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Eigenmodes and resonance vibrations of graphene nanomembranes
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Natural and resonant oscillations of suspended circular graphene membranes (single-layer sheets lying on
a flat substrate having a circular hole of radius R) have been simulated using full-atomic models. Substrates
formed by flat surfaces of graphite and hexagonal boron nitride (h-BN) crystal, hexagonal ice, silicon carbide
6H-SiC, and nickel (111) surface have been used. The presence of the substrate leads to the forming of a
gap at the bottom of the frequency spectrum of transversal vibrations of the sheet. The frequencies of natural
oscillations of the membrane (oscillations localized on the suspended section of the sheet) always lie in this
gap, and the frequencies of oscillations decrease by increasing radius of the membrane as (R + Ri )−2 with
nonzero effective increase of radius Ri > 0. The modeling of the sheet dynamics has shown that small periodic
transversal displacements of the substrate lead to resonant vibrations of the membranes at frequencies close
to eigenfrequencies of nodeless vibrations of membranes with a circular symmetry. The energy distribution of
resonant vibrations of the membrane has a circular symmetry and several nodal circles, whose number i coincides
with the number of the resonant frequency. The resonant frequencies decrease with increasing the membrane
radius as (R + Ri )−αi with the exponent αi < 2. The lower rate of resonance frequency decrease is caused by the
hard anharmonicity of membrane vibrations.
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I. INTRODUCTION

Being a nanosized polymorph of carbon, graphene attracts
increased attention of researchers due to its unique physical
properties [1,2]. The remarkable properties of graphene have
enabled the exploitation of graphene for the development
of nanoelectromechanical systems (NEMS) such as nanores-
onators [3–5]. The vibrational properties of graphene play
an important role in analysis and design of graphene-based
sensors and resonators. The aim of this work is to simu-
late the eigenmodes and resonant vibrations of suspended
circular graphene membranes. Such two-dimensional (2D)
membranes are formed as single-layer graphene sheets lying
on a flat substrate with a circular hole. These one-atom-thick
membranes can be used as highly efficient nanomechanical
resonators [6–15] and as extraordinary sensitive detectors of
mass, force, and pressure [16–20]. A one-atom-thick layer
of graphene sheet has very high Young’s modulus, in-plane
stiffness, and breaking strength [21]. It makes graphene mem-
brane a promising candidate for ultrasensitive, low-power
acoustic sensor.

Out-of-plane flexural modes play an important role in the
mechanical [22], thermal [23,24], and electronic [25] prop-
erties of the graphene NEM resonators. The flexural modes
of graphene membranes (resonators) have been studied in a
continuum approximation (continuous thin plate or thin shell)
[26–33] and in the framework of a lattice structure method
[34,35]. These methods allow us to consider the vibrations of
large-sized membranes with diameter D > 10 μm.

The molecular dynamics method requires significant
computational resources and therefore allows studying the

vibrations of only nanosize sheets [36–38], vibrations of
membranes with diameter D < 10 nm.

The aim of this paper is to simulate the resonant vibrations
of nanoscale circular graphene membranes. Previously, us-
ing the continuum approximation, only resonances of natural
transverse vibrations of square graphene sheets with fixed
edges were simulated [28,29]. Natural vibrations of a circular
graphene membrane (of a circular piece with clamped edges)
were considered in the continuous [26,33] and discrete (using
the full-atomic model) [38] approximations.

In this paper, using the full-atomic model, natural vibra-
tions and resonant transverse vibrations of a graphene sheet
of size 15.6 × 15.6 nm2 lying on a flat molecular substrate
with a circular hole of radius R � 6 nm will be modeled (see
Figs. 1 and 2). Let us note that this situation is realized in
the experimental study of suspended graphene membranes
[8,9,11,17]. As a substrate, we will consider flat surfaces of
ideal graphite, hexagonal boron nitride (h-BN), hexagonal ice
Ih, silicon carbide 6H-SiC, and the (111) surface of a nickel
crystal.

The potential that describes the interaction of the graphene
sheet with the substrate will be found and the natural flexural
vibrations of the sheet (membrane) placed over the hole in
the substrate will be analyzed. It will be shown that small
amplitude periodic transversal displacements of the substrate
lead to resonant vibrations of the membrane at frequencies
close to eigenfrequencies of nodeless oscillations of mem-
branes with a circular symmetry. The simulation of vibrations
will be carried out taking into account the thermal vibrations
of the membrane at a temperature of T = 300 K.
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FIG. 1. Rectangular graphene sheet measuring 2.0 × 1.8 nm2

(160 carbon atoms), lying parallel to the surface of h-BN crystal at
distance h.

In Sec. II we describe the computational model, and in
Sec. III the transverse normal modes of circular graphene
membrane are analyzed. The effect of anharmonicity is ad-
dressed in Sec. IV, and Sec. V is devoted to the study of
resonant vibrations. Our conclusions are presented in Sec. VI.

II. MODEL

To calculate the interaction energy of a graphene sheet
with a flat substrate the sheet has been placed parallel to
the substrate surface. The interaction potential of each atom
belonging to the sheet with the substrate W (h) can be found
as the function of the distance to the substrate plane h, as
a sum of its interaction energies with the substrate atoms.
The interaction of pairs of atoms has been described by the
Lennard-Jones (LJ) potential (6,12):

VLJ(r) = ε0[(r0/r)12 − 2(r0/r)6], (1)

where ε0 is the binding energy and r0 is the bond length. To
find the interaction energy of graphene with the crystalline

FIG. 2. The rectangular sheet of graphene lying on a flat sub-
strate having a circular hole in its center. The sheet consists of
9470 carbon atoms and has the shape of a rectangle of size 15.6 ×
15.6 nm2. The radius of the hole in the substrate R = 6 nm.

TABLE I. Parameters of the LJ potential (1) for various pairs of
interacting atoms.

CC [39] CC [40] CH CO CSi CN CB

ε0 (meV) 2.76 4.56 2.95 3.44 8.92 3.69 5.94
r0 (Å) 3.809 3.851 3.369 3.676 4.073 3.754 3.965

graphite surface, we used the potential parameters taken from
[39] and, for other substrates, from [40]. Table I shows the
parameters of LJ potential (1) for various atomic pairs.

The calculations have been made for the 2.0 × 1.8 nm2

graphene sheet consisting of 160 carbon atoms, which is
arranged in parallel to the crystal surface at distance h (see
Fig. 1). At each value of distance h, the energy was averaged
over the shifts along substrate surface and, then, normalized
on the number of atoms in the graphene sheet. As a result,
we obtained the dependence of the interaction energy of one
atom of the sheet with the substrate on its distance from
substrate plane W (h). The calculations showed that the inter-
action energy with the substrate W (h) can be described with a
high accuracy by the Lennard-Jones potential (k, l):

W (h) = ε1[k(h1/h)l − l (h1/h)k]/(l − k), (2)

where power l > k. Potential (2) has the minimum W (h1) =
−ε1 (ε1 is the binding energy of the atom with substrate). The
stiffness of interaction with the substrate is K1 = W ′′(h1) =
ε1lk/h2

1. Table II presents the parameters of LJ potential (2)
for graphene sheet on various substrates.

When graphene is located on the (111) surface of crys-
talline nickel, a stronger chemical interaction of carbon atoms
with the atoms of the substrate occurs (hybridization of the
metal d band with graphene π states and charge transfer from
the metal to graphene). As a result of the interaction of a
graphene sheet with a crystal surface a gap of the magnitude
ω0 = 240 cm−1 (1 cm−1 = 2π × 2.997925 × 1010 s−1) ap-
pears at the bottom of the frequency spectrum of transversal
oscillations of the sheet [41]. From this we can estimate the
harmonic coupling parameter of the interaction of the sheet
atom with the substrate K1 = ω2

0MC = 41 N/m (MC is the
mass of carbon atom). Therefore, for small displacements,
the interaction with the substrate can be described by the
harmonic potential

W (h) = 1
2 K1(h − h1)2, (3)

with stiffness coefficient K1 = 41 N/m and equilibrium dis-
tance to the substrate plane h1 = 2.145 Å [42].

TABLE II. Parameters of (k, l ) LJ potential (2) for graphene
sheet on various substrates.

ε1 (eV) h1 (Å) l k K1 (N/m)

Graphene–Ice Ih 0.029 3.005 10 3.5 1.80
Graphene–Graphite 0.052 3.37 10 3.75 2.75
Graphene–6H-SiC 0.073 4.19 17 3.75 4.24
Graphene–h-BN 0.0903 3.46 10 3.75 4.53
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To describe oscillations of the graphene sheet, we present
the system Hamiltonian in the form

H =
N∑

n=1

[
1

2
Mn(u̇n, u̇n) + Pn + δnW (zn)

]
, (4)

where N is the number of atoms in the sheet, Mn is the mass
of nth atom, un = (xn(t ), yn(t ), zn(t )) is the radius vector of
nth atom at the time t . The term Pn describes the energy of
interaction of the atom with index n with the neighboring
atoms, term W (zn) the energy of interaction of the atom with
substrate surface (the plane of the substrate coincides with the
plane xy). Coefficient δn = 1 if nth atom interacts and δn = 0
if it does not interact with the substrate (if it lies above the
hole in the substrate).

To describe the carbon-carbon valence interactions, let us
use a standard set of molecular dynamics potentials [43,44].
We consider a hydrogen-terminated graphene sheet, where
edge atoms correspond to the molecular group CH. We will
consider such a group as a single effective particle at the loca-
tion of the carbon atom. Therefore, in our model of graphene
nanoribbons we take the mass of atoms inside the stripe as
Mn = MC = 12mp, and for the edge atoms we consider a
larger mass Mn = MC + MH = 13mp (where mp = 1.6603 ×
10−27 kg is the proton mass).

The valence bond between two neighboring carbon atoms
n and k can be described by the Morse potential

U1(un, uk ) = εr{exp[−α(rnk − r0)] − 1}2, (5)

where rnk = |un − uk|, εr = 4.9632 eV is the valence bond
energy, and r0 = 1.418 Å is the equilibrium valence bond
length.

The valence angle deformation energy between three adja-
cent carbon atoms n, k, and l can be described by the potential

U2(un, uk, ul ) = εϕ (cos ϕ − cos ϕ0)2, (6)

where cos ϕ = (un − uk, ul − uk )/rnkrkl , and ϕ0 = 2π/3 is
the equilibrium valent angle. Parameters α = 1.7889 Å−1 and
εϕ = 1.3143 eV can be found from the small-amplitude os-
cillations spectrum of the graphene sheet [45]. Valence bonds
between four adjacent carbon atoms n, m, k, and l constitute
torsion angles, whose potential energy can be defined as

U3(φ) = εφ (1 − cos φ), (7)

where φ is the corresponding torsion angle (φ = 0 is the
equilibrium value of the angle) and εφ = 0.499 eV.

A detailed discussion about the choice of the interatomic
potential parameters can be found in [43]. The same set of
potentials has been successfully used to simulate the heat
transfer along the carbon nanotubes and nanoribbons [46] for
the analysis of spatially localized oscillations [47–49] and also
for the analysis of the theoretical strength and the postcritical
behavior of deformed graphene [50,51].

If we want to simulate the absence of a substrate for a
part of the sheet atoms, we must take δn = 0 for these atoms.
Figure 2 shows a square sheet of graphene of size 15.6 ×
15.6 nm2 consisting of N = 9470 carbon atoms. The central
circular part of the sheet does not interact with the substrate
(for atoms from this part the coefficient δn = 0), forming a
circular membrane of radius R = 6 nm.

III. TRANSVERSAL NORMAL MODES

Let us consider the transversal vibrations of the atoms of
the sheet. The natural frequencies and normal modes were
derived numerically as the solution of the problem on eigen-
values for matrices of the second derivatives of size N × N .

When only transversal offsets are taken into account, the
Hamiltonian of the sheet (4) can be written in the form

H = 1
2 (MŻ, Ż) + P (Z), (8)

where M is a diagonal matrix of all masses of the sheet,
Z = {zn − h0}N

n=1 is N-dimensional vector of transversal
displacements from equilibrium positions. Hamiltonian (8)
corresponds to the equations of motion

−MZ̈ = ∂

∂Z
P (Z). (9)

For small displacements, Eq. (9) reduces to a system of linear
equations

−MZ̈ = BZ, (10)

where the matrix B has dimension N × N ,

B =
(

∂2P
∂zn1∂zn2

∣∣∣∣
Z=0

)N,N

n1=1,n2=1

.

Next, we make the transformation Z = M−1/2X, and re-
duce the system (10) to the linear equations of the form
−Ẍ = CX with the symmetric matrix C = M−1/2BM−1/2.
Solutions of this linear system describe the eigenmodes of the
sheet oscillations, which can be presented in the form X(t ) =
Ae exp(iωt ), where A is the oscillation amplitude, ω = √

λ

is the frequency, λ and e are the eigenvalue and normalized
eigenvector of the matrix C [Ce = λe, (e, e) = 1].

The eigenvalues of the matrix C can be found numeri-
cally. Numerical matrix diagonalization demonstrates that the
presence of the substrate leads to the presence of the gap
[0, ω0) at the bottom of the frequency spectrum of transver-
sal vibrations (minimum nonzero frequency ω0 = √

K1/MC).
All eigentransversal vibrations of the sheet with frequencies
ω < ω0 correspond to vibrations localized in the suspended
central part of the sheet, i.e., to eigenvibrations of the circular
membrane.

The dependence of the natural oscillations of the circular
membrane on its radius is shown in Fig. 3. Here, frequency
ω0 = 78.87 cm−1. A graphene membrane on a crystalline
h-BN substrate with a radius of the central hole in the substrate
R = 5 has only one localized natural oscillation, at R = 10, 6
oscillations; at R = 15, 1; at R = 20, 23; at R = 30, 55; at
R = 40, 94; at R = 50, 144; and at R = 60 Å, 209 natural
oscillations. The minimum natural frequency of transversal
vibrations of the membrane is approximated with high accu-
racy by the dependence

ωi ∼ ci(R + Ri )
−2, (11)

with index i = 1, c1 = 3950 cm−1 Å2, R1 = 4.0 Å.
Asymptotics (11) take place for all substrates, and this

shows that the interaction of the sheet with the substrate leads
to an additional increase in the effective radius of the mem-
brane by Ri. The amount of additional increase depends on
the force of interaction with the substrate. The stronger is the
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FIG. 3. Dependence of frequencies ω of intrinsic transversal os-
cillations of a circular membrane of a graphene sheet lying on the
crystalline h-BN substrate on the radius of the membrane R. Curves
i = 1, 2, 3, and 4 show the dependencies ωi = ci(R + Ri )−2, where
coefficients ci = 3950, 15 500, 34 500, and 62 500 cm−1Å2, and ad-
ditional radius Ri = 4.0, 4.7, 5.0, and 5.7 Å. Straight line 5 shows
the minimum frequency of transversal oscillations of a graphene
sheet on a flat substrate ω = ω0 = 78.87 cm−1. Large blue markers
show natural frequencies of intrinsic nodeless oscillations of the
membrane with circular symmetry, while the small red markers stand
for the other modes. The dashed curve 6 shows the dependence (12)
obtained in [38].

interaction with the substrate, the smaller is the value of R1. So
R1 = 4.7 for ice substrate having the weakest interaction with
a sheet, R1 = 4.2 for graphite substrate, R1 = 3.8 for silicon
carbide substrate, and R1 = 2.1 Å for the Ni (111) substrate
with the strongest interaction.

Higher-frequency natural nodeless oscillations of the mem-
brane with circular symmetry also have asymptotic (11) with
index i = 2, 3, ...(see Fig. 3).

Let us note that without taking into account the interaction
with the substrate, the first frequency of a circular membrane
with fixed edges is [38]

f0 = ω0/2π = a/4R2, (12)

where a = 3.52 × 10−6 m2/s. To obtain this dependence, the
full-atom model of the membrane with REBO potential [52]
was used. As can be seen in Fig. 3, both models show very
close values of the first frequency ω0.

IV. ANHARMONISM OF MEMBRANE VIBRATIONS

To simulate the natural vibrations of the membrane, we
must numerically integrate a system of equations of motion

Mnün = − ∂H

∂un
, n = 1, . . . , N (13)

with initial conditions

xn(0) = x0
n, yn(0) = y0

n, zn(0) = z0
n,

ẋn(0) = 0, ẏn(0) = 0, żn(0) = Aen,

where {u0
n = (x0

n, y0
n, z0

n )}N
n=1 is the ground state of the

graphene sheet, e = {en}N
n=1 is the eigenvector of the
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FIG. 4. Dependence of frequencies ω of the first and the second
(curves 1, 3 and 2, 4) natural oscillations of the circular membrane
(R = 6 nm) on (a) amplitude of transverse displacements of the
membrane center Az and (b) energy of vibration E . Energy of thermal
vibrations E = kBT for temperature T = 300 K is represented by a
horizontal dashed line.

matrix C [amplitude A determines the energy of vibrations
E = A2(Me, e)/2]. We will use the condition of absorbing
edges (the friction � = 1/tr with time relaxation tr = 10 ps
was introduced at the edges of the sheet).

Let us consider the dynamics of the natural vibration of
the membrane with radius R = 60 Å. Numerical integration
of the system of equations of motion (9) has shown that when
energy E < E0 = 0.01 eV the membrane performs harmonic
oscillations with eigenmode frequency (frequency of the vi-
bration ω does not depend on the energy E ). When E > E0,
the frequency of the membrane vibration begins to increase
monotonically when increasing energy (see Fig. 4). Thus, at
a high vibration energy, the membrane behaves like an an-
harmonic oscillator with hard anharmonicity. Let us note that
at room temperature T = 300 K, the energy of thermal self-
oscillation of the membrane E > E0 (E = kBT = 0.026 eV).
Therefore, at room temperature, the thermal vibrations of the
graphene membrane will be anharmonic.

V. RESONANT VIBRATIONS

To analyze the resonant vibrations of a single-layer mem-
brane, we simulate the effect of forced periodic transverse
motion of the substrate. To do this, we numerically integrate
the system of Langevin equations of motion

Mnẍn = −∂H

∂xn
+ δn[−�Mnẋn + ξn,1(t )],

Mnÿn = −∂H

∂yn
+ δn[−�Mnẏn + ξn,2(t )], (14)

Mnz̈n = −∂H

∂zn
+ δn[−�Mnżn + ξn,3(t ) + F (t, zn)],
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where the coefficient δn = 1 if the atom interacts with the
substrate and δn = 0 if it does not interact (if it is located
in the suspended part of the sheet), � = 1/tr is the friction
coefficient, and random forces vectors (ξn,1, ξn,2, ξn,3) are nor-
malized as follows:

〈ξn,i(t1)ξm, j (t2)〉 = 2Mn�kBT δnmδi jδ(t1 − t2),

where kB is Boltzmann constant, T is temperature of the
thermostat, and F is force of attraction of the atom to the
substrate.

Let us note that the density of the air is more than 103

times less than the density of the substrate. The intensity
of heat exchange with air will be approximately the same
times less than the intensity of exchange with the substrate.
Therefore, for nanosize graphene membrane we can neglect
its heat interaction with the air.

If the position of the substrate plane is periodically changed
along the z axis, then in the system of sheet motion equation
(10) the force

F (t, z) = −W ′[z + A cos(ωt )]

will be added, where A and ω are the amplitude and the
frequency of the forced oscillations of the substrate. In or-
der to illustrate better, we also define normalized amplitude
Aω = Aω (by this definition the amplitude Aω characterizes
the oscillation energy, dimension [Aω] = Å cm−1).

Let us analyze at what frequencies of forced oscillations
of the substrate pumping of the energy to vibrations of the
suspended section of the sheet will be the highest. For the
sheet, the substrate is an external thermostat, so in the system
of the equations of motion (14) only atoms in contact with
the substrate interact with the Langevin thermostat. The in-
tensity of heat exchange with the thermostat is characterized
by a relaxation time tr . The value tr = 1 ps was used in
the simulation. In the time t0 = 100tr the sheet being fully
thermalized. The analysis of the further dynamics of the sheet
allows us to find the average temperature of the circular
membrane

Tm = 1

3NmkB

N∑
n=1

(1 − δn)Mn〈(u̇n, u̇n)〉, Nm

=
N∑

n=1

(1 − δn),

where summation occurs only for atoms not in contact with
the substrate (Nm is the number of such atoms), and the aver-
age value

〈(u̇n, u̇n)〉 = lim
t→∞

1

t

∫ t0+t

t0

(u̇n(τ ), u̇n(τ ))dτ.

When the substrate is stationary (when the oscillation
amplitude A = 0), the temperature of the membrane is al-
ways equal to the temperature of the thermostat (Tm = T ).
Therefore, additional thermalization of the membrane can be
characterized by a temperature difference �T = Tm − T .

Let us take the oscillation normalized amplitude Aω = 1
and 2 Å cm−1, the temperature of the thermostat T = 300 K.
The dependence of the additional thermalization of the mem-
brane �T on the frequency of vertical oscillations of the
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FIG. 5. Dependence of additional thermalization of the graphene
membrane �T on the oscillation frequency of the h-BN substrate
ω for membrane radius (a) R = 2, (b) R = 4, and (c) R = 6 nm.
Red curves 1, 3, and 5 show dependencies for amplitude of forced
substrate vibrations Aω = 1, blue curves 2, 4, and 6 dependencies
for Aω = 2 Å cm−1. The circular markers show the values of the
frequencies of the intrinsic nodeless oscillations of the membrane
with circular symmetry (see Sec. III and Fig. 3).

substrate ω is shown in Fig. 5. As can be seen from the figure,
the additional thermalization of the membrane is different
from zero only near certain frequency values, the number of
which increases with increasing membrane radius (see Fig. 6).
Because by the vertical displacement of the substrate on all
the edge atoms of the circular membrane are the same forces,
the vertical vibrations of the substrate in the membrane can
only cause vibrations with circular symmetry. Therefore, ad-
ditional thermalization occurs only at frequencies close to
the frequencies of the intrinsic nodeless oscillations of the
membrane, which have a circular symmetry (the amplitude
of the displacements of the membrane atom depends only
on its distance from the center of the membrane). Thus,
additional thermalization of the membrane occurs primarily
due to the resonant pumping of its own circularly symmetric
oscillations.

A similar resonant pumping of the membrane eigenmodes
occurs for the graphene sheet for all considered substrates
(see Fig. 6). As can be seen from the figure, the resonant
pumping of the main oscillation occurs almost equally for
all membranes. The differences appear only for higher fre-
quency resonances. As the membrane radius increases, the
resonance frequencies decrease and their number increases.
The analysis of the energy distribution of resonant vibrations
of the membrane (see Fig. 7) shows that the distribution al-
ways has a circular symmetry and has several nodal circles
whose number coincides with the number of the resonance

195435-5



ALEXANDER V. SAVIN PHYSICAL REVIEW B 103, 195435 (2021)

  0

20

40

60

0 10 20 30 40 50 60
2

3

4

5

6

ΔT (K)

ω (cm−1)

R (nm)

(b)

  0

20

40

60

0 10 20 30 40 50 60
2

3

4

5

6

ΔT (K)

ω (cm−1)

R (nm)

(a)

FIG. 6. Dependence of additional thermalization �T on the os-
cillation frequency of the substrate ω and on the membrane radius
R for graphene membrane on substrates (a) Ni(111) and (b) 6H-
SiC(0001) (normalized amplitude Aω = 2 Å cm−1).

frequency. This shows that resonance pumping occurs pri-
marily due to the excitation of natural oscillations of the
membrane with circular symmetry (i.e., oscillations having
only nodal circles).

Let us consider in more detail the first resonance of
the membrane. As can be seen in Figs. 5 and 6, when
the frequency increases, the vibrational energy of the mem-
brane initially grows monotonically, at a certain frequency
ωr reaches its maximum value, and then sharply decreases
to the background value of the energy of thermal vibrations.
Therefore, it is convenient to determine the frequency of the
first resonance as the average value

ω̄1 = 1

C

∫ 1.1ωr

0
ω�T (ω)dω, C =

∫ 1.1ωr

0
�T (ω)dω,

(15)

where ωr is the first maximum of the function �T (ω). Sim-
ilarly, we can define the frequencies of next resonances ω̄i,
i = 2, 3, . . . .

The results of numerical simulation of membrane vibra-
tions are shown in Fig. 5. The figure shows that each ith
eigenmembrane vibration with a circular (radial) symmetry
corresponds to resonant membrane vibration with frequency
ω̄i > ωi. The resonance frequency is always higher than the
frequency of the corresponding natural membrane vibration
but lower than the frequency of the next natural vibration:
ωi < ω̄i < ωi+1, i = 1, 2, 3, ... . The larger the amplitude A
of forced substrate vibration gets, the stronger the resonance
frequency shifts to the right. This indicates the nonlinear-
ity of resonances due to hard anharmonicity of membrane

FIG. 7. Temperature distribution in a circular graphene mem-
brane of radius R = 6 nm (h-BN substrate, normalized amplitude of
forced substrate oscillations Aω = 2 Å cm−1) at (a) first resonance
(frequency ω = 1.9 cm−1, maximum temperature Tm = 331 K);
(b) second resonance (ω = 5.0 cm−1, Tm = 324 K); (c) third reso-
nance (ω = 9.4 cm−1, Tm = 324 K); (d) the fourth resonance (ω =
16.5 cm−1, Tm = 366 K). Blue color corresponds to the background
temperature T = 300 K, red color corresponds to the maximum tem-
perature Tm.

natural vibration at high energy (the frequency of natu-
ral vibration increases with increasing vibration amplitude).
Let us note that the hard anharmonicity of graphene mem-
brane was first experimentally detected in article [53] and
then theoretically described in continuum membrane model
[27].

The analysis of dependency of the resonance frequency ω̄i

on membrane radius R shows that as the radius increases, the
resonance frequency decreases slower than the frequency of
the corresponding natural membrane vibration ωi:

ω̄i ∼ di(R + Ri )
−αi , αi < 2 (16)

(see Fig. 8). The greater the amplitude Aω of the substrate
oscillation, the lower the value of exponent αi. For the first
resonance (i = 1) the exponent α1 = 1.7 for Aω = 1, and
αi = 1.6 for Aω = 2 Å cm−1. The deceleration of the decrease
of the resonance frequencies ω̄i with increasing radius R is
caused by the hard anharmonicity of the membrane vibrations.
Hard anharmonicity of the membrane leads to a increase in
the frequency of its transverse vibrations with an increase
in their amplitude (see Fig. 4). In the asymptotics (16), this
frequency increase is reflected in the decrease of the exponent
αi. For low-amplitude (harmonic) oscillations, the exponent is
always equal 2 (αi = 2), for high-amplitude oscillations, the
exponent monotonically decreases with increasing amplitude
of the substrate oscillations (αi ↘ for A ↗).
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FIG. 8. Dependence of eigenoscillation frequencies ωi (i = 1,
2, and 3, marked as 1, 2, and 3) and resonance frequencies ω̄i on
membrane radius R (marked as 4, 5, 6 and 7, 8, 9 for normalized
amplitude of forced substrate vibrations Aω = 1 and Aω = 2 Å cm−1)
for graphene on h-BN substrate. Blue curves 1, 2, 3 give approxi-
mations ωi = ci(R + Ri )−2 for ci = 3950, 15 500, 34 500 cm−1 Å2,
Ri = 4.0, 4.7, 5.0 Å, i = 1, 2, 3. Green curves 4, 5, 6 give approx-
imations ω̄i = di(R + Ri )−αi for Aω = 1 (di = 1650, 11 900, 32 000,
αi = 1.7, 1.9, 1.96), red curves 7, 8, 9 for Aω = 2 (di = 1270, 10 500,
2800 cm−1 Åαi , αi = 1.6, 1.85, 1.92). The dashed line 6 shows the
dependence (12) obtained in [38]. Dimension of the frequency [ω] =
cm−1, radius [R] = Å.

The asymptotics for the eigenfrequencies and resonant fre-
quencies of circular membranes (11) and (16) are obtained by
simulating the vibrations of graphene membranes of radius
R � 6 nm. It is clear that these asymptotics must also remain
for membranes with a large radius. There are a number of
experimental works on resonant vibrations of circular mem-
branes with R � 2 μm [5,8,11,15,17]. Let us examine how
the asymptotics applied for these membranes correlate with
the frequency values obtained in these experimental works.
The comparison of the asymptotics with the obtained values of
the resonant frequencies is shown in Fig. 9. In [17], a single-
layer graphene membrane with a diameter of D = 4.8 μm
separating regions with different pressures was studied. In the
absence of pressure (under zero tension), the main frequency
of the membrane is f0 = 0.3 MHz. As can be seen from the
figure, this value corresponds well with the obtained asymp-
totics for the main eigenvibration of the membrane (11). At a
pressure difference of �p = 93 kPa, the membrane is already
in a highly stressed (elongated) state, and its oscillation fre-
quency increases significantly: f0 = 38 MHz. As can be seen
in Fig. 9, the experimental values of the resonant frequencies
of circular single-layer graphene membranes are higher than
the values of the predictable asymptotics (16). This can be
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FIG. 9. Dependence of eigenoscillation frequencies ω1 and res-
onance frequencies ω̄1 on membrane radius R (curves 1 and 2) for
normalized amplitude of forced substrate vibrations Aω = 2 Å cm−1)
for graphene on h-BN substrate. Blue curve 1 shows approxi-
mation ω1 = c1(R + R1)−2 for c1 = 3950 cm−1 Å2, R1 = 4.0. Red
curve 2 shows approximations ω̄1 = d1(R + R1)−α1 for Aω = 2 (d1 =
1270 cm−1 Åα1 , α1 = 1.6. The dashed line 3 shows the dependence
(12) obtained in [38]. Markers 4 and 5 show the values of the reso-
nance frequencies of the unstressed and stressed membrane of radius
R = 2.4 [17], marker 6 the value for membrane with R = 2.7 [11], 7
is the value for the membrane with R = 5, 10 [15], 8 for R = 2.5 [5],
9 for R = 2, 11.2; 8.566 μm [8].

explained by the fact that in the manufacture of membranes
the graphene sheet covering the holes in the substrate remains
in a stressed state.

VI. CONCLUSIONS

We have simulated natural and resonant oscillations of
suspended circular graphene membranes using full-atomic
models. The presence of the substrate [flat surface of graphite,
h-BN crystal, hexagonal ice, silicon carbide 6H-SiC(0001),
and (111) nickel surface] leads to the formation of a gap at
the bottom of the frequency spectrum of transversal vibra-
tions of the sheet. Frequencies of natural oscillations of the
membrane ωi always lie in this gap, and they decrease with
the increasing radius of the membrane R as (R + Ri )−2 with
nonzero effective increase of radius Ri > 0. The modeling of
the sheet dynamics has shown that forced small-amplitude
periodic transversal vibrations of the substrate lead to res-
onant vibrations of the membranes, at frequencies close to
the eigenfrequencies of nodeless vibrations of the membranes
with circular symmetry. The energy distribution of the res-
onant vibrations of the membrane has a circular symmetry
and several nodal circles whose number coincides with the
number of the resonant frequency i. The frequencies of the
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resonances decrease by increasing the radius of the membrane
as (R + Ri )−αi with exponent αi < 2. The lower rate of the
resonance frequency decrease is caused by the hard anhar-
monicity of membrane vibrations. Hard anharmonicity of the
membrane leads to a increase in the frequency of its transverse
vibrations with an increase in their amplitude.
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