which carry nuclear
spins (red arrows). The orientation of nuclear spins in the equilibrium
is random.

composed of the spin precession frequency in the external
magnetic field �B and the precession frequency in the fluc-
tuation of the nuclear field �N :

�e = �B + �N . (1)

The dynamics of �N is much slower then the typical hopping
rates, so we neglect this dynamics for the description of the
average conductivity. The distribution of the spin precession
frequencies is described by the function

F (�N ) = 1

(
√

πδ)3
exp

(−�2
N/δ2

)
, (2)

where parameter δ describes the dispersion.
An important feature of organic semiconductors is the

vanishing concentration of the resident charge carriers in the
equilibrium. The electrons are injected from the contacts, so
the usual linear response theory is typically unacceptable for
organic semiconductors [38]. For this reason we consider the
nonlinear regime of the conductivity. We will show below that
for the both mechanisms of OMAR, the current has the form

J = J0 + J1 cos2(θ12). (3)

Here J0 is the contribution, that is independent of the nuclear
spins, θ12 is the angle between the spin precession frequencies
�e at the critical pair of sites, and J1 describes the amplitude
of the contribution, that is sensitive to the magnetic field. The
microscopic expressions for J0 and J1 will be obtained below
for the nonlinear conductivity regime. The fluctuations of θ12

lead to the electric current noise.
Using the distribution function (2) we find the average

electric current

〈J〉 = J0 + J1〈cos2(θ12)〉, (4)

where

〈cos2(θ12)〉 = 1

3
+ 3

2

(
δ

�B

)6[2

3

(
�B

δ

)3

− �B

δ
+ 3D

(
�B

δ

)]2

,

(5)

with D(x) = exp(−x2)
∫ x

0 exp(y2)dy being the Dawson inte-
gral. This expression is shown in Fig. 3. One can see that the
external magnetic field of the order of δ changes the electric
current by the value of about J1. Typically, in the experiments
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FIG. 3. The magnetic-field-dependent contribution to the electric
current [〈cos2(θ12)〉] as a function of the Larmor precession fre-
quency calculated after Eq. (5).

J1/J0 ∼ 0.1 [10]. OMAR takes place in the fields of the order
of a few millitesla [39–41], which corresponds to δ ∼ 1 ns−1.

A. Bipolaron mechanism

The bipolaron mechanism is related to the possibility of
double occupation of a single hopping site by two electrons or
two holes in the singlet spin state only. To be specific, we will
consider the electrons. Since the electron spin is conserved
during the hop, the hopping from a singly occupied site to
another singly occupied site is possible only when the spins
are in the singlet state. The detailed theory of bipolaron mech-
anism of OMAR including all the possible spin correlations in
close-to-equilibrium conditions, was developed in Ref. [18].
This theory involves two types of hopping sites: A-type sites,
which are never doubly occupied, and B-type sites, which can
be doubly occupied but never lose the last electron. In this
work we adopt this model to consider a mesoscopic sample
where the critical pair consists of A and B sites (Fig. 4). In
contrast to the previous model, we do not assume the system
to be close to the equilibrium.

The dynamics of the spin correlations in the critical pair is
described by the following equation [18]:

dsα
Asβ

B

dt
= −Rαβ;α′β ′sα′

A sβ ′
B − JAB

4e
δαβ. (6)

Here the sum over the repeating indices is assumed, sα
Asβ

B is the
quantum-mechanical average of the product of components of

wB
outwBA

wABwA
out wB

inA B

contact contact

wA
in

FIG. 4. Illustration of the bipolaron mechanism of OMAR. The
B site is always occupied with an electron, which is indicated by the
red energy level. The dashed arrows with the labels show the possible
hops and the corresponding rates.
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spins at sites A and B,

JAB = 2eWABnB − eWBA
nA − 4sα

Asα
B

2
(7)

is the current between A and B sites, with nA and nB being the
average probabilities of single and double occupation of these
sites, respectively, and e is the electron charge. The notations
of the hopping rates are introduced in Fig. 4. Due to the small
concentration of electrons in organic semiconductors we take
nAnB = 0.

The last term in Eq. (6) describes the generation of the spin
correlations due to the spin-dependent hopping. Another term
describes the dynamics and relaxation of the spin correlations
due to the hyperfine interaction and hopping:

Rαβ;α′β ′ = W out
A δαα′δββ ′ + WBA

2
(δαα′δββ ′ − δαβ ′δβα′ )

− (
εαγα′δββ ′�(A)

e,γ + εβγβ ′δαα′�(B)
e,γ

)
. (8)

Here �(A)
e and �(B)

e are the spin precession frequencies at the
corresponding sites given by Eq. (1) and εαβγ is the Levi-
Civita symbol.

In Appendix A we obtain the current in the form

JAB = 2nBWAB − nAWBA/2

1 + WBAT (AB)
s /2

, (9)

where

Ts = (R−1)αα;α′α′ (10)

is the effective relaxation time of the spin correlations. In
the steady state, the current JAB flows also to and from the
contacts, so it can be calculated from the kinetic equations

JAB = enAW out
A − eW in

A (1 − nA), (11a)

JAB = eW in
B (1 − nB) − enBW out

B . (11b)

These expressions represent the current through the contacts
attached to sites A and B, respectively. From these relations
we find the occupancies nA, nB and calculate the current for
the given orientation of the nuclear spins imprinted in T (AB)

s .
By the definition of the critical pair, W out

A � WBA. More-
over, to simplify the analysis, we consider the limit �(A),(B)

e �
W out

A . In this case we obtain

Ts = 1

W out
A

cos2 (θAB), (12)

where θAB is the angle between �(A)
e and �(B)

e . In this limit the
contributions to the total current in Eq. (3) are

J0 = e
4W in

B WABW out
A − W in

A WBAW out
B

4WABW out
A + 2W out

A W out
B + WBAW out

B

, (13a)

J1 = e
WBAW out

B

(
W in

A WBAW out
B − 4W in

B WABW out
A

)[
4WABW out

A + (
2W out

A + WBA
)
W out

B

]2 , (13b)

and θ12 = θAB.

B. Electron-hole mechanism

The electron-hole mechanism of OMAR involves the am-
bipolar transport. In this case, each molecule provides two

wL
in

wL
out L

wH
out

wH
inH

γs, γt
contact

contact

FIG. 5. Illustration of the electron-hole mechanism of OMAR.
LUMO sites (blue) and HOMO sites (red) can be occupied by elec-
trons and holes, respectively. The arrows and labels show the possible
hops and the corresponding rates.

hopping sites. Its highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) represent
the hopping sites for holes and electrons, respectively. Elec-
trons and holes in organic semiconductors usually have spin
1/2 due to the weak spin-orbit interaction. In the electron-hole
mechanism, the relation between current and charge carrier
spin relaxation is provided by the spin-dependent recombina-
tion of electron-hole pairs.

We assume that the critical pair in the mesoscopic sample
is represented by LUMO site L and HOMO site H (Fig. 5).
In particular, this means that an electron-hole pair (or an
exciplet) cannot move and always interacts with the same
nuclei, in contrast with Ref. [42]. This regime is expected
to be realized for the strong energy disorder with the short
correlation length. The current in this pair JLH flows due to
the recombination of electrons and holes. It has the form

JLH = eγs

(
nL pH − 4sα

Lsα
H

4

)
+ eγt

(
3nL pH + 4sα

Lsα
H

4

)
,

(14)

where γs and γt are the electron-hole recombination rates
for the singlet and triplet states, respectively, and the other
notations are the same as in the previous section except for
the substitution of the indices L, H for A, B. We denote the H
site occupancy as pH to show that it is related to a hole. The
current depends on the spin correlations, when γs 	= γt .

To derive the master equation for the spin correlations, we
assume that the singlet and triplet recombination processes are
independent. In this case we obtain

dsα
Lsβ

H

dt
= −Rαβ;α′β ′sα′

L sβ ′
H + (γs − γt )

nL pH − 4sγ

L sγ

H

16
δαβ,

(15)

where the relaxation matrix is given by

Rαβ;α′β ′ = (
W out

L + W out
H + γt

)
δαα′δββ ′ + γs(δαα′δββ ′

− δαβ ′δβα′ ) − εαγα′δββ ′�(L)
e,γ − εβγβ ′δαα′�(H )

e,γ .

(16)

Here �(L)
e and �(H )

e are the spin precession frequencies of
the electron at site L and hole at site H , respectively, and the
hopping rates are introduced in Fig. 5.

For the steady state we show in Appendix B that the current
is given by

JLH = enL pH γ̃ , (17)
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where

γ̃ = γt + γs − γt

4 + Ts(γs − γt )
(18)

is the effective electron-hole recombination rate depending
on the orientations of the nuclear spins through the effective
relaxation time given by Eq. (10). From kinetic equations for
contacts, the current also equals to

JLH = e(1 − nL )W in
L − enLW out

L , (19a)

JLH = eW in
H (1 − pH ) − eW out

H pH . (19b)

To find the current, these equations should be solved together
with the kinetic equation for the correlation of occupancies:

(W̃L + W̃H + γ̃ )nL pH = W in
L pH + W in

H nL, (20)

where W̃L = W in
L + W out

L and W̃H = W in
H + W out

H . This set of
equations allows one to find the electric current for the given
hopping rates and nuclear spin orientations.

When the electron spin precession is fast as compared with
the hopping and recombination, �(L)

e ,�(H )
e � W out

L + W out
H +

γt � γs, we obtain

Ts = cos2 (θLH )

W out
L + W out

H + γt
, (21)

where θLH is the angle between �(L)
e and �(H )

e . Thus we can
find the current for arbitrary γ̃ and, therefore, for arbitrary
nuclear spin directions. In this limit, the current is again given
by Eq. (3), where

J0 = eγ̃0W in
L W in

H (W̃L + W̃H )

γ̃0
(
W in

L W̃L + W in
H W̃H

) + W̃LW̃H (γ̃0 + W̃L + W̃H )
,

(22a)

J1 = (γs − γt )2

16
(
W out

L + W out
H + γt

)
× eγ̃0W in

L W in
H W̃LW̃H (W̃L + W̃H )2[

γ̃0
(
W in

L W̃L + W in
H W̃H

) + W̃LW̃H (γ̃0 + W̃L + W̃H )
]2 ,

(22b)

and θ12 = θLH for the case of the electron-hole mechanism.
To summarize this section, we have calculated the elec-

tric current in the mesoscopic organic semiconductor without
assumption of close-to-equilibrium conditions for the two
mechanisms of OMAR. The current has the form of Eq. (3),
and it is determined by the squared cosine of the angle be-
tween the spin precession frequencies in the critical pair of
sites. In the next section we use this result to describe the
electric current fluctuations.

III. ELECTRIC CURRENT NOISE

Dynamics of the nuclear spins lead to the current fluctu-
ations in mesoscopic organic semiconductors. The absolute
value of the current fluctuations in mesoscopic samples have
the same order as OMAR, which can reach 10% [10]. The
current noise spectrum is given by

(δJ2)ω =
∫ ∞

−∞
〈δJ (0)δJ (t )〉eiωt dt, (23)

where δJ (t ) = J (t ) − 〈J〉 is the current fluctuation, and angu-
lar brackets denote the statistical averaging over the nuclear
spin orientations and hops. For the bipolaron and electron-
hole mechanisms, J should be replaced with JAB and JLH ,
respectively. We will study the current noise related to the
nuclear spin dynamics only, and the other contributions will
be briefly discussed in Sec. IV.

For simplicity, we assume that the electron hopping is
much faster than the nuclear spin precession and electron
spin relaxation, which is much faster than the nuclear spin
relaxation. Under these assumptions, the current noise can
be described in a unified way for the bipolaron and electron-
hole mechanisms. We will use the notations for the bipolaron
mechanism. Unless it is explicitly stated, for the electron-hole
mechanism the upper indices A and B should be replaced with
the indices L and H .

As mentioned above, for each hopping site we use the
box model of the hyperfine interaction, which was solved in
Ref. [37] for many nuclear spins. The frequency �N is related
to the total nuclear spin I as �N = AI/h̄, where A is the
hyperfine coupling constant. The nuclear spin dynamics, I(t ),
is described by the kinetic equation for the two-component
probability distribution function f±(t, I):

∂ f±
∂t

+ ∇
[(

ω±
n × I − I

τ n
s

)
f±

]
+ D f± + f± − f∓

τ e
s

= 0.

(24)

Here the two components with the subscript ± correspond to
the electron spin parallel and antiparallel to the direction of �e

[Eq. (1)], which is a good quantization axis at the timescale
of the nuclear spin dynamics; ∇ = ∂/∂I;  = ∇2; τ n,e

s are
the phenomenological nuclear and electron spin relaxation
times unrelated with the hyperfine interaction, respectively;
and D = (h̄δ/A)2/(2τ n

s ) is the effective diffusion coefficient.
The nuclear spin dynamics mainly represents the precession
with the frequency

ω±
n = ±ωe

�B

�e
+ ωB, (25)

where ωe = A/(2h̄) is the nuclear spin precession frequency
in the Knight field of a completely spin polarized electron,
and ωB is the nuclear spin precession frequency in the external
magnetic field. To give an estimate we note that for N nuclei
ωe ∝ δ/

√
N . Thus for N = 100 we obtain ωe ∼ 0.1 ns−1. The

phenomenological spin relaxation time τ n
s can be related with

the dipole-dipole interactions or quadrupole interaction [36],
and we expect it to be of the order of 1 μs. The steady state
solution of Eq. (24) has the form f± = f (0)(I), where

f (0)(I) = 1

2

(
A√
π h̄δ

)3

exp

[
−

(
AI

h̄δ

)2]
, (26)

in agreement with Eq. (2).
In Appendix C we show that the current from Eq. (3) can

be written as

JAB = J0 + J1 cos(ϕ) + J2 cos(2ϕ), (27)
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where ϕ is the polar angle between I(A) and I(B), and

J0 = J0 + J1

×
(
Ob + I (A)

z

)2(
Ob + I (B)

z

)2 + (I (A)
⊥ I (B)

⊥ )2/2

|Ob + I(A)|2|Ob + I(B)|2 , (28a)

J1 = J1
2
(
Ob + I (A)

z

)(
Ob + I (B)

z

)
I (A)
⊥ I (B)

⊥
|Ob + I(A)|2|Ob + I(B)|2 , (28b)

J2 = J1

(
I (A)
⊥ I (B)

⊥
)2

2|Ob + I(A)|2|Ob + I(B)|2 . (28c)

Here J0 and J1 are given by Eqs. (13) or Eqs. (22), depending
on the mechanism, Ob = h̄�B/A is a dimensionless frequency
of the electron spin precession in the external magnetic field
directed along z axis, and I (A,B)

⊥ are the absolute values of the
spin components in the (xy) plane.

The three contributions in Eq. (27) lead to the three in-
dependent contributions to the current noise spectrum. We
assume that the typical nuclear spin precession frequency ωe

and the electron spin relaxation rate 1/τ e
s are much larger

than the nuclear spin relaxation rate 1/τ n
s . In this case, the

contribution related to J0 represents the low-frequency noise
at frequencies of the order of 1/τ n

s . The two other terms
give rise to the high-frequency noise at the frequencies of the
order of ωe. It is caused by the nuclear spin precession in the
Knight field. Accordingly, the current noise spectrum can be
written as

(δJ2)ω = (δJ2)(HF )
ω + (δJ2)(LF )

ω . (29)

Below we separately calculate these two contributions.

A. High-frequency noise

The reason for the high-frequency noise is the precession
of the nuclear spins in the Knight field of the electron or hole
localized at the given site. This precession takes place only
when the site is singly occupied. At unoccupied and doubly
occupied sites there is no Knight field.

For the bipolaron mechanism, we assume that the num-
ber of the current-carrying electrons is much smaller than
the number of hopping sites, so their effect on the nu-
clear spins can be neglected. Nevertheless, one electron is
always present at site B in the critical pair. It leads to
the precession of the total nuclear spin I(B) at the B site
around the magnetic field. In the same time, the nuclear spin
I(A) at the A site is static neglecting the slow nuclear spin
relaxation.

In the electron-hole mechanism there are no resident
charge carriers at sites L and H . Nevertheless, the high-
frequency current noise takes place if one of the sites L
or H acts as a trap for the charge carriers. It means that
this site is almost always occupied. For site H the condi-
tion of being a trap is W in

H � γ̃ , ωn,W out
H . This condition

ensures that site H gets occupied almost immediately af-
ter losing its hole due to the recombination or hopping to
the contact. In this case, it represents an analog of the B
site. The other site should be analogous to the A site in the
bipolaron mechanism, and its occupation probability should
be small. Under these assumptions the high-frequency noise

in the bipolaron and electron-hole mechanism is the same.
To be specific, we will use the notations of the bipolaron
mechanism.

During the transmission of an electron through the critical
pair, the two electrons form a singlet spin state at the B site. So
after the fast transmission, the electron at the B site becomes
depolarized. The corresponding spin relaxation rate is

1

τ e
s

= W in
B + W in

A

WBA

WBA + 2W out
A

. (30)

It defines the phenomenological spin relaxation time for the
B site. In the case of the electron-hole mechanism the spin
relaxation time equals 1/W out

H or 1/W out
L when the H or L site

represents a trap, respectively.
At timescales much shorter than the nuclear spin relaxation

time, the nuclear spin dynamics can be simply described by
the two coupled Bloch equations:

dI±

dt
= ω±

n × I± + I∓ − I±

2τ e
s

, (31)

where

I± =
∫

f±(t, I)IdI (32)

represents the average nuclear spins in the corresponding
electron spin subspaces. Moreover, it is convenient to use the
coordinate frame rotating with the frequency ωB, because the
electric current depends only on the angle between nuclear
spins at the critical pair of sites. We assume that ωB at these
sites is the same. As a result, one can neglect the nuclear
spin dynamics at the A site along with the frequency ωB at
the B site.

Let us consider the current noise related to J1 in Eq. (27).
It is useful to introduce the correlation functions cσ,σ ′ =
〈eiϕ(t ) cos ϕ(0)〉σ,σ ′ , where σ, σ ′ = ± correspond to the orien-
tation of the electron spin at the B site parallel or antiparallel
to the z axis at the time moments t and 0, respectively. To
calculate the average, the expression in brackets should be
multiplied by the corresponding spin projector operators at
times 0 and t . The correlators obey the equations (at t > 0)

d

dt
c±,σ = ±iω(B)

n c±,σ + c∓,σ − c±,σ

2τ e
s

, (33)

according to Eq. (31). The initial conditions are cσ,σ ′ (0) =
δσ,σ ′/4. From the solution of these equations, the contribution
to the current noise can be obtained as

J 2
1

∑
σ,σ ′

∫ ∞

−∞
Re [cσ,σ ′ (t )]eiωt dt . (34)

In the same way we obtain the contribution related
to J2. The total high-frequency current noise spectrum
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FIG. 6. The high-frequency current noise spectra calculated after
Eq. (35) for the different strength of the magnetic field and different
spin relaxation times, as indicated in the plots.

reads

(δJ2)(HF )
ω =

〈
J 2

1

τ e
s

(
ω(B)

n

)2

ω2 + (
τ e

s

)2[
ω2 − (

ω
(B)
n

)2]2

+J 2
2

4τ e
s

(
ω(B)

n

)2

ω2 + (τ e
s )2

[
ω2 − 4

(
ω

(B)
n

)2]2

〉
, (35)

where the angular brackets denote the averaging over the ini-
tial nuclear fields distribution only. We perform it numerically.
Note that the ratio J2/J1 does not depend on the hopping
rates because both J1 and J2 are proportional to J1, so the
shape of the spectrum depends on the hopping rates through
τ e

s only.
The high-frequency contribution to the current noise spec-

trum is shown in Fig. 6. In the limit τ e
s � 1/ωe, the shape

of the spectrum does not depend on the hopping rates.
This limit is illustrated in panel (a). The spectrum con-
sists of a single asymmetric peak, which shifts to higher
frequencies with increase of the magnetic field. Its central
frequency saturates at ω = ωe in high fields. The additional
peak at the frequency 2ωe, which can be expected from
Eq. (35), is very small and cannot be clearly seen. The current
noise intensity decreases with increase of the magnetic field.
This is caused by the saturation of OMAR in large fields,
when the current becomes independent of the orientations
of the nuclear spins. The short electron spin relaxation time

0 2 4 6 8 10

0.000

0.005

0.010

0.015

FIG. 7. Low-frequency current noise spectrum simulated numer-
ically for the different magnetic fields.

τ e
s � 1/ωe leads to the smearing of the noise spectrum, as

shown in Fig. 6(b).

B. Low-frequency noise

The low-frequency noise is related to the nuclear spin com-
ponents along the magnetic field, because they are conserved
during the spin precession. Their dynamics is caused by the
nuclear spin relaxation and leads to the current noise at the
frequencies of the order of 1/τ n

s .
The low-frequency noise stems from the contribution J0 in

Eq. (27), which does not depend on the polar angles of nuclear
spins, as it can be seen from Eq. (28a). Therefore this contri-
bution can be described accounting for the diffusion-related
part of the kinetic eq. (24) only. It is convenient to solve the
diffusion equation using the fictitious Langevin forces (for
each site):

dI
dt

= ξ(t ) − I
τ n

s

, (36)

with the correlation function

〈ξα (t )ξβ (t ′)〉 = 1

τ n
s

(
h̄δ

A

)2

δαβδ(t − t ′), (37)

where δαβ is the Kronecker symbol and δ(t ) is the Dirac δ

function. As a result, the shape of the low-frequency current
noise spectrum does not depend on the electron spin relaxation
time and the hopping rates.

We simulated the low-frequency noise numerically, gen-
erating 103 times the random forces for the time intervals
103τ n

s . The results of the simulation are shown in Fig. 7. The
spectrum always represents a peak at zero frequency with the
width of the order of 1/τ n

s , which somewhat decreases with
increase of the magnetic field.

The amplitude of the low-frequency noise non-
monotonously depends on the magnetic field. The area
under this component of the spectrum is given by∫ ∞

−∞
(δJ2)(LF )

ω

dω

2π
= 〈

δJ 2
0

〉
, (38)

where we took into account the fact that the low-frequency
noise is produced only by the term J0 in Eq. (27). It is
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FIG. 8. The low-frequency noise intensity as a function of the
magnetic field calculated after Eq. (D5). The inset shows the ampli-
tude of the noise at the zero frequency calculated numerically.

calculated analytically in Appendix D and plotted in Fig. 8
as a function of the magnetic field. The area has a maximum
at �B ≈ 1.5δ with the maximum value approximately twice
its value at zero magnetic field. In addition, the inset in Fig. 8
shows the amplitude of the noise at zero frequency, which has
a more pronounced maximum at �B ≈ 1.6δ, when it is almost
ten times larger than in the zero field.

Qualitatively, these dependencies are nonmonotonous be-
cause the low-frequency noise can be viewed as a result of
the effective slow variations of the external magnetic field.
From Fig. 3 one can see that these variations lead to the largest
changes in the current when �B ∼ δ, in agreement with Fig. 8.

IV. DISCUSSION AND CONCLUSION

In our work we described the current noise in mesoscopic
organic semiconductors, where the conductivity is controlled
by a single critical pair of sites. In this case the noise is
the largest. With increase of the sample size, the percolation
cluster becomes more complex and contains more critical
pairs [43,44]. The number of critical pairs grows with the sam-
ple size L as (L/Lc)d , where d = 2, 3 is the dimension of the
sample [8]. As a result, the current noise gets suppressed by
the factor (Lc/L)d/2. For organic semiconductors this regime
is known as the “fat percolation,” and the correlation length
can be estimated as Lc ∼ n−1/d [Gcrit f (Gcrit )]−ν [45], where
Gcrit is the critical conductivity of the Miller-Abrahams resis-
tor, f (G) is the distribution of the resistor conductivities, n is
the concentration of the hopping sites, and ν is the universal
critical index [8].

Crucially, the current noise induced by the nuclear spin
fluctuations can be separated from the other sources of noise,
such as shot noise, molecular vibrations, and 1/ f noise, due
to its sensitivity to the external magnetic field. Even if one
goes beyond the simplest model of the uniform hyperfine
interaction with the nuclei at each site, the noise spectrum
would consist of a high-frequency peak and the low-frequency
noise [46] (which can be similar to 1/ f noise [47,48]). In this
case the external magnetic field changes the strength and the
shape of these two components, as illustrated in Fig. 8. This

allows one to single them out experimentally. The relevant
range of the magnetic fields is the same as for OMAR.

In addition to this, the amplitude and the shape of the low-
frequency peak described in Sec. III B can be controlled by
the rf field. If it is applied in resonance with ωB, it increases
the nuclear spin relaxation rate as [36]

1

τ n
s

= 1

τ
n(0)
s

+ ω̃2

2

τ n(0)
s

1 + (ωrf − ωB)2
(
τ

n(0)
s

)2 , (39)

where τ n(0)
s is the spin relaxation time in the absence of the

rf field, ω̃ is the nuclear spin precession frequency in the rf
field, and ωrf is the carrying frequency of the rf field. Thus
application of the rf field leads to the broadening of the low-
frequency peak and a decrease of its amplitude. The resonant
dependence on ωrf allows for the unambiguous evidence of
the role of the nuclei in OMAR.

When OMAR is controlled by the electron-hole mech-
anism, the electron-hole recombination is often radiative
[9,41,42]. This provides a striking opportunity to detect the
nuclear spin noise in organic semiconductors by the means
of the optical spin noise spectroscopy [49] by measuring the
spectrum of the electroluminescence intensity fluctuations.

In conclusion, we calculated the current noise in meso-
scopic organic semiconductors caused by the nuclear spin
fluctuations. This effect takes place in the samples with pro-
nounced OMAR. The current noise spectrum consists of the
two peaks. One is centered at the frequency, which increases
with increase of the magnetic field, and the other one is cen-
tered at zero frequency. The dependence of the nuclei-induced
current noise on the magnetic field as well as on the rf field
allows one to separate its contribution to the current noise
from the other contributions experimentally.
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APPENDIX A: DERIVATION OF EQ. (9)

Equation (6) in the steady state yields the spin correlator in
the form

sα
Asβ

B = −(R−1)αβ;α′α′
JAB

4e
. (A1)

Substituting this expression in Eq. (7) we obtain

JAB = 2eWABnB − e
WBA

2
nA − WBA

2
(R−1)αα;α′α′JAB. (A2)

Solution of this linear equation yields Eqs. (9) and (10).
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APPENDIX B: DERIVATION OF EQ. (17)

Similarly to Appendix A, Eq. (15) in the steady state yields
the relation

sα
Lsβ

H = −(R−1)αβ;α′α′ (γs − γt )
nL pH − 4sγ

L sγ
H

16
. (B1)

In the same time, Eq. (14) can be written as follows:

JLH = eγs

(
nL pH − 4sα

Lsα
H

4

)
+ eγt nL pH

− eγt

(
nL pH − 4sα

Lsα
H

4

)
. (B2)

From this relation we express the right-hand side of
Eq. (B1) as

(γs − γt )
nL pH − 4sα

Lsα
H

16
= 1

4
(JLH − eγt nL pH ). (B3)

Substituting this in Eq. (B1), we obtain the spin correlator:

sα
Lsβ

H = −(R−1)αβ;α′α′
1

4
(JLH − eγt nL pH ). (B4)

Substituting it in Eq. (14) and solving the linear equation for
JLH we obtain Eqs. (17) and (18).

APPENDIX C: DERIVATION OF EQS. (28)

By the definition of Ob, �(A),(B)
e = (A/h̄)(Ob + I(A),(B) ), so

the cosine of the relative angle between �(A)
e and �(B)

e is
given by

cos θAB = (Ob + I(A) )(Ob + I(B) )

|Ob + I(A)||Ob + I(B)| . (C1)

Expanding the numerator we obtain

cos θAB =
(
Ob + I (A)

z

)(
Ob + I (B)

z

)
|Ob + I(A)||Ob + I(B)| + I (A)

⊥ I (B)
⊥ cos ϕ

|Ob + I(A)||Ob + I(B)| .

(C2)

Further, calculating the square of this expression and taking
into account the fact that the denominators do not depend on ϕ

along with the relation cos2(ϕ) = [1 + cos(2ϕ)]/2, we obtain
the coefficients of the decomposition of Eq. (3) in the form of
Eq. (28).

APPENDIX D: INTENSITY OF THE LOW-FREQUENCY
CURRENT NOISE

The low-frequency noise is described by the contribution
J0 given by Eq. (28a). It can be expressed in terms of the
angles θA and θB between the z axis and the frequencies
�(A),(B)

e as follows:

J0 = J1

[
cos2(θA) cos2(θB) + sin2(θA) sin2(θB)

2

]
. (D1)

Due to the independence of the two angles the low-frequency
current noise correlator takes the form〈

δJ 2
0

〉 = J2
1

{
9
4 [〈sin4(θA)〉2 − 〈sin2(θA)〉4]

− 6[〈sin4(θA)〉〈sin2(θA)〉 − 〈sin2(θA)〉3]
+ 2[〈sin4(θA)〉 − 〈sin2(θA)〉2]

}
. (D2)

Here the averages can be calculated using Eqs. (1) and (2):

〈sin2(θA)〉 = δ2�B − δ3D(�B/δ)

�3
B

, (D3)

〈sin4(θA)〉 = 3δ4�B − (
3δ5 + 2�2

Bδ3
)
D(�B/δ)

�5
B

. (D4)

It allows us to obtain an analytic expression for 〈δJ 2
0 〉:〈

δJ 2
0

〉 = J2
1

δ3

4�12
B

[
2δ�2

B − (
δ2�B + 2�3

B

)
D

(
�B

δ

)
− D2

(
�B

δ

)][
36δ4�2

B − 24δ2�4
B + 8�6

B

− (
45δ5�B − 6δ3�3

B

)
D

(
�B

δ

)
+ 9δ6D2

(
�B

δ

)]
.

(D5)
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