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Ripplocations in layered materials: Sublinear scaling and basal climb
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The ripplocation is a crystallographic defect which is unique to layered materials, combining nanoscale
delamination with the crystallographic slip of a basal dislocation. Here, we have studied basal dislocations
and ripplocations, in single and multiple van der Waals layers, using analytical and computational techniques.
Expressions for the energetic and structural scaling factors of surface ripplocations are derived, which are in close
correspondence to the physics of a classical carpet ruck. Our simulations demonstrate that the lowest-energy
structure of dislocation pileups in layered materials is the ripplocation, while large dislocation pileups in bulk
graphite demonstrate multilayer delamination, curvature, and voids. This can provide a concise explanation for
the large volumetric expansion seen in irradiated graphite.
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I. INTRODUCTION

It has long been understood that the plastic deformation
of solids proceeds primarily through the nucleation of linear
defects, called dislocations, which locally accommodate crys-
tallographic slip. The slipped and unslipped crystal regions on
either side of a dislocation line are related through translation
by a lattice vector, which is a topological property of that
dislocation, called its Burgers vector, b. The dynamics of
dislocations are dominated by Frank’s rule, which dictates
that the energy of a dislocation is quadratic in the Burgers
vector, E ∝ b2. This causes perfect dislocations to dissociate
into partials, with Burgers vector of less than a full lattice
translation [1–3].

Recently, distinct behavior has been observed in layered
materials. Surface ripples with well-defined crystallographic
character comprising sharp, localized folds between regions
which are slipped relative to one another by an in-plane lattice
vector have been observed at the (0001) surface of exfoliated
MoS2 samples and graphite nanoplatelets [4,5]. These defects
combine the properties of edge dislocations and delamina-
tion, and have been termed ripplocations. Extensive spherical
nanoindentation experiments have demonstrated that the de-
formation behavior of a wide variety of layered materials
proceeds not through the basal dislocation, but through a
distinct and reversible mechanism, which has been attributed
to the formation of ripplocations [6]. Reversible arrays of rip-
plocation boundaries which can evolve into kink bands under
increasing damage are believed to constitute the initial states
of material failure in layered materials. Ripplocations are now
believed to occur on a variety of length scales, accounting for
material deformation in substances as diverse as playing cards
and steel sheets to phyllosilicates in the lithosphere [7–9].
Additionally, surface wrinkles on homogeneous substrates
necessarily have edge dislocation character below a critical
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length [10], hence the study of ripplocations will also give
further insight into the wrinkling behavior of 2D materials,
which can substantially modify the physical properties of
adsorbed monolayers [11–14].

Ripplocations occur both epitaxially and in the bulk of
layered materials. In the context of irradiated graphite, the
bulk ripplocation or “ruck and tuck” mechanism of dislocation
pileup represents the first proposal of deformation due to
delamination in the bulk of layered solids, and is likely to be
particularly important in explaining many of the properties
of dimensional change in highly irradiated highly oriented
pyrolytic graphite (HOPG) samples. However, while this type
of bulk ripplocation has been found in experimental transmis-
sion electron microscopy (TEM) images of irradiated graphite
[8,15–20], it is a relatively rare defect. Distinct behavior, in-
cluding delamination and buckling spread across many layers
and two-dimensional kink band networks [21,22], has also
been observed. This motivates further, systematic studies of
multilayer and two-dimensional dislocation configurations.

In contrast to the classical dislocation, ripplocations ex-
hibit a sublinear energy scaling as a function of Burgers
vector, E ∝ bβ , where β < 1. This ensures that ripplocations
composed of multiple Burgers vector become increasingly
energetically favorable as a function of extra material, as
|b1 + b2|β < |b1|β + |b2|β . While this sublinearity has been
well established, there is reasonable variation in the litera-
ture with reported values lying in the range β ≈ 0.3–0.45
[4,23,24]. Additionally, while there have been computational
studies of ripplocations, no rigorous comparison has been
made between them and the corresponding dislocation cores.

In this work, we have applied analytical and computational
techniques which accurately model the interlayer friction be-
tween van der Waals layers to calculate the energetic and
structural scaling factors of single and multilayer surface
and bulk ripplocations. In van der Waals materials the in-
terlayer friction is encapsulated in the γ -surface energy to
slide adjacent layers along different crystallographic direc-
tions [25–29]. This is essential in accurately modeling these
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defects, as it is the resistance to sliding against adjacent layers
that stabilizes basal dislocations and ripplocations. Our sim-
ulations of dislocation pileups in large systems demonstrate
that the locally buckled ripplocation structure is the preferred
mode of deformation with increasing additional material in
the pileup.

II. METHODS

Density functional theory (DFT) calculations have been
performed using plane-wave basis Kohn-Sham states as im-
plemented in the Quantum ESPRESSO package [30,31].
We have employed Vanderbilt ultrasoft pseudopotentials
parametrized according to the local density approximation
(LDA). While it is often assumed that the inclusion of gra-
dient terms in the generalized gradient approximation (GGA)
makes it a better approximation than the simpler LDA, in
some cases LDA performs significantly better than GGA.
Notably, the LDA provides a more accurate approximation
to the interlayer van der Waals interaction in comparison to
the GGA [32], when benchmarked against higher levels of
theory such as quantum Monte Carlo (QMC) calculations
[33,34]. The LDA also provides an acceptable approxima-
tion to the dispersion interaction for weakly bonded materials
when compared to van der Waals–corrected GGA functionals,
producing a somewhat larger than average error for binding
energies and lattice constants [35]. For graphite in particular,
the LDA compares relatively well to vdW-corrected GGA in
predicting the a and c lattice constants, bulk moduli [36],
and cohesive [37] and exfoliation energies [38,39], such that
functional choice is overall unlikely to qualitatively affect our
results.

Electronic wave functions were expanded in a plane-wave
basis with cutoffs of Ecut = 40 Ry. A �-centered 1 × 5 × 1
k-point grid is found to sample the Brillouin zone with suf-
ficient accuracy, giving total energy convergence to within
0.1 meV/atom for all structures. Molecular dynamics (MD)
simulations have been performed in LAMMPS [40], using
the hybrid neural network (hNN) potential for multilayer
graphene systems developed by Wen and Tadmor [41,42].
We have taken care to assess the suitability of the hNN po-
tential and a variety of interlayer potentials [26,28,43,44] in
capturing the behavior of dislocations and ripplocations (for
additional details see Supplemental Material [45] Figs. S1 and
S2).

III. SURFACE RIPPLOCATIONS

Surface ripplocations have been created through the inser-
tion of additional rows of material to the top monolayer of
a bilayer structure in a periodic ribbon geometry, which is
extended along one crystallographic orientation. Atoms in the
top layer are allowed to fully relax, while the bottom layer
is held fixed by setting all forces to zero, to approximate a
compressed monolayer on a substrate. This approach has been
verified in comparison to a fully relaxed, multilayer graphite
substrate using MD calculations, which produces very simi-
lar qualitative behavior, with a small quantitative difference
which we attribute to relaxation of the multilayer substrate

(for more details see Supplemental Material [45] Figs. S3 and
S4).

The amount of additional material is quantified using the
parameter n, denoting a Burgers vector of multiple lattice
translations. Along the zigzag direction this corresponds to an
edge dislocation (n = 1) or superdislocation (n > 1), bzz =
n × [1210]. Along the armchair direction bac = n × [1100],
and all edge dislocations are superdislocations. Thus, n quan-
tifies the number of edge dislocations in the superdislocation
pileup, and is the characteristic property of a ripplocation
defect.

DFT structural relaxations have been performed for zigzag
surface ripplocations, b = n × [1210], in graphene, hexag-
onal boron nitride (hBN), and MoS2. While the initial
configuration is that of a superdislocation, with a well-defined
Burgers vector, upon relaxation the large initial in-plane
strains are released by out-of-plane buckling. This gives close
to equilibrium bond lengths across the ripplocation (see Sup-
plemental Material [45] Figs. S5 and S6), and prior work
has suggested that ripplocations do not possess a long-range
Burgers vector [4,23].

Formation energies E f have been calculated from the opti-
mized supercells as

E f = Ecell − NεBL, (1)

where Ecell is the energy of a defected bilayer, εBL is the
energy per atom of a perfect bilayer, and N is the number of
atoms. The height has been calculated as the distance between
the flat part of the top layer and the ripple’s peak, while the
width was taken as the FWHM, both of which are shown
schematically in Fig. 1(d). The formation energy as a function
of n is shown in Fig. 1(a) for all three materials, where we
observe the expected sublinear dependence on b, with similar
scaling factors in the range β ≈ 0.37–0.41 (see Supplemental
Material [45] Fig. S7 for additional log-log plots which con-
firm the distinctive sublinear scaling factors).

Similarly, sublinear scaling is observed in the height and
width, with consistent values for ripplocations in all three
materials, as shown in Figs. 1(b) and 1(c). Further simulations
of a graphene wrinkle on the Cu(100) surface (for additional
details see Supplemental Material [45] Figs. S8 and S9)
produce nearly identical structural scaling factors, which is
highly suggestive that similar physics underlies both types of
ripples.

IV. BASAL DISLOCATIONS

The sublinear energy scaling guarantees that ripplocations
will eventually become lower in energy than the correspond-
ing dislocation structures, and that with increasing Burgers
vector, the dislocation core will eventually buckle and release
its strain in the out-of-plane direction. However, the precise
transition point between these two defects is unclear. In order
to gain more detailed insight into the energetics and dy-
namics of ripplocations, we now compare the corresponding
properties of basal dislocations. The basal dislocation core
in graphite and other layered materials is wide (>10 nm)
[46–48] due to the weak interlayer interactions, and therefore
difficult to simulate via DFT [49,50].
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FIG. 1. (a) Formation energy of ripplocations in epitaxial graphene, MoS2, and hBN sheets vs amount of additional material n. (b) Width
and (c) height of ripplocations on epitaxial graphene on graphene, hBN on hBN, and graphene on the Cu(100) surface. (d) Schematic depiction
of ripplocation configurations and associated structural properties as they have been calculated in this work.

To circumvent this, we have conducted MD simulations
of large cells of up to 500 nm in length. In conducting MD
simulations of interlayer defects in layered materials, it is
of crucial importance to capture the interlayer friction or
γ -surface energy. We have therefore taken particular care in
comparing a variety of the available MD potentials to our
DFT calculations. All of the potentials we consider agree
qualitatively with our DFT results for the γ -surface energy
[26,28,41,49], as they are all fitted to quantum mechanical
calculations of this property.

To further validate these potentials and compare to our
DFT results, we have performed relaxation of surface rip-
plocations for increasing n, along both armchair and zigzag
directions. Our results for the energetic and structural scaling
factors using the hNN potential are consistent with DFT, as
are all of the other potentials which produce a significant
interlayer friction energy (for more details see Figs S10–S12).
A full comparison of the scaling factors for all of the interlayer
potentials considered, as well as the DFT results, is shown in
Table I. We note that all of the computational methods predict

highly sublinear energy scaling in agreement with DFT, and
are generally within a relatively small range of values despite
differences in choice of material, level of theory, and com-
putational method. Furthermore, simulations of multilayer
ripplocations [i.e., finite thickness, as shown schematically in
Fig. 1(d)], undertaken using the hNN potential, also predict
similar sublinear scaling factors.

In contrast, potentials which do not correctly capture the
γ -surface energy are not able to correctly capture ripplocation
properties with increasing cell size. For example, while the
AIREBO potential is commonly used in studies of graphene
and graphite, the γ -surface energy is significantly underesti-
mated in comparison to DFT. This has immediate implications
for the epitaxial properties of surface ripplocations. In partic-
ular, we find that this potential does not give consistent results
(see Fig. 2). With increasing cell length, the ripple height de-
creases significantly, and for cells above approximately 55 nm
ripplocations are not formed. Instead, the ripplocation ruck
slides into the adjacent layers in a completely incommensurate
manner (i.e., without forming basal dislocations).

TABLE I. Energy, width, and height scalings of surface ripplocations from different computational methods. Corresponding values for the
best-fit value of the sublinearity factor α are shown in square brackets.

Method αbest fit E ∝ bβ(α) h ∝ bδ(α) w ∝ bγ (α)

Gravity 1.0 5/7 4/7 1/7
Gr (DFT) 0.191 0.401 [0.415] 0.588 [0.646] 0.210 [0.292]
HBN (DFT) 0.139 0.388 [0.393] 0.629 [0.651] 0.197 [0.303]
MoS2 (DFT) 0.127 0.378 [0.388] 0.610 [0.652] 0.287 [0.305]
KC (MD) 0.173 0.402 [0.408] 0.623 [0.647] 0.187 [0.295]
DRIP (MD) 0.197 0.411 [0.418] 0.617 [0.645] 0.226 [0.291]
LP (MD) 0.170 0.382 [0.406] 0.549 [0.648] 0.109 [0.296]
hNN (MD) 0.098 0.382 [0.413] 0.679 [0.646] 0.223 [0.293]
hNN t = 2 0.111 0.408 [0.381] 0.759 [0.654] 0.271 [0.309]
hNN t = 3 0.133 0.391 [0.391] 0.736 [0.674] 0.287 [0.304]
hNN t = 4 0.127 0.388 [0.388] 0.765 [0.674] 0.305 [0.306]
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FIG. 2. Formation energy and height of the n = 1 surface ripplo-
cation using the AIREBO and hNN potentials.

Having verified the validity of our computational meth-
ods, we now compare the properties of ripplocations to the
corresponding dislocation and superdislocation cores. The
structures considered have an identical Burgers vector, i.e.,
amount of extra material, in the core region but are con-
strained to remain flat and the two defects are therefore
directly comparable. Figures 3(c) and 3(d) compare the energy
of ripplocations vs the corresponding superdislocation cores
as a function of n, calculated using the hNN potential. It
can be seen that at small n for Burgers vector along both
crystallographic directions, the lowest-energy structures are

not localized ripples, but rather arrays of partial dislocations
with net Burgers vector equal to the initial superdislocation
Burgers vector, as shown in Fig. 3(a) and Fig. 3(b).

For the zigzag core this gives pairs of ±60◦ partials, bzz =
n × 1/3[1210] = n × (1/3[1100] + 1/3[0110]) for n < 3,
above which ripplocations are nucleated in preference to
dislocation arrays. Along the armchair direction, the ini-
tial n = 1 superdislocation dissociates into a sequence of
four partial dislocations, a pair of ±30◦ partials and a pair
of edge partials, bac = n × √

3[1010] = n × (
√

3/6[1100] +√
3/6[0110] + √

3/3[1010] + √
3/3[1010]), and ripploca-

tions are preferred for n > 1. Overall, at relatively small
Burgers vector we observe the onset of rippling and buckling
in preference to in-plane strain accommodation for both crys-
tallographic directions. This behavior is again consistent with
that of a ruck in a classical inextensible material, where under
an initial compression, a sheet will not buckle unless the ratio
of the initial compression to the coefficient of static friction of
the substrate interaction, here encapsulated in the γ surface,
is above a critical value [51].

V. SCALING RELATIONS

The near universality of the observed scaling law war-
rants further consideration. In prior work, the energetic and
structural scaling factors for a ruck under the influence of
gravity have been calculated [51,52]. Taking into account our
prior observation that the bond strain across a surface ruck
is generally very low (see Supplemental Material [45] Figs.
S5 and S6), it is valid to consider a surface ripplocation as
just such a ruck in an inextensible material. It is therefore

FIG. 3. (a) Disregistry calculated normal to the dislocation line (Edge) component and along the line (Screw) vs length of bilayer and
(b) cell configuration and local stacking in a dislocated bilayer with two oppositely signed partial mixed dislocations. (c) Comparison of
superdislocation, dislocation array, and ripplocation energies for Burgers vectors along the zigzag and (d) armchair directions.
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noteworthy that our computational values are quite different
from these classical scalings (see Table I), particularly for the
height and energy.

We therefore revisit and modify these scalings, by consid-
ering two energetic contributions to the core energy [4,51,52].
We emphasize that inextensibility is an important condition in
the following derivation, as it implies that the membrane force
[53] across the ruck is small, which allows us to ignore the
contribution of strain to the ripple formation energy. This has
been explicitly verified by calculating the strain contribution
for the hNN model, which we find to be approximately 0.1 eV
and crucially is nearly constant as a function of n. The total
energy of a ripplocation ruck is then taken to be

E (w) = Ue(w) + Us(w) = Bκ2w + V thαw. (2)

The relevant energy terms comprise the elastic energy Ue

and the adhesion energy Us, which is the energy acquired
from the shifting and out-of-plane deformation across a ripple.
The elastic energy is taken simply as Ue = Bκ2w where B is
the elastic bending energy, w is the width, and κ is the net
curvature across a ripple. The interfacial term encapsulates the
adhesion energy across the core, which we take to be V thαw

where V is the interlayer adhesion energy of the absorbed
layer to the substrate, h is the height of the ruck, and t is the
monolayer thickness.

The most important modification of this expression with
respect to the classical equation for an inextensible ruck is the
incorporation of the sublinearity factor α, which accounts for
the deviation from classical behavior for van der Waals layers.
We note that when α = 1 this corresponds to the classical
rucking of a sheet under the influence of gravity. Making use
of the relations h = √

bw and κ = h
w2 for the arclength and

curvature of a clamped elastica, the energy can be expressed
as a function of width only, E (w) = Bbw−2 + V tbα/2w1+α/2.
We then solve for the equilibrium width by considering the
derivative of the energy equation, Eq. (2), with respect to the
defect width,

dE (w)

dw
= −2Bb

w3
+ (1 + α/2)V t (bw)α/2 = 0. (3)

This immediately leads to analytical forms for the scaling of
ruck height and width as w(b) ∝ bγ (α) and h(b) ∝ bδ(α), with

γ (α) = 2 − α

6 + α
(4)

and

δ(α) = 1

2
+ 2 − α

12 + 2α
. (5)

Replacing the height and width for these expressions
in Eq. (2), the ruck energy as a function of width is
then E (w) = (B + tV )A(α)

2+α
6+α b1−(4−2α)/(6+α), where A(α) =

2B
tV (1+α/2) , hence leading to a sublinear energy scaling

β(α) = 1 − 4 − 2α

6 + α
. (6)

The sublinear scaling as a function of height can be un-
derstood as a consequence of the shorter range of the van der
Waals interaction, which scales as a function of distance as
r−6, here incorporated approximately through the sublinearity

factor α. This leads to the fact that material closer to the
substrate matters proportionally much more than that which
is further away, so that the overall energy scales very slowly
in the maximum height.

Notably, our calculations indicate very similar scaling fac-
tors across all materials and approximations. For example, our
calculations indicate that the interlayer adhesion energy factor
V of MoS2 is around 50% higher than that of graphene, yet the
calculated scalings remain in a very similar range, indicating
that it is indeed the short-ranged behavior of the interlayer
interaction which determines ruck properties, rather than the
magnitude of the adhesion energy.

Thus, if the introduction of a sublinear term is an accurate
model of the rippling across a ruck in a two-dimensional
monolayer, all three properties will be consistently in-
terrelated through a common sublinearity factor. Table I
shows the calculated scaling of energy, height, and width
for ripplocations in different materials and using differ-
ent methods, as well as a “best fit” value of α. This
value minimizes the difference, ε, between the analyti-
cal and computational values for all three scalings, ε =√

(βfit − βcomp)2 + (δfit − δcomp)2 + (γfit − γcomp)2. The ana-
lytical expression produces an extremely good agreement with
the computational sublinear energy dependence, with small
errors in the height and width in the range of 0.05–0.1. We
attribute this small departure from the ideal behavior for the
structural properties to the violation of the h = √

bw assump-
tion for our van der Waals systems (see Supplemental Material
[45] Fig. S13).

Overall, our calculations confirm that all three scalings
are indeed closely related. Additionally, since we have only
considered the bending and adhesion energies, this scaling be-
havior is immediately applicable to physisorbed monolayers
on other substrates; this explains why our DFT simulation of
the graphene/Cu(100) surface interaction produces scalings
which agree closely with the ripplocation results in Figs. 1(b)
and 1(c).

VI. BULK

We now discuss the behavior of bulk ripplocations in large
cells. Cells containing bulk ripplocations are created similarly
to surface ripplocations, where extra rows of material are
inserted into a monolayer in a bulk cell. For small n, this
again gives dislocation arrays and a linear energy dependence.
Above a critical value of n, the formation energy is almost
constant with additional material as shown in Fig. 4(b), and
the folded-over bulk ripplocation, or “ruck and tuck” struc-
ture, is nucleated [54]. Accurate γ -surface energy is again
paramount in attaining accurate defect structure, which for
bulk ripplocations is reflected in the surrounding sheets, which
have the lowest-energy Bernal stacking [see Figs. 4(c) and
4(d)], from which we conclude that slip of the folded defect
into the surrounding layer is inhibited due to friction.

The constant formation energy can be understood with
reference to the relaxed structures, shown in Fig. 4(a). As extra
material is added, it is accommodated by increasing the length
of the prismatic sheet bounded by the highly curved regions,
while the curved regions remain approximately the same. This
demonstrates that for both bulk and surface ripples, curvature
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FIG. 4. (a) Single-layer pileup in bulk graphite for different values of n, resulting in the “ruck and tuck” structure with increasing material.
(b) Bulk ripplocation formation energy vs n. (c) and (d) Plan view above a ruck and tuck defect, demonstrating that Bernal stacking is recovered
in the material surrounding the folded defect core.

can essentially be seen as the mechanism of dislocation climb
for basal dislocations in layered materials. This proceeds un-
constrained on the surface, while in bulk additional material is
accommodated simply by growing the flat, perfectly stacked
prismatic layer.

Dislocation pileups on multiple adjacent layers in bulk
graphite have also been considered through the incorporation
of extra material to a number of adjacent layers in a large
bulk simulation cell. These structures are the corresponding
bulk defect to the finite-thickness surface ripplocations. Upon
relaxation we find structures which are quite distinct from the
single-layer ruck and tuck, which are more similar to bulk
twin boundaries [55], demonstrating multilayer curvature and
the formation of voids adjacent to the compressed region,
some representative structures of which are shown in Fig. 5(a).
The distinction between the single and multilayer defects can
be understood through consideration of the bending energy
for multilayer graphene, which scales linearly for small thick-
nesses [56].

The formation energy per Burgers vector per layer for
these defects is shown in Fig. 5(b), which we see results
in even lower energy per n than the single-layer ruck and
tuck. The ruck and tuck can then be seen as a limiting case
where compression occurs on only one layer. It is therefore
unsurprising that the structure of irradiated HOPG gener-
ally involves larger-scale curvature, as the higher bending
energy inhibits the ruck and tuck for the lower-energy, finite-
thickness bulk ripplocations. However, the presence of both
the ruck and tuck defect as well as large-scale bending can
be taken as evidence for dislocation pileup as the deforma-
tion mode of irradiated HOPG. Furthermore, all of the bulk
structures simulated in this work essentially demonstrate basal
climb, i.e., c-axis expansion to release in-plane compression
resulting from many basal dislocations.

VII. TWO-DIMENSIONAL RIPPLES

MD simulations also permit calculations of other large
structures which are prohibitive for DFT, such as the two-

FIG. 5. (a) Multilayer (finite thickness, t) dislocation pileups. (b) Energy per length of additional material of multilayer dislocation pileups.
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FIG. 6. Two-dimensional ripplocation junction on the graphite
(0001) surface. Carbon atoms are color-coded according to height.
Blue sections are flat AB-stacked regions. The ripples’ height is
around 1 nm, red sections.

dimensional ripplocation junction shown in Fig. 6. This has
been created by inserting material along both the armchair
and zigzag directions on the surface of a bilayer cell. The pic-
tured cell, which has an initial Burgers vector b = (bac, bzz ) =
(2, 1), results in the formation of a ripplocation junction,
where perpendicular dislocation lines meet at an AA-stacked
dislocation node. It is noteworthy that this type of structure is
strikingly similar to experimental TEM images of irradiated
HOPG surfaces [21,22], and in this context our large-scale
simulations again provide evidence of dislocation pileup as
the likely deformation mode of irradiated HOPG. We leave
further, systematic investigation of these two-dimensional de-
fects to future work.

VIII. DISCUSSION

The application of classical mechanics to the nanoscale
buckling of two-dimensional monolayers has typically proven
difficult [57,58]. In this work, we have found that minor
modification of classical expressions gives exceptional agree-
ment to DFT calculations. The energy scaling, Eq. (2), is
based only on classical expressions for clamped elastica and
is, therefore, directly applicable to any inextensible layered
material, through simple modification of the α sublinearity
parameter. This reinforces the idea that ripplocations are a
general concept applicable at a variety of length scales, since
we have considered only monolayer bending and adhesion.

The exceptionally low sublinear factors, in the range α ≈
0.1–0.18, in comparison to a sheet under the influence of
gravity, helps to explain the exaggerated tendency of epi-

taxial monolayers to wrinkle and ripple. Our work therefore
indicates that the most important property in the wrinkling
of epitaxially grown monolayers is the coefficient of fric-
tion between the monolayer and the substrate. This can
explain, for example, the high density of wrinkle formation in
graphene adsorbed on the the highly incommensurate Cu(100)
and Cu(110) surfaces [59] in comparison to the almost-
commensurate Cu(111) face. It is therefore noteworthy that
the ripplocation formation energy is close to the observed
experimental energy barrier for wrinkle nucleation on Ir(100)
substrates [60,61].

In all cases, buckling of the ripplocation can be seen
as a type of climb mechanism for basal dislocations. Our
work therefore has important implications for the irradiation-
induced deformation of HOPG. Under irradiation, HOPG and
even single graphene sheets will shrink, which very quickly
leads to the formation of basal dislocations. The very low
Peierls barrier in layered materials ensures that the basal dis-
location core is very diffuse and easy to move, which readily
allows dislocation pileups [50,54]. Under this compression,
our work confirms that these dislocation pileups will result in
delaminated, curved regions of microstructure rather than flat
superdislocation cores. This suggests that essentially a process
of subsurface wrinkling is implicated in the pronounced c-
axis expansion of irradiated HOPG samples, with increasing
compression resulting in the formation of ripplocation arrays,
voids, ruck and tucks, and highly curved regions. It is then
unsurprising that there are substantial similarities between
our simulations and experiment. Under heavy ion bombard-
ment, in-plane dislocations are nucleated, which evolve into
rippled “kink boundaries.” These two-dimensional dislocation
complexes are almost identical to our simulations of surface
ripplocation arrays.

There is also substantial experimental evidence for the for-
mation of the single-layer ruck and tuck in irradiated graphite
[8,15–20]. In addition, our multilayer simulations are similar
to the regions of curvature and voids, which have recently
been found in irradiated HOPG [62], again demonstrating
damage due to compression and pileup. In summary, this cor-
respondence implicates the compression-induced dislocation
pileup and rippling of graphene monolayers as a concise and
appealing explanation of the irradiation-induced deformation
of single-crystal graphite.
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