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Phonon Casimir effect in polyatomic systems
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The phonon Casimir effect describes the phonon-mediated interaction between defects in condensed-matter
systems. Using the path-integral formalism, we derive a general method for calculating the Helmholtz free energy
due to vibrational modes in systems of arbitrary dimensionality and composition. Our results make it possible
to extract the defect interaction energy at any temperature for various defect configurations. We demonstrate our
approach in action by performing numerical calculations for mono- and diatomic chains, as well as a diatomic
molecule, at zero and finite temperatures and validate our results using exact diagonalization.
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I. INTRODUCTION

In his 1948 communication [1], Hendrik Casimir estimated
the attractive force experienced by parallel conducting plates
due to the electromagnetic vacuum fluctuations. He stated that
“although the effect is small, an experimental confirmation
seems not unfeasible” [1]. The smallness of the effect was
not exaggerated as it took fifty years of technological devel-
opment to make the observation of this effect possible [2,3].
In recent years, advances in nanotechnology [4–13] and cold
atoms [14–17] have stimulated the community’s interest in
this subject [18–22] as the relevant energy scales have become
increasingly accessible in the experimental setting.

The phonon Casimir effect (PCE) is a related phe-
nomenon describing phonon-mediated interaction between
broken symmetry regions in solid-state materials. This sym-
metry breaking can be accomplished by replacing the lattice
atoms with species of different masses, adding an external po-
tential to restrict the motion of the system atoms, or modifying
the force constant between some of the system’s atoms. We
will refer to all these modifications as “defects.” Instead of
the electromagnetic vacuum, PCE is rooted in the zero-point
phonon energy. Even though the expected energy scales are
also expected to be small, recent estimates [23,24] suggest
that cold atom techniques can be employed to investigate PCE
[18,23].

What differentiates PCE from its electromagnetic counter-
part is tunability. Because phonons are highly sensitive to the
system’s dimensionality and composition, it is, in principle,
possible to engineer experimental setups to enhance the inter-
action energies. Therefore, a thorough understanding of PCE
for general systems is desirable.

One of the earliest works on PCE [23], focusing on pairs
of dynamic impurities in one-dimensional systems with a
single phonon branch, showed that at zero temperature and
large impurity separation, the interaction energy between the
defects decreases as the cube of the distance between them.
Raising the temperature of the system results in an exponential

suppression of the interaction if the separation exceeds the
thermal de Broglie wavelength [23].

Following this pioneering publication, the authors of
Ref. [25] performed a detailed study to demonstrate that the
power-law dependence of the interaction is, in fact, a quasi-
power-law with a variable exponent, approaching −3 at large
separations. In addition to treating atomic impurities in 1D,
the authors of Ref. [25] addressed the interaction between
lattice atoms confined by an external harmonic potential. The
authors extended their analysis to two- and three-dimensional
systems with a single phonon branch in Ref. [24]. They
showed that the interaction decays faster at higher dimen-
sionalities and confirmed the temperature-induced interaction
suppression at larger separations. Similar to Ref. [23], these
works focused on two defects at a time.

In this paper, we develop a general formalism that allows
one to treat systems of any dimensionality with an arbitrary
number of phonon branches and defects at any temperature.
In fact, our method applies even to noncrystalline systems,
where vibrational modes cannot be labeled by their crystal
momentum. Using path integrals, we derive a formula for
the Helmholtz free energy for systems hosting impurities,
harmonic potential wells, and modified bonds, from which the
interaction energy can be obtained. Unlike earlier work, where
potential wells and impurities were treated separately, our
approach makes it possible to mix various defect types. The
ability to treat multiple defects simultaneously is important
because the interaction between defects in a phononic system
is not pairwise [26]. In other words, the total energy does
not equal the sum of interaction energies between pairs of
defects in a way that one finds in, say, electrostatic charge
interaction. The novel ability to work with multiple phonon
branches allows one to study polyatomic systems. As was
suggested in Ref. [24], polyatomic lattices with high Debye
frequencies, currently used in the studies of superconductivity,
could be suitable candidates for observing PCE in two and
three dimensions.
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The paper is organized as follows. In Sec. II, we present
the derivation of this paper’s main result and discuss how
it relates to exact diagonalization in Sec. III. Section IV is
dedicated to the simplest systems treatable by our formalism:
diatomic molecules. We adapt our formalism to infinitely
large periodic systems, where exact diagonalization fails, in
Sec. V. To demonstrate our formalism in action, Sec. VI is
dedicated to the study of infinite one-dimensional chains that
can be compared to large-but-finite systems treated using ex-
act diagonalization. Concluding remarks are given in Sec. VII.

II. GENERAL FORMALISM

We begin our discussion by constructing a framework
to handle systems of any dimensionality with an arbitrary
defect number and arrangement. To make the derivation as
transparent as possible, we approach it systematically by
first providing a second-quantized Hamiltonian for such a
general system. Next, we translate this Hamiltonian into the
imaginary-time action to calculate the system’s free energy
and, consequently, the defect interaction energy.

A. Hamiltonian

Even though PCE is typically formulated for crystalline
materials, which support phonon modes, it is more general
and, in fact, easier to derive it for an arbitrary system with vi-
brational modes without insisting on crystal symmetry. Within
the harmonic approximation, a general Hamiltonian operator
for a D-dimensional system of this type can be written as

Ĥ = 1

2

∑
j

p̂†
j p̂ j

m j
+ 1

2

∑
jk

û†
jVjkûk

+ 1

2

∑
jk

p̂†
j� jkp̂k + 1

2

∑
jk

û†
j� jkûk, (1)

where p̂ j and û j are momentum and displacement operator
vectors of length D for the jth atom, respectively. The first line
describes the system in the absence of defects using the har-
monic approximation: mj is the mass of the jth atom and Vjk is
a D × D harmonic coupling matrix between the displacements
of the jth and kth atoms [27,28]. � jk and � jk in the second
line are symmetric D × D matrices and correspond to defects.
The former can be used to describe a change in the force
constant between atoms or a local external potential, while
the latter can be used to represent effects like the change in
the atomic mass, in which case � j j = 1D×D ⊗ (M−1

j − m−1
j ),

where Mj is the new mass. Note that the sums in the second
line include all atoms in the system, even if the corresponding
� jk and � jk are zero. The defect portion of Eq. (1) is a
generalization of the Hamiltonians used for similar systems
in Refs. [24–26].

To translate the problem into the language of second quan-
tization, we write the position and momentum operators as

ûl = 1√
2

∑
s

(bs + b†
s )

√
1

ml�s
εs,l︸ ︷︷ ︸

Us,l

, (2)

p̂l = i√
2

∑
s

(−bs + b†
s )

√
ml�sεs,l︸ ︷︷ ︸

Ps,l

. (3)

Here εs is the normalized mode eigenvector containing the
amplitudes for all the atoms in the solid. It is obtained by solv-
ing �2

s εs = m−1/2Vm−1/2εs, where V is the matrix of force
constants and m is a block-diagonal matrix of mj1D×D. εs,l

is the segment of this eigenvector of length D corresponding
to the lth atom and bs (b†

s ) are bosonic annihilation (creation)
operators for the vibrational mode s.

Plugging Eqs. (2) and (3) into the first two terms of Eq. (1)
yields the familiar harmonic mode Hamiltonian

Ĥ0 =
∑

s

�s

(
b†

sbs + 1

2

)
. (4)

For the defect part, we write

Ĥdef = 1

4

∑
ss′

PT
s′ �Ps(−b†

s′ + bs′ )(−bs + b†
s )

+ 1

4

∑
ss′

UT
s′ �Us(bs′ + b†

s′ )(bs + b†
s ), (5)

where Ps = �1/2
s m1/2εs (Us = �−1/2

s m−1/2εs) is the column
vector of Ps,l (Us,l ) and � (�) is the matrix of � jk (� jk).

Whereas Eq. (4) is normal-ordered, Eq. (5) is not. There-
fore, we commute the operators to establish the ordering
necessary for the application of the path integral formalism:

(±b†
s′ + bs′ )(±bs + b†

s )

=b†
s′bs + b†

sbs′ ± bs′bs ± b†
s′b†

s + δss′ . (6)

As expected, commuting the operators produces constant en-
ergy terms. Combining these terms with the vacuum energy
portion of Eq. (4) yields

F0 =
∑

s

�s

2
+ 1

4

∑
s

PT
s �Ps + 1

4

∑
s

UT
s �Us. (7)

Note that if � and � are block-diagonal in defects (i.e., �i j =
�i jδi j , same for �), F0 contains no defect-defect cross terms
and, therefore, no interaction between the defects.

F0 in Eq. (7), originating from the commutation of the
creation and annihilation operators, is a consequence of the
Heisenberg uncertainty principle. For a pristine system (� =
� = 0), it is the only contribution to the Helmholtz free
energy at zero temperature. However, if the system contains
defects, there is another term that adds to the free energy even
at zero temperature. It is precisely that term that gives rise to
PCE if � and � are block-diagonal, as we will show below.

B. Action and Partition Function

The normal-ordered operator-dependent part of the
Hamiltonian can be straightforwardly transcribed into the
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imaginary-time action

S =
∑

n

{ ∑
s

φ̄n,s(−iωn + �s)φn,s + 1

4

∑
ss′

PT
s′ �Ps(φ̄n,s′φn,s + φ̄n,sφn,s′ − φ−n,s′φn,s − φ̄n,s′ φ̄−n,s)

+ 1

4

∑
ss′

UT
s′ �Us(φ̄n,s′φn,s + φ̄n,sφn,s′ + φ−n,s′φn,s + φ̄n,s′ φ̄−n,s)

}
, (8)

where ωn are bosonic Matsubara frequencies. Note that while
the products of the fields corresponding to annihilation and
creation operators carry the same Matsubara frequency, prod-
ucts of two creation/annihilation fields have the opposite
frequency index.

Exponentiating −S and integrating over all fields gives the
partition function, from which the Helmholtz free energy can
be obtained. Before performing the field integrals, however,
we note that, for nonzero Matsubara components, the fields in
the defect portion of the action enter either as symmetric or
antisymmetric in n, which is easier to see if we write

Sn �=0 =
∑
n,s

φ̄n,s(−iωn + �s)φn,s

+ 1

4

∑
n,ss′

PT
s′ �Ps(φ̄n,s′ − φ−n,s′ )(φn,s − φ̄−n,s),

+ 1

4

∑
n,ss′

UT
s′ �Us(φ̄n,s′ + φ−n,s′ )(φn,s + φ̄−n,s). (9)

Therefore, it is useful to introduce a change of variables
ψ±

n,s = (φn,s ± φ̄−n,s)/
√

2. Because ψ̄±
n,s = ±ψ±

−n,s, only ψ±
n>0

are unique. Explicitly, the momentum perturbation term be-
comes

∑
n>0,ss′

PT
s′ �Ps

2
(ψ̄−

n,s′ψ
−
n,s + ψ̄−

−n,s′ψ
−
−n,s)

=
∑

n>0,ss′

PT
s′ �Ps

2
(ψ̄−

n,s′ψ
−
n,s + ψ−

n,s′ψ̄
−
n,s)

=
∑

n>0,ss′
PT

s′ �Psψ̄
−
n,s′ψ

−
n,s. (10)

For the last step, we use the fact that the two terms in the
parentheses are related by the interchange of s ↔ s′. The pref-
actor scalar remains invariant under this interchange because
� is symmetric [PT

s′ �Ps = (PT
s′ �Ps)T = PT

s �Ps′ ], allowing
us to combine the terms in the parentheses. A similar pro-
cedure can be performed for the U-term in Eq. (9), leading
to

Sn>0
ψ =

∑
n>0,ss′

	̄n,s′

[ −
−1
n,s︷ ︸︸ ︷(

�s −iωn

−iωn �s

)
δss′

+
(

UT
s′ 0

0 PT
s′

)
︸ ︷︷ ︸

RT
s′

(
� 0
0 �

)(
Us 0
0 Ps

)
︸ ︷︷ ︸

Rs

]
	n,s, (11)

where 	̄n,s′ = (ψ̄+
n,s′ ψ̄−

n,s′ ) and 
−1
n,s originates from the first

line of Eq. (9).
Taking the Gaussian field integral for each n yields the

partition function

Z = Z0

∏
n>0

∣∣∣∣β
(

−
−1
n + RT

(
� 0
0 �

)
R

)∣∣∣∣−1

, (12)

where RT is a column vector of RT
s and 
−1

n is a block-
diagonal matrix of 
−1

n,s . We will address Z0, coming from the
n = 0 portion of the action shortly. For a later convenience,
we rewrite the determinant term as

Zn �=0 = ∣∣−β
−1
n

∣∣−1
∣∣∣∣1 + �(iωn)

(
� 0
0 �

)∣∣∣∣−1

, (13)

where �(iωn) = −R
nRT . Explicitly,

�(iωn) =
∑

s

Rs

(
�s

ω2
n+�2

s

iωn
ω2

n+�2
s

iωn
ω2

n+�2
s

�s
ω2

n+�2
s

)
RT

s

=
∑

s

(
m− 1

2 εsε
T
s m− 1

2 iωnm− 1
2 εsε

T
s m

1
2

iωnm
1
2 εsε

T
s m− 1

2 �2
s m

1
2 εsε

T
s m

1
2

)

× 1

ω2
n + �2

s

=
(

m− 1
2

iωnm
1
2

)
(iωn)

(
m− 1

2 iωnm
1
2

) +
(

0 0
0 m

)
(14)

with

[(z)]i j =
∑

s

εs,i ⊗ εs, j

−z2 + �2
s

, (15)

as D × D matrix. The last equality in Eq. (14) relies on the
fact that

∑
s εsε

T
s = 1 due to the orthonormality of the eigen-

vectors.
So far, we have addressed the action corresponding

nonzero Matsubara frequencies. The remaining term in Eq. (8)
can be written as

Sn=0 = 1

2

∑
ss′

�̄0,s′

[ −
−1
0,s︷ ︸︸ ︷(

�s 0
0 �s

)
δss

+
(

UT
s′ PT

s′
UT

s′ −PT
s′

)
︸ ︷︷ ︸

R̃T
s′

(
�
2 0
0 �

2

) (
Us Us

Ps −Ps

)
︸ ︷︷ ︸

R̃s

]
�0,s,

(16)
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where (φ̄0,s φ0,s) = �̄0,s. Integrating over �0 gives

Z0 =
∣∣∣∣β

(
−
−1

0 + R̃T

(
�
2 0
0 �

2

)
R̃

)∣∣∣∣−
1
2

= ∣∣−β
−1
0

∣∣− 1
2

∣∣∣∣1 − R̃
0R̃T

2

(
� 0
0 �

)∣∣∣∣−
1
2

. (17)

Explicitly,

− R̃
0R̃T

2
= 1

2

∑
s

1

�s

(
Us Us

Ps −Ps

)(
UT

s PT
s

UT
s −PT

s

)

=
(

m− 1
2 (0)m− 1

2 0
0 m

)
= �(0). (18)

C. Free Energy

The free energy is obtained from the partition function
using F = −T lnZ , where T is the temperature. Combining
Eqs. (7), (12), (13), and (17) yields

F =
∑

s

�s

2
+ T

∑
n�0

1

2δn,0
ln

∣∣−β
−1
n

∣∣ + Fdef , (19)

Fdef = 1

4

∑
s

PT
s �Ps + 1

4

∑
s

UT
s �Us

+ T
∑
n�0

1

2δn,0
ln

∣∣∣∣1 + �(iωn)

(
� 0
0 �

)∣∣∣∣. (20)

Here, Fdef is the defect-generated part of the free energy and
the rest of the terms in Eq. (19) constitute the free energy of
the pristine system.

As we stated earlier, � and � matrices, as well as m and
 in Eq. (14), include all the atoms in the system. It is clear
from Eq. (20), however, that the atoms not subject to a �

or � perturbation do not contribute to the free energy as the
corresponding entries in the � matrix get multiplied by zero.
Therefore, when computing �, we only need to retain the
perturbed atoms.

To calculate the interaction energy FI for a collection of
defects, we subtract the Fdef for each individual defect from
the total multidefect Fdef . If � and � are block-diagonal, the
terms in the first line of Eq. (20) cancel to give

FI = T
∑
n�0

1

2δn,0
ln

∣∣∣∣1 + �(iωn)

(
� 0
0 �

)∣∣∣∣
− T

∑
n�0

1

2δn,0
ln

∣∣∣∣1 + �diag(iωn)

(
� 0
0 �

)∣∣∣∣, (21)

where �diag is a variant of � constructed using diag, which
itself contains only the diagonal blocks of . In other words,
diag removes the coupling between different atoms to give
the individual Fdef ’s.

It is useful to separate the n = 0 term in Eq. (21):

ln

∣∣∣∣1 +
(

m− 1
2 (0)m− 1

2 0
0 m

)(
� 0
0 �

)∣∣∣∣
− ln

∣∣∣∣1 +
(

m− 1
2 diag(0)m− 1

2 0
0 m

)(
� 0
0 �

)∣∣∣∣

= ln
∣∣1 + m− 1

2 (0)m− 1
2 �

∣∣
− ln

∣∣1 + m− 1
2 diag(0)m− 1

2 �
∣∣, (22)

so that the final form for the interaction energy becomes

FI = T
∑
n>0

ln

∣∣∣∣1 + �(iωn)

(
� 0
0 �

)∣∣∣∣
− T

∑
n>0

ln

∣∣∣∣1 + �diag(iωn)

(
� 0
0 �

)∣∣∣∣
+ T

2
ln

∣∣1 + m− 1
2 (0)m− 1

2 �
∣∣

− T

2
ln

∣∣1 + m− 1
2 diag(0)m− 1

2 �
∣∣. (23)

Before moving to concrete examples, we provide a sum-
mary of the steps that one takes to calculate FI for a general
system with diagonal � and �, which will be the focus of the
rest of this paper:

(1) Determine the masses of the system atoms hosting the
defects and construct m±1/2.

(2) Construct � and �, each of the same dimension as
m±1/2. If a particular mass only has the �-type or the �-type
perturbation, the corresponding elements in the other matrix
will be zero.

(3) Compute the mode frequencies �s and the correspond-
ing vectors εs for the host system.

(4) Calculate the (z) matrix and use it to construct
�(iωn) and �diag(iωn).

(5) Plug the (z) and �(z) matrices into Eq. (23) and
perform the summation over the Matsubara frequencies.

III. EXACT DIAGONALIZATION

For systems that are not prohibitively large, it is possible to
validate the path integral results using exact diagonalization.
Recall that the free energy of noninteracting Bose gas is given
by

F =
∑

s

�s

2
+ T ln(1 − e−�s/T ), (24)

where �s are the energies of the bosonic states (mode fre-
quencies in the context of this work). As in Sec. II, the
interaction energy between defects is calculated by first sub-
tracting the pristine-system F from the multidefect F and also
from single-defect F ’s for each individual defect to obtain the
corresponding Fdef ’s. Then, by subtracting the single-defect
Fdef ’s from the multidefect one, we obtain FI . We will compare
the exact diagonalization results with our formalism in the
subsequent sections when we explore concrete examples. At
this point, however, it is useful to consider the high-T limit of
FI as obtained from Eq. (24).

First, note that as T → ∞

F ≈
∑

s

T ln

(
�s

T

)
= T ln

(∏
s

�s

T

)
= T ln

∣∣∣∣�T
∣∣∣∣, (25)

where � is a diagonal matrix of �s obtained by the or-
thogonal transformation �2 = OT m− 1

2 Vm− 1
2 O. Next, using
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ln |�/T | = ln |�2/T 2|/2, we get

F = T

2
ln

∣∣∣∣∣OT m− 1
2 Vm− 1

2 O

T 2

∣∣∣∣∣ = T

2
ln

∣∣∣∣m−1V
T 2

∣∣∣∣, (26)

leading to

Fdef = T

2
ln

∣∣∣∣m−1V
T 2

∣∣∣∣ − T

2
ln

∣∣∣∣m−1
0 V0

T 2

∣∣∣∣
= T

2
ln

∣∣m−1m0

∣∣ − T

2
ln

∣∣V−1V0

∣∣, (27)

where the matrices m and V include the defects, while m0

and V0 are their unperturbed counterparts. Because m and
m0 are diagonal, the first term in the expression above can
be written as DT/2

∑
j ln(m j

0/m j ) where the sum runs over
all the perturbed atoms. It is easy to see that when we sub-
tract the single-defect Fdef ’s from the multiple-defect Fdef , this
term cancels: DT/2

∑
j ln(m j

0/m j ) − ∑
j[DT/2 ln(m j

0/m j )].
The remaining part gives

FI = −T

2
ln

∣∣V−1
all V0

∣∣ + T

2

∑
j

ln
∣∣V−1

j V0

∣∣
= T

2
ln

∣∣1 + V−1
0 �all

∣∣ − T

2

∑
j

ln
∣∣1 + V−1

0 � j

∣∣, (28)

where Vall = V0 + �all is the force constant matrix with all
the perturbations, and V j = V0 + � j is the matrix with a
single perturbation on the jth atom.

At this point, we drop the subscript 0 from V0 as we
have separated the perturbation in Eq. (28), making the
subscript redundant. Using the orthogonal transformation be-
tween V and �2, we can write �−2 = OT m

1
2 V−1m

1
2 O →

m− 1
2 O�−2OT m− 1

2 = V−1. The orthogonal matrix O is a row
vector of ε’s so that O�−2OT = ∑

s εsε
T
s /�2

s = (0) and
m− 1

2 (0)m− 1
2 = V−1. Plugging this into Eq. (28) and mak-

ing use of diag to combine the j summation gives the last
two terms of Eq. (23). By demonstrating the equality between
the high-T result obtained from exact diagonalization and
the zeroth Matsubara term, we have confirmed that at high-
temperature FI is dominated by this term, as expected.

Let us now address the significance of the n = 0 term. Re-
call that the Helmholtz free energy is defined as F ≡ E − T S,
where E is the internal energy of the system and S is the en-
tropy. We can write FI = EI − T SI , where EI is the “internal
interaction energy” and SI is the entropy difference between
the many-defect configuration and single-defect systems. By
performing the high-T analysis, we managed to isolate the
term that is proportional to T , making it a candidate for SI .
We identify this term in Eq. (23) as the only portion of FI

that grows linearly with T (all other terms are nonlinear in T
because ωn ∝ T ), confirming its identity as the entropy. As a
result, to calculate the internal interaction energy EI using our
formalism instead of the Helmholtz free energy, one simply
needs to drop the zeroth Matsubara term from Eq. (23). To get
the same from exact diagonalization, one subtracts Eq. (28)
from Eq. (24).

IV. DIATOMIC MOLECULE

The simplest system that one can study using our formal-
ism is a diatomic molecule composed of two atoms of equal
mass m connected by a spring with the force constant k and
restricted to moving in one dimension. For the benefit of
the subsequent discussion, we also confine each atom in an
external harmonic potential K .

As there are only two atoms in the system, both will
be subjected to perturbation, which we set to be the same
for both. Thus, following the procedure given above, m =
diag(m m), � = diag(δ δ), and � = diag(λ λ). Recall that λ

describes the change of the atomic mass m → M and is given
by M−1 − m−1.

Without the external perturbation, the mode frequencies
and eigenvectors are obtained by solving(

k + K −k
−k k + K

)
εs = �2

s

(
m 0
0 m

)
εs. (29)

This yields �2
1 = K/m with ε1 = (1, 1)/

√
2 and �2

2 = (2k +
K )/m with ε2 = (1, −1)/

√
2, leading to

[(z)]i j = εi
1ε

j
1

−z2 + �2
1

+ εi
2ε

j
2

−z2 + �2
2

= 1

2

(
1

−z2 + �2
1

± 1

−z2 + �2
2

)
, (30)

where “+” corresponds to the diagonal elements of the 2 × 2
 matrix and “ − ” to the off-diagonal ones.

As the first step, we explore the system at zero temperature.
Figure 1(a) shows FI as a function of M/m for different values
of K for δ = 0. To keep the relevant quantities dimension-
less, we define � = √

k/m as the characteristic energy scale.
Solid lines are obtained from exact diagonalization while the
symbols overlaying them correspond to the values computed
using our formalism. For the T = 0 case, the summation over
the Matsubara frequencies in Eq. (23) can be performed as
a numerical integral [28]. To calculate the frequencies using
exact diagonalization, we replace zero, one, or two m’s in
Eq. (29) by M. We then compute the corresponding free ener-
gies using Eq. (24), from which we obtain FI by performing
the subtraction described above. Figure 1(b) shows the same
results as panel (a), but using a logarithmic scale for the x
axis to bring out the small-M/m behavior. As expected, when
M = m, FI = 0 because this corresponds to a scenario where
the atomic masses are unchanged. The interaction energy di-
verges as M/m → 0 with small-K systems exhibiting a faster
divergence.

The dotted colored lines are the asymptotic values of FI

as M/m → ∞ and the dashed gray line is the asymptote
for K = 0. These values are calculated using the mode fre-
quencies for the two- and one-defect configurations in the
M/m → ∞ limit. In the former case, the frequencies of both
modes go to zero, while in the latter one goes to zero and the
other approaches �

√
1 + K/k. Given that for the unperturbed

molecule, the frequencies are �
√

K/k and �
√

2 + K/k,
at T = 0, FI/� → (

√
K/k + √

2 + K/k − 2
√

1 + K/k)/2 as
M/m → ∞.

We also plot FI as a function of δ for λ = 0 in Fig. 1(c).
Note that, for δ/k → ∞, the curves approach the same
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FIG. 1. (a) FI for a diatomic molecule as a function of M/m for
δ = 0 at T = 0. (b) Same as (a) but using a logarithmic scale on the x
axis. (c) FI as a function of δ/k for M/m = 1 at T = 0. The markers
correspond to the values obtained from our formalism, whereas the
line plots are obtained from exact diagonalization. Unless stated oth-
erwise, we follow this convention in the rest of the figures. The dotted
lines mark the asymptotic values of FI as M/m or δ/k approach
infinity for the corresponding K . The dashed line is the asymptotic
value for K = 0.

asymptotic values as in panel (a). This, of course, makes sense
because extreme potential confinement δ/k → ∞ suppresses
the motion of the atoms and is equivalent to replacing them
with infinitely heavy immovable masses.

In addition to T = 0, we also compute FI at finite tem-
perature. The exact diagonalization results are obtained from
Eq. (24) using the same steps as the T = 0 case. For the path
integral approach, one can perform an integration along the
real frequency axis [28]. Alternatively, it is possible to sum
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I
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FIG. 2. (a) FI for a diatomic molecule as a function of T for δ =
0 and M/m = 10. (b) FI as a function of T for M/m = 1 and δ/k = 1.
(c) FI + T SI for the same system as panel (b).

a truncated series in Eq. (23), which is the approach that we
used by keeping the first 10 000 terms to guarantee a good
agreement with the exact diagonalization results.

The confining potential K plays an important role in nu-
merical evaluation of Eq. (24) at finite T . For K = 0, the
system contains a zero-energy mode, leading to a divergence
of the logarithm term. To mitigate this divergence, one can
either drop the zero-mode or, as is done in this work, include
a finite K .

Figure 2(a) illustrates the decay of FI with increasing
temperature for M/m = 10 and δ = 0 at different K’s, in
agreement with earlier studies [23–26]. Panel (b) in Fig. 2
exhibits the linearly increasing FI for δ/k = 1 and M/m = 1,
as discussed in Sec. III, where we showed that this increase
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can be attributed to the entropy term in the free energy. By
subtracting the zero-Matsubara-frequency term from FI , we
eliminate the linear behavior and obtain the expected decaying
interaction, as seen in Fig. 2(c).

V. PERIODIC SYSTEMS

To calculate (z) used in computing the interaction energy,
one needs to know the system’s vibrational eigenstates and
their corresponding eigenvalues, which involves diagonaliz-
ing the Hamiltonian. Hence, it might appear that the field
theoretic approach offers no advantage over exact diagonal-
ization and Eq. (24). In fact, it is worse because one needs to
perform the Matsubara frequency summation. The true utility
of our approach becomes clear when dealing with infinitely
large systems.

Consider a D-dimensional Bravais lattice with A atoms per
unit cell and periodic boundary conditions, spanning N unit
cells along each of the basis vectors, where N is assumed to
be even. Diagonalizing such a system directly requires find-
ing the eigenstates and eigenvalues of a (ADND) × (ADND)
matrix, which is clearly not feasible as N → ∞. This issue is
especially pernicious in higher dimensionalities, where large-
but-finite systems quickly become prohibitively expensive
computationally. The field theoretic approach, on the other
hand, can take advantage of the system periodicity to obtain
the interaction in a straightforward manner [23–26]. Let us
now demonstrate how our general result can be adapted to
tackle periodic systems.

System periodicity requires that

εs, j → εb,{n},a j

D∏
l=1

√
2

N
trigl

(
2πr j,l nl

N

)
, (31)

where 1 � r j,l � N is the integer coordinate of the unit cell
hosting the jth atom along the lth basis vector. The polariza-
tion vector εb,{n} = (εb,{n},1, ...εb,{n},A) contains AD elements
and gives the relative motion of atoms within a unit cell for a
particular mode. The subscript b labels the phonon branch (of
which there are AD), while {n} is a set of harmonic numbers
0 < n � N/2, collectively identifying a phonon mode. This
polarization vector is computed by diagonalizing an (AD) ×
(AD) dynamical matrix for each set {n} [28], an obvious
simplification compared to the (ADND) × (ADND) matrix for
the exact diagonalization.

The amplitude of the oscillations for a given mode varies
across the crystal in a periodic fashion, as dictated by the
trigonometric function trigl , which can be either a sine or a
cosine. One can see that the allowed values of {n} provide
the correct periodicity of these functions. Finally, the factor√

2/N guarantees that εs · εs = 1. As a check, multiplying the
number of combinations of the trigonometric functions 2D by
the number of harmonic indices (N/2)D and by the number of
degrees of freedom AD yields the correct number of modes
ADND.

Using the fact that the mode frequency does not depend
on the choice of the trigonometric function in Eq. (31),

one gets

[(z)] jk =
∑
b,{n}

εb,{n},a j ⊗ εb,{n},ak

−z2 + �2
b,{n}

×
D∏

l=1

2

N

∑
{trigl }

[
trigl

(
2πr j,l nl

N

)
trigl

(
2πrk,l nl

N

)]

=
∑
b,{n}

εb,{n},a j ⊗ εb,{n},ak

−z2 + �2
b,{n}

D∏
l=1

2

N
cos

(
2πRjk,l nl

N

)
,

(32)

with Rjk,l = r j,l − rk,l . This form underscores the periodic na-
ture of the system because only the separation between atoms
Rjl,l enters the expression, not their individual coordinates.

In the limit N → ∞, we replace the summation over {n}
by integrals:

[(z)] jk =
∑

b

D∏
l=1

∮
dθl

εb,θ,a j ⊗ εb,θ,ak

−z2 + �2
b,θ

cos(Rjk,lθl )

2π
, (33)

where θ is a vector of θl . Because �2
b,θ and εb,θ,a j ⊗ εb,θ,ak are

even functions of θ, we can replace each of the cosines by
exponentials to get a compact expression

[(z)] jk = 1

(2π )D

∮
dθeiR jk ·θ

∑
b

εb,θ,a j ⊗ εb,θ,ak

−z2 + �2
b,θ

. (34)

One could have guessed the form of Eq. (34) from Eq. (15)
by recalling that the eigenmodes in periodic systems are typ-
ically written as εb,qeir·q. However, our derivation in Sec. II
relied on the fact that εs,l were real, which is why we started
with Eq. (31) instead of just writing down Eq. (34).

VI. ONE-DIMENSIONAL CHAIN

With the formalism for periodic systems established, we
now demonstrate its application. To make the connection with
prior work clear while highlighting the novelty provided by
the new results, we apply it to a one-dimensional diatomic
chain composed of alternating masses m1μ and m2μ, where
μ has units of mass and m1/2 are dimensionless, connected by
identical springs with the force constant k. As in the case of
the diatomic molecule, the energy scale is set by � = √

k/μ.
The eigenmodes and their corresponding frequencies are ob-
tained from(

m
− 1

2
1 0

0 m
− 1

2
2

)(
2 + K/k −1 − e−iθ

−1 − eiθ 2 + K/k

)

×
(

m
− 1

2
1 0

0 m
− 1

2
2

)
εθ = �2

θ

�2
εθ , (35)

where we included the confining harmonic potential K like
was done for the diatomic molecule.

Numerical diagonalization of Eq. (35) yields the eigen-
modes and the corresponding frequencies. Then, one picks out
the required component of εθ for each branch at a given θ and
performs the branch summation, as shown in Eq. (34). Re-
peating the process for θ ∈ [0, 2π ] and taking the numerical
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integral over θ yields (z). The remaining steps in calculat-
ing the interaction energy follow the procedure outlined in
Sec. II C. The summation over the Matsubara frequencies uses
the approach of Sec. IV: for T = 0, we integrate along the
complex axis; for T > 0, we sum the first 10 000 terms in
Eq. (23).

An important advantage of using 1D systems to demon-
strate the application of the new formalism is the possibility
of validating the field theoretic results against exact diagonal-
ization, for which we use periodic chains with N = 1000 unit
cells. This length is sufficiently large to avoid the finite-size
effects at the impurity separations considered here. To prevent
the divergence of the finite-T free energy, a small confining
potential K/k = 10−6 is included. As discussed above, to cal-
culate the internal interaction energy between impurities, one
drops the zero-frequency term from the Matsubara sum and
subtracts the expression in Eq. (28) from FI calculated using
exact diagonalization. For all the plots below, unless otherwise
specified, the distances d are given in terms of the interatomic
spacing.

A. Monoatomic Chain

We start by setting m1 = m2 = 1 to recover the
monoatomic chain studied in earlier publications [23,25,26].
As the first example, we consider the interaction between
pairs of identical impurities introduced by replacing two
of the chain atoms by atoms with different masses. The
interaction energy EI for several impurity masses Mμ as
a function of the defect separation d is plotted in Fig. 3,
showing an excellent agreement between the path integral
approach (markers) and exact diagonalization (lines).

From Fig. 3(a), one can see that the zero-temperature
results are concordant with Refs. [25,26] demonstrating a
quasi-power-law dependence of the interaction energy on the
impurity separation. In the d  1 limit, all the curves ap-
proach a slope of −3, in agreement with the inverse cubic
interaction between mobile impurities at large distances [23].
At small d , increasing M brings the slope closer to −1,
expected in the case of stationary impurities. Conversely, if
M < 1, the interaction decays faster than the cube of the sepa-
ration. Figure 3(b) shows that increasing the temperature leads
to a drastically faster decay of the interaction with distance, as
expected [23,24,26].

Following Refs. [24,25], we also investigate the interaction
between chain atoms in external harmonic potentials. As for
the impurity case, we check that our approach reproduces the
previously known quasi-power-law dependence of energy on
d by plotting EI for two external potentials in Fig. 4(a). The
results show that for large values of �, the interaction energy
approaches 1/d form from above and becomes slower as � is
reduced, in agreement with Ref. [25].

In addition to addressing the zero-T case, Fig. 4(b) shows
EI for two external potentials at finite T . Here, as before, the
interaction loses its quasi-power-law scaling with increased
defect separation for all perturbation strengths. In contrast to
the impurity pairs in Fig. 3, the exponential suppression of the
interaction by finite T is evident at much smaller values of d .
This behavior agrees with Ref. [24] as the d−1-to-exponential
transition for the external potentials is more drastic than the
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I
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M = 0.5
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FIG. 3. (a) ln(EI/E 1
I ) at T = 0 for two identical impurities in a

monoatomic chain, where E 1
I is the interaction energy at separation

d = 1. (b) Same as panel A at T = 0.02�. The masses of the impuri-
ties are indicated by the insets. The dashed lines follow d−1 and d−3

power laws.

d−3-to-exponential one for the impurities. Moreover, at large
separations, EI for the potentials is suppressed by an addi-
tional d−1 factor compared to the two-impurity case.

Having demonstrated the ability of our formalism to repro-
duce known results, we use it to investigate the interaction
between impurities and external potentials, which has not
been addressed previously. To illustrate how EI for this
“mixed” configuration compares to the EI ’s for two impu-
rities and two potentials, we plot the interaction energies
for potential-impurity, two-impurity, and two-potential con-
figurations with M = �/k = 10 in Fig. 5. As with earlier
calculations, we validate the field theoretic results by com-
paring them to the ones obtained using exact diagonalization.
For both zero [panel (a)] and finite [panel (b)] temperatures,
EI/E1

I for an impurity and an external potential lies strictly
between the interaction energy for two impurities and two
potentials. As expected, we observe that finite temperature
induces a faster decay at higher values of d .

It is also possible to investigate the behavior of clusters
of impurities and external potentials. As an example, we
calculate the energy profile of an impurity lying between
two external potentials with �/k = 5 located 19 sites apart.
Figure 5(c) shows the dependence of the energy on the impu-
rity’s displacement from the midpoint between the two poten-
tials. From the concavity of the curves, one observes that the

195434-8



PHONON CASIMIR EFFECT IN POLYATOMIC SYSTEMS PHYSICAL REVIEW B 103, 195434 (2021)

0 1 2 3
−5

0

ln d

ln
E

I
/E

1 I

Δ/k = 0.1
Δ/k = 0.2
Δ/k = 0.5
Δ/k = 5.0

0 1 2 3
−5

0

ln d

ln
E

I
/E

1 I

Δ/k = 0.1
Δ/k = 0.2
Δ/k = 0.5
Δ/k = 5.0

FIG. 4. (a) ln(EI/E 1
I ) at T = 0 for two identical external po-

tentials of various strengths in a monoatomic chain. (b) Same for
T = 0.02�. The dashed lines are d−1.

midpoint is a stable equilibrium point if M < 1 and unstable
otherwise.

Earlier work [23,26] discussed the possibility of changing
the sign of the PCE interaction for impurities by having one
of them be lighter than the chain atom and the other one
heavier. To extend this analysis to other defect combinations,
we plot the interaction energy for pairs of adjacent defects in
Fig. 6. Panel (a) shows that the interaction energy between two
masses in external potentials is always negative. In contrast,
Fig. 6(b) demonstrates that as if the impurity is lighter than
the chain’s atoms (M < 1), its interaction with a mass in an
external potential is repulsive, becoming attractive for M > 1.
This is consistent with Fig. 5(c), where M < 1 produces a
stable equilibrium as the impurity is repelled by the externally
confined atoms.

B. Diatomic Chain

For the final example, we consider a diatomic chain, con-
sisting of alternating masses m1 = 1 and m2 = 3. As was
mentioned earlier, in the monoatomic chain, it is known
[23,26] that the sign of the interaction between impurities
is determined by whether they are both lighter or heavier
than the chain’s atoms. In a diatomic chain, we observe a
more exotic version of this effect: for a pair of identical
impurities with m1 < M < m2, we get an EI that changes sign
with separation, as seen in Fig. 7. The interaction is always
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I
/E

1 I

Δ Δ
M Δ
M M
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E
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/Ω
×

10
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M = 0.5
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FIG. 5. (a) ln(EI/E 1
I ) at T = 0 for two-impurity, two-potential,

and mixed configurations with M = �/k = 10. (b) Same for T =
0.02�. (c) EI − E 0

I vs d at T = 0 for a configuration where two ex-
ternal potentials are located on the 1st and 19th atoms of a chain with
an impurity M between them. d is the distance from the midpoint
(10th atom) and E 0

I is the energy at d = 0. The results are obtained
using the newly developed formalism.

positive when one impurity replaces a heavy atom and the
other replaces a light atom, and negative when they both
replace the same kind of atom. It turns out that EI in each
of these two regimes obey their own scaling laws, resembling
the d−3 scaling of impurities in monoatomic chains, as seen
in Fig. 8(a). Note that in contrast to the rest of the plots, for
Fig. 8 the unit of separation du is measured in unit cells rather
than interatomic separation. The scaling is thus in terms of du

rather than d .

195434-9



GIDEON LEE AND ALEKSANDR RODIN PHYSICAL REVIEW B 103, 195434 (2021)

0 1 2 3 4 5
0

1

2

3

4

5

ΔL

Δ
R

−8

−6

−4

−2

0
(E /Ω) × 10

0 1 2 3 4 5
0

1

2

3

4

5

M

Δ

−2

−1

0

1

2

(E /Ω) × 10

FIG. 6. Heat map of EI/� at T = 0 for (a) two externally-
confined atoms and (b) for an impurity and an externally-confined
atom in a monoatomic chain with separation d = 1.

Increasing the temperature does not alter the oscillatory
form of EI , nor the signs. At the same time the difference in
the scaling from T = 0 is immediately clear from Fig. 8(b),
where we plot the interaction energy at T = 0.02�. Just as

0 1 2 3

0

1

ln d

E
I
/E

1 I

FIG. 7. EI/E 1
I at T = 0 for the interaction between two M = 1.8

impurities on a m1 = 1, m2 = 3 diatomic chain. “fix heavy (light)”
means that one of the impurities is positioned at the m2 (m1) site and
the second one is d atoms away.
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FIG. 8. (a) ln(EI/E 1
I ) at T = 0 for the interaction between two

M = 1.8 impurities on a diatomic chain with m1 = 1 and m2 = 3.
Here du refers to the distance in terms of unit cells (hence twice the
interatomic distance). (b) Same as (a) but for T = 0.02�. The dashed
lines are d−3

u . (c) EI − E 0
I vs d at T = 0 for a configuration where

two external potentials are located on the 1st and 19th atoms of a
chain with an impurity M between them. d is the distance from the
midpoint (10th atom) and E 0

I is the energy at d = 0. The central atom
is a heavy atom, whilst the external potentials confine the light atoms.
The results are obtained using the newly developed formalism.

for the monoatomic chain, finite temperature leads to an ac-
celerated decay of EI as compared to the T = 0 case.

Finally, we investigate clusters formed by one impurity
between two external potentials on the diatomic chain. The
energy profile of this setup is plotted in Fig. 8(c). Compared to
the interaction energy of clusters in the monoatomic chain, the
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energy landscape shown here is more uneven and the diatomic
structure of the underlying system can be observed. Since the
central atom in this case is a heavy atom, odd ds correspond to
the impurity residing at the site of a light atom. The oscillating
nature of EI turns these sites into local traps.

VII. CONCLUSIONS

In summary, we have employed the path integral formalism
to derive an expression for the finite-temperature Helmholtz
free energy in a general system with vibrational modes in the
presence of defects. Specifically, this approach can handle im-
purities, external potentials, or their combinations. Our results
make it possible to extract the non-pairwise interaction energy
between defects. We have also shown how one can compute
the internal interaction energy, as well as entropy using our
approach.

As a demonstration of our method, we performed a series
of calculations on a diatomic molecule, as well as mono- and
diatomic chains. We validated our results by comparing them

against exact diagonalization calculations and earlier known
results. It is important to stress that while exact diagonaliza-
tion can be faster than our approach for finite-T calculations in
one-dimensional chains, modeling “infinite” systems becomes
prohibitively expensive in higher dimensions (1000 unit cells
are needed for a hardly-infinite 10 × 10 × 10 cube). There-
fore, the approach developed in this paper is especially useful
in higher-dimensional scenarios with large defect separation,
which increases the minimum system size for exact diagonal-
ization.
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