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Effective Floquet model for minimally twisted bilayer graphene
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We construct an effective Floquet lattice model for the triangular network that emerges in interlayer-biased
minimally twisted bilayer graphene and which supports two chiral channels per link for a given valley and
spin. We introduce the Floquet scheme with the one-channel triangular network and subsequently extend it to
the two-channel case. From the bulk topological index (winding number) and finite system calculations, we
find that both cases host anomalous Floquet insulators (AFIs) with a different gap-opening mechanism. In the
one-channel network, either time-reversal or in-plane inversion symmetry has to be broken to open a gap. In
contrast, in the two-channel network, interchannel coupling can open a gap without breaking these symmetries
yielding a valley AFI with counterpropagating edge states. This phase is topologically trivial with respect to the
total winding number but robust in the absence of intervalley scattering. Finally, we demonstrate the applicability
of the Floquet model with magnetotransport calculations.
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I. INTRODUCTION

Stacking two graphene sheets with a relative twist pro-
duces a moiré pattern that drastically alters the electronic
structure [1–4]. At the magic angle (θ ∼ 1◦) the low-energy
bands are almost flat, such that many-body effects domi-
nate giving rise to superconductivity and strongly-correlated
phases [5–12]. When the twist angle is reduced far below the
magic angle, the system exhibits markedly different behavior.
In this limit, the moiré pattern is reconstructed into a triangular
tiling of AB and BA stacking domains [13–15] whose vertices
are given by AA regions acting as topological defects [16].
At such tiny twist angles (θ ∼ 0.1◦), the system is referred
to as minimally twisted bilayer graphene (mTBG). Further-
more, when layer-inversion symmetry is broken in mTBG,
for example, by a perpendicular electric field, a local gap
is opened in the Bernal regions with a different topological
character for AB and BA stacking. In particular, the change
in valley Chern number across an AB/BA domain wall is
quantized to ±2. Each domain wall therefore supports two
chiral modes for a given valley and spin that counterpropagate
for different valleys [17–21]. When the Fermi level lies in the
gap, the low-energy physics is derived solely from a triangular
network of valley Hall states [22–28]. Here, the AA regions
remain metallic and correspond to the scattering nodes of the
network. These nodes are connected by links given by the
AB/BA domain walls, where each link hosts two chiral chan-
nels for a given valley and spin that scatter at the nodes, see
Fig. 1(a). One thus obtains an oriented triangular scattering
network for each valley, where the orientation is opposite for
opposite valleys. This regime in mTBG can thus be modeled
by a Chalker-Coddington-like network model for each valley
separately [23]. Recently, it was demonstrated that the net-
work in mTBG gives rise to a triplet of one-dimensional (1D)

chiral zigzag modes [30,31]. Importantly, the chiral zigzag
modes require interchannel scattering at the nodes, such that
one necessarily needs to consider a two-channel model to cap-
ture the salient features of the network physics in mTBG [32].

Oriented scattering networks were initially introduced as
models for the percolation transition between two quantum
Hall plateaus [29,33–35]. Recently, it was demonstrated that
oriented networks can also be mapped to periodically driven
(Floquet) systems [36–38]. Such Floquet systems can host
anomalous insulating phases that support topological bound-
ary modes even though the bulk topology is trivial [39–42].
Hence, it stands to reason that scattering networks can also
host anomalous edge modes [38,43]. The connection between
these two viewpoints has been addressed recently in Ref. [44].
In this paper, we construct an effective Floquet lattice model
for the oriented triangular scattering network that emerges
in mTBG under interlayer bias. Our motivation is threefold.
Firstly, the topological properties of the gapped phases in
the two-channel model have not yet been addressed. More-
over, a Hamiltonian description is preferable here because
the bulk-edge correspondence is ill defined for scattering net-
works [38]. Secondly, an effective tight-binding model for
the network in mTBG is highly desirable. As the number
of atoms in a moiré cell is of the order of 104 (θ◦)−2, it
has similar advantages over atomistic methods as network
models, while also being straightforward to implement with
standard methods. Finally, there is the prospect of reproducing
the equilibrium physics of the network in a driven system
with photonic crystals [45–48] or cold atoms in optical lat-
tices [49–52].

The paper is organized as follows: In Sec. II, we introduce
our approach with the one-channel triangular network. We
start by mapping a single scattering node of the network to the
time evolution of a three-level system, i.e., a trimer. We then
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FIG. 1. (a) Oriented triangular network in mTBG with two chan-
nels per link for a given valley and spin. (b) Scattering at a triangular
node where incoming and outgoing modes are identified with the
time evolution of a trimer, whose sites are denoted by 1, 2, and 3.
(c) Mapping between the time evolution of trimer amplitudes and
the S matrix. (d) Trimer hoppings in the counterclockwise direction
[Eq. (3)].

show how the network dynamics can be reproduced by a trian-
gular lattice of trimers and construct the Floquet Hamiltonian.
We find three distinct phases: a metal, a trivial insulator, and
an anomalous Floquet insulator (AFI) where a gap can only be
opened by either breaking time-reversal or in-plane inversion
symmetry. We then proceed to the two-channel network in
Sec. III, which is the general case realized in mTBG. Besides
metallic phases that support chiral zigzag modes, we find that
the two-channel network hosts AFIs within a single valley
even in the presence of time reversal and inversion symmetry
where now the gap is opened via interchannel coupling. Tak-
ing into account both valleys, we show that the two-channel
network exhibits a valley AFI with counterpropagating edge
modes characterized by valley winding numbers. Finally, we
showcase the applicability of the effective Floquet model by
performing transport calculations in Sec. IV, and we present
our conclusions in Sec. V.

II. ONE-CHANNEL NETWORK

We start by considering the simplest case where the two
valley Hall states are decoupled. In this case, the scattering
network is given by two copies of a single-channel triangu-
lar network with C3 symmetry for a given valley and spin
[Fig. 1(a)]. Here, we do not take into account intervalley
scattering as the moiré pattern in mTBG varies slowly on
the interatomic scale. Note also that the orientation of the
network is opposite for the two valleys as they are related
by time reversal. Moreover, mTBG under interlayer bias has
an additional C2T symmetry that conserves the valley, where
C2 corresponds to in-plane inversion with respect to a node,
which reverses both the valley and sublattice pseudospin, and
T is the time-reversal operator [53]. This combined symmetry
can, for example, be broken by a magnetic field or an in-

plane electric field. The one-channel triangular network with
C2T symmetry was first considered by Efimkin and MacDon-
ald [23], while the general case with broken C2T has recently
been considered in Ref. [43], both within the framework of
network models. Here, we show explicitly how these scatter-
ing networks can be mapped to Floquet tight-binding models
with discrete time steps.

A. Scattering node

To illustrate the basic idea, we first consider a single scat-
tering node with three incoming and three outgoing modes,
as shown in Fig. 1(b). The outgoing modes b = (b1, b2, b3)t

are related to the incoming modes a = (a1, a2, a3)t by the S
matrix, b = Sa. If C3 symmetry is preserved, the S matrix can
be written as

S =
⎛
⎝sl sr s f

s f sl sr

sr s f sl

⎞
⎠, (1)

where |s f |2 = Pf , |sl |2 = Pl , and |sr |2 = Pr are, respectively,
the probability for forward scattering, and left and right de-
flections. Current conservation at the node is expressed by
S†S = 13 such that up to a global phase, the S matrix only
depends on two real parameters with Pf + Pr + Pl = 1. For
the special case where C2T symmetry is preserved, this is
reduced to a single parameter. For example, we can take
sr = sl = √

Pd and s f = e−iα
√

Pf with cos α = −√
Pd/4Pf ,

such that 1/9 � Pf � 1.
We now demonstrate how the scattering problem can be

mapped to the time evolution of a trimer, i.e., a three-level sys-
tem corresponding to a particle hopping between the vertices
of an equilateral triangle with amplitude ψ = (ψ1, ψ2, ψ3)t ,
as shown in Fig. 1(b). For a time-independent Hamiltonian H0,
the amplitudes evolve in time as ψ (t ) = U (t, 0)ψ (0) where
U (t, 0) = e−iH0t/h̄. If the scattering process takes place over a
time t , we can make the following identification [38]

b = Sa ↔ ψ (t ) = U (t, 0)ψ (0), (2)

which is illustrated in Fig. 1(c) for an initial state ψ (0) =
(1, 0, 0)t corresponding to an incoming mode at the upper
vertex. After a time t , we have ψ (t ) = (sl , s f , sr )t which is
interpreted as the scattering amplitudes for a left deflection,
forward scattering, or a right deflection, respectively. The
general S matrix with C3 symmetry is obtained by taking the
following trimer Hamiltonian,

H0 = J

⎛
⎝ 0 eiϕ e−iϕ

e−iϕ 0 eiϕ

eiϕ e−iϕ 0

⎞
⎠, (3)

with J � 0 and where 3ϕ is the flux through the triangular
plaquette [Fig. 1(d)]. Up to an overall energy shift, this is the
most general C3-symmetric trimer Hamiltonian. The spectrum
and eigenstates of (3) are given by

En = 2J cos(ϕ + 2πn/3), ψn = 1√
3

(ηn, η−n, 1)t , (4)

with η = ei2π/3 and n = 0, 1, 2. Next, we identify the time-
evolution operator U (t ) = e−iH0t/h̄ with the S matrix given by
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FIG. 2. Phase diagram of the oriented one-channel triangu-
lar network corresponding to the driven trimer lattice shown in
Fig. 3(a) where different colors correspond to different phases as
indicated. The boundary of the allowed (Pr, Pl ) values corresponds to
θ1 = 0 in (7) and the dashed line gives the case with C2T symmetry
(Pr = Pl ). If the network orientation is reversed, the trivial and AFI
phase are interchanged and W → −W .

Eq. (1). This gives sl = g(θ1, θ2), sr = g(θ1, θ2 − 2π/3), and
s f = g(θ1, θ2 + 2π/3) with

g(θ1, θ2) = 1
3 (e−iθ1 + 2eiθ1 cos θ2), (5)

and

θ1 = 3
2 Jt cos ϕ/h̄, θ2 =

√
3 Jt sin ϕ/h̄, (6)

where we left out an overall phase factor in Eq. (5) that only
depends on θ1. We thus have

Pl = 1
9 [3 + 4 cos(2θ1) cos θ2 + 2 cos(2θ2)], (7)

and where Pf and Pr are obtained from (7) by letting θ2 →
θ2 ± 2π/3, respectively. Note that the scattering probabilities
are functions of Jt and ϕ. This is illustrated in Fig. 2, where
we plot (Pr, Pl ) for θ2 ∈ [0, 2π ] and θ1 = 0, which bounds
the allowed region of the scattering parameters [43]. Regions
with different colors in the figure correspond to different
phases, which is explained in Sec. II D. Note that the map
(θ1, θ2) → (Pr, Pl ) is onto but not one-to-one. Apart from an
overall phase, the sign of θ1 has to be specified to uniquely
determine the S matrix.

In the special case where C2T symmetry is conserved,
we further require that sr = sl which is the case for θ2 =
(n + 1/3)π with n an integer. For example, for θ2 = π/3, the
amplitudes become s f = − 1

3 cos θ1 − i sin θ1 and sr = sl =
2
3 cos(θ1). The resulting S matrix is unitary equivalent to the
one of Efimkin and MacDonald [23].

B. Scattering network

Having established the mapping for a single node, we turn
to the scattering network. To this end, we follow Ref. [38]

and decompose the network into three disjoint sets of scat-
tering nodes. The nodes are then identified with three sets of
decoupled trimers that form a triangular lattice, as illustrated
in the different panels of Fig. 3(a). Note that a scattering
process on one set takes as input the output of another set. For
example, in the figure the incoming modes of green trimers
(bottom-left panel) correspond to the outgoing modes of blue
trimers (bottom-right panel). If we only turn on the trimer
couplings in one set for a given time, the time evolution
generates a local scattering process. Next, we do the same for
a different set, which takes the output of the first set, thereby
transporting the amplitudes through the lattice, followed by
a scattering process at the new nodes. Repeating this process
in the sequence shown in Fig. 3(a) reproduces the network
dynamics. Note that the orientation of the network is fixed by
the specific sequence in which the couplings are switched on
and off, which naturally breaks time-reversal symmetry. Thus,
by exchanging the second and third step, the orientation of the
network is reversed.

The piecewise time-dependent Hamiltonian can be written
as

H (k, t ) =
⎧⎨
⎩

H1(k), 0 < t < T/3,

H2(k), T/3 < t < 2T/3,

H3(k), 2T/3 < t < T,

(8)

with H (k, t + T ) = H (k, t ) and where k is the Bloch mo-
mentum of the trimer lattice. We now explicitly construct the
Hamiltonians H1, H2, and H3 for each step and show that the
network dynamics is reproduced.

Consider a triangular lattice of decoupled trimers, as shown
in Fig. 3(b). Each unit cell contains three sites that constitute
a trimer centered at rmn = me1 + ne2 (m, n ∈ Z) with

e1 =
√

3 l (0, 1), e2 =
√

3 l (
√

3/2,−1/2), (9)

where the lattice constant is given by
√

3 l with l the link
length of the triangular network. As we discussed above, the
network dynamics are obtained by a three-step process that is
repeated periodically. Because of C3 symmetry, the coupling
and duration of each step has to be equal. In the first step,
which takes place between times t = 0 and t = T/3, we only
turn on green trimers, as illustrated in the bottom-left panel of
Fig. 3(a). Here, there is no coupling between different cells,
such that the Hamiltonian in Bloch form H1 = H0, where H0

is given in Eq. (3), and

U1 = U (T/3, 0) = S, (10)

with S = e−iH0T/3h̄. In the scattering picture, the trimer am-
plitudes at t = 0 correspond to incoming modes of scattering
nodes located at rmn. Outgoing modes then correspond to the
trimer amplitudes at t = T/3. In the second step, we turn off
the trimer coupling within each cell and turn on the coupling
between vertices of different cells in such a way that we obtain
the blue trimers shown in the bottom-right panel of Fig. 3(a),
which gives

H2(k) =
⎛
⎝ 0 zeik·e1 z∗e−ik·e3

z∗e−ik·e1 0 zeik·e2

zeik·e3 z∗e−ik·e2 0

⎞
⎠, (11)
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(a) (b)

FIG. 3. (a) Periodic sequence in which the trimers on the lattice are turned on and off, where the couplings between different sites of a trimer
are indicated by the thick colored lines. This generates the dynamics of the oriented scattering network that is superimposed. (b) Triangular
lattice of trimers whose vertices are labeled by 1, 2, and 3. Here, the vertices of different cells are connected by thin gray lines and the unit cell
is shown as the gray area.

with z = Jeiϕ and e3 = −(e1 + e2). The time-evolution oper-
ator for this step becomes

U2 = U (2T/3, T/3) = T3T2ST1, (12)

where

T1 = diag(eik·l2 , eik·l1 , eik·l3 ), (13)

T2 = diag(eik·l3 , eik·l2 , eik·l1 ), (14)

T3 = diag(eik·l1 , eik·l3 , eik·l2 ), (15)

with l1,2 = l (−1/2,±√
3/2) and l3 = −(l1 + l2) primitive

vectors of the network [as shown in Fig. 3(b)]. This can be in-
terpreted in terms of the network as follows. Outgoing modes
of nodes located at rmn, i.e., trimer amplitudes at t = T/3,
first propagate to the next node via the translation operator
T1. Hence, they can be thought of as the incoming modes
of nodes located at rmn − l j ( j = 1, 2, 3) which then scatter
to outgoing modes by S, followed again by propagation. The
final step takes place during 2T/3 < t < T , giving rise to the
red trimers shown in the top panel of Fig. 3(a), such that

H3(k) =
⎛
⎝ 0 ze−ik·e2 z∗eik·e1

z∗eik·e2 0 ze−ik·e3

ze−ik·e1 z∗eik·e3 0

⎞
⎠, (16)

with time-evolution operator

U3 = U (T, 2T/3) = T3ST †
3 , (17)

which has a similar interpretation as U2. In the end, outgoing
modes of nodes located at rmn + l j ( j = 1, 2, 3) are propa-
gated by T3, becoming incoming modes of trimers centered at
rmn. At t = T , we therefore end up back where we started at
t = 0. The time-evolution operator over one period (Floquet
operator) becomes

UF (k) = T e− i
h̄

∫ T
0 dt H (k,t ) = T3ST2ST1S, (18)

where T denotes time ordering.

To demonstrate the correspondence of the trimer lattice
with the triangular oriented scattering network, we show the
case where Pl = 1 (e.g., θ1 = θ2 = 0) or Pf = 1 (e.g., θ1 = 0
and θ2 = −2π/3) in Figs. 4(a) and 4(b), respectively. When
Pl = 1 and Pr = Pf = 0, the network modes perform closed
orbits giving an insulator with flatbands. In the opposite limit,
we have Pf = 1 and Pr = Pl = 0, such that the network is a
metal consisting of three sets of 1D chiral modes that propa-
gate along the −l j directions ( j = 1, 2, 3).

C. Quasienergy spectrum

According to the Floquet theorem, the wave equation
ih̄∂t	k(t ) = H (k, t )	k(t ) with a time-periodic Hamiltonian
H (k, t + T ) = H (k, t ) is solved by

	k(t ) = e−iεkt/h̄
∑

m

eimωtψkm, (19)

where εk is the quasienergy and ω = 2π/T . The wave equa-
tion then gives

∑
m′

Hmm′
ψkm′ = εkψkm, (20)

FIG. 4. Correspondence between the driven trimer lattice and the
triangular network. (a) For Pl = 1 (e.g. θ1 = θ2 = 0), the network is
localized leading to flatbands. (b) For Pf = 1 (e.g., θ1 = 0 and θ2 =
−2π/3), there are three sets of chiral modes along the −l j directions
(only the −l3 mode is shown).
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where Hmm′
is the Floquet Hamiltonian,

Hmm′ = mh̄ωδmm′13 + 1

T

∫ T

0
dt e−i(m−m′ )ωt H (t ), (21)

where we suppressed the momentum index. When H (t ) is
given by (8), we find for m = m′,

Hmm = mh̄ω13 + 1

3

3∑
j=1

Hj, (22)

and for m 
= m′,

Hmm′ = sin
(

πm
3

)
πm

e−iπm/3
3∑

j=1

Hje
2π i

3 (1− j)m, (23)

where m = m − m′. Unless specifically stated, we always
use eight harmonics (m = −8, . . . , 8) in the Floquet Hamil-
tonian for numerical calculations to ensure convergence. The
scattering parameters of the one-channel model can now be
written as

θ1 = J

h̄ω
π cos ϕ, θ2 = J

h̄ω

2π√
3

sin ϕ. (24)

In terms of the scattering network,

h̄ω = 2π

3

h̄v

l
≈ 100 θ◦meV, (25)

as T = 3l/v, where v is the velocity of the chiral modes, l is
the link length of the network, and θ is given in degrees as
indicated. Here, we also give the numerical value for the case
of mTBG where we put v equal to the bulk Fermi velocity of
graphene and l to the moiré lattice constant. In the remainder
of this paper, we assume that the scattering parameters (for
both the one- and two-channel model) are approximately con-
stant on this energy scale, such that they are essentially energy
independent.

The Floquet quasienergy spectrum is shown in Fig. 5 for
several values of (Pr, Pl ) together with the density of states
(DOS). Note that there are three bands per energy period
since there are three sites per trimer (labeled 1, 2, and 3 in
Fig. 3). The DOS is calculated numerically with a Lorentzian
broadening γ ,

DOS(ε) = 1

V

∑
m,n

∑
k

δ(ε − εmn(k)) (26)

→ 1

V

∑
m,n

∑
k

γ /π

(εmn(k) − ε)2 + γ 2
, (27)

where m ∈ Z, n = 0, 1, 2 labels the three bands per Floquet
period, and the sum runs over the first Brillouin zone. Note
that the lattice constant of the trimer lattice is

√
3 l . Thus, the

Brillouin zone (BZ) of the trimer lattice is reduced by a factor
3 as compared to the network BZ. For example, when C2T is
conserved, the origin and the two inequivalent corners of the
network BZ support Dirac nodes [23] separated in energy by
2π h̄v/3l . These nodes are folded to the �̄ point (k = 0) of the
trimer lattice BZ. At the �̄ point we have H1 = H2 = H3 such
that different harmonics become decoupled [Eq. (23)]. Thus,

FIG. 5. Floquet bands in the BZ of the trimer lattice (left panels)
and along high-symmetry lines (middle panels), together with the
DOS (right panels) for γ /h̄ω = 0.005. Here, (a), (b), and (c) are
indicated by the circle, dot, and cross in Fig. 2, respectively. Solid
(dashed) lines correspond to the (opposite) network orientation (i.e.,
valley index) as shown in Fig. 1(a).

the spectrum at the origin is given by

εmn(0) = mh̄ω + 2J cos(ϕ + 2πn/3). (28)

Now we can already partly understand the phase dia-
gram shown in Fig. 2. By construction, the network for Pr =
Pl = 0 is given by decoupled chiral modes with εm j (k) =
h̄ω(m − 3k · l j/2π ) ( j = 1, 2, 3). These modes are coupled
when we allow for deflections and at some point a gap opens
between different triads of Floquet bands at the �̄ point, un-
less C2T is preserved. We find from (28) that the gap opens
when Pf = Pr (θ2 = nπ ) or Pf = Pl (θ2 = (n − 1/3)π ) for
Pl,r ∈ [1/9, 1/3], respectively (Fig. 2). The band touching
is quadratic in general, as shown in Fig. 5(a), while in the
special case where C2T is conserved, it is linear and symmetry
protected [Fig. 5(b)]. Hence, the phase diagram is given by
three distinct regions: one metal and two insulating phases
separated by a percolation line (Pr = Pl ) along which C2T is
conserved [43].
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FIG. 6. (a) Zigzag ribbon of the trimer lattice in the e1 direction
with N = 4 trimers in the ribbon unit cell, indicated by the dashed
lines, giving 12 sites per cell. (b) Spectrum for N = 8 in the AFI
phase with (Pr, Pl ) = (0.6, 0.2) indicated in Fig. 2 by the cross,
whose bulk bands are shown in Fig. 5(c).

D. Anomalous Floquet phase

For network models, the bulk-edge correspondence is ill-
defined because one can always engineer the boundary of the
network such that it hosts a chiral mode, even if the bulk is
trivial [38]. For example, one can surround a bulk network
consisting of localized loops with a disconnected large loop
which does not alter bulk properties. In contrast, the bulk-edge
correspondence of Floquet insulators is well defined [41]. To
establish the topology of the insulating phases, we calculated
the Floquet winding number W as well as the spectrum of
finite networks. The winding number is a bulk topological
invariant characterizing anomalous Floquet phases [41].

In Fig. 6(a), we show a zigzag ribbon of the trimer lattice,
which is finite along the x axis with width (3N − 1)l/2, where
N is the number of trimers in the unit cell, and infinite along
the y axis. The Floquet Hamiltonian of the ribbon is given
in Appendix A. The corresponding network is superimposed
on the figure, where the nodes and links are shown as the
dots and black solid lines, respectively. Note that the edge of
the network is automatically determined. Here, the edge has
trimers, dimers, and monomers, which correspond to nodes
having three, two, or one incoming and outgoing modes, re-
spectively, giving rise to a sawtooth edge. For example, the S
matrix corresponding to the edge dimer is given by

Sd = exp
[
−i

JT

3
(cos ϕ σx ± sin ϕ σy)

]
, (29)

for the right and left edge, respectively. Here, we take the
same scattering parameters at the edge as in the bulk for
simplicity. From Fig. 6(a), we observe that for Pr ∼ 1 the
edge supports a chiral mode that propagates counterclockwise
along the edge, while for Pl ∼ 1, the edge is localized. This
suggests an anomalous Floquet insulator (AFI, W = 1) and a
trivial insulator (W = 0), respectively. We confirmed this by
calculating the winding number for these two limiting cases
(Appendix B) which establishes the phase diagram shown in
Fig. 2. As expected, the ribbon spectrum in the AFI phase,
shown in Fig. 6(b), features a pair of chiral modes (one for
each edge) in each gap. The corresponding probability densi-
ties of the three trimer sublattices are shown in Fig. 7 at times
t = 0, T/3, and 2T/3 for the edge states marked in Fig. 6(b).
They correspond to incoming modes of the scattering nodes in
the green, blue, and red trimers, respectively. We find that the
anomalous edge states propagate mostly along the sawtooth
edges. Furthermore, we verified that the edge state in the AFI
phase is robust by varying the hopping constants at the edge.

In mTBG, the network orientation is opposite for valley K
and K ′. If valley K corresponds to the phase diagram shown
in Fig. 2, then the phase diagram of valley K ′ is obtained by
exchanging the trivial and AFI phase, as well as the sign of W .
However, the scattering parameters of the two valleys are in
general not related: (Pr, Pl ) for K differs from (P′

r, P′
l ) for K ′.

The former has a trivial phase for Pr < Pl and an AFI (W = 1)
for Pr > Pl , while the latter has a trivial phase for P′

r > P′
l

and an AFI (W = −1) phase for P′
r < P′

l . If either C2 or T is
conserved, they are related as follows

C2 : sr(l )K ′ = sr(l )K , s f K ′ = s f K , (30)

T : sr(l )K ′ = (sl (r)K )t , s f K ′ = (s f K )t . (31)

Hence, when T is broken and C2 is conserved, if one valley
hosts a trivial phase then the other valley always hosts an
AFI phase and vice versa. If the valleys are decoupled in
the bulk, the system can be thought of as two half cylinders,
one for each valley, hosting different topological phases that
are glued together, giving rise to anomalous edge states along
the seams [43]. On the other hand if only C2 is broken, then ei-
ther both valleys host a trivial phase or both host an AFI phase
with opposite winding numbers. With respect to the total
winding number, these are topologically equivalent. Indeed,
in the latter case, intervalley scattering at the boundary will
gap out the edge modes. However, there is a weak topological

FIG. 7. Trimer densities of the edge states marked by the gray (orange) dot in Fig. 6(b) at different times during one driving period, where
the edge state on the left (right) edge corresponds to the gray (orange) curves and n = 1, . . . N labels the trimers in the unit cell from left to
right, as shown in Fig. 6(a).
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TABLE I. Anomalous topological phases hosted by the triangu-
lar network with Nc channels per valley and spin. Pairs indicate the
valley winding numbers when the symmetry displayed in the first
row is conserved. Blank entries were not considered in this work.
Here, ∼ indicates topological equivalence with respect to the total
winding number.

Nc C2 T C2T

1 (1,0) or (0, −1) (1, −1) ∼ (0, 0) n.a.
2 (1, −1) ∼ (0, 0)

phase characterized by the valley winding numbers with a pair
of counterpropagating edge modes that is robust as long as
intervalley coupling is absent or small compared to the bulk
gap. An overview of the topological phases of the one-channel
triangular network is shown in Table I.

III. TWO-CHANNEL NETWORK

The Floquet model for the two-channel network is con-
structed using a similar approach as for the single-channel
network. Here, the second channel is introduced by taking
trimers with two orbitals per site. In the presence of C3 sym-
metry about the center, the general Hamiltonian for a trimer
with two orbitals can be written as

H0 =
(

h1 h12

h†
12 h2

)
, (32)

in the basis ψ = (ψ11, ψ12, ψ13, ψ21, ψ22, ψ23)t , where the
first (second) index denotes the orbital (site). We also have,
up to an orbital-independent energy shift,

h j = (−1) jδ 13 +
⎛
⎝ 0 z j z∗

j
z∗

j 0 z j

z j z∗
j 0

⎞
⎠, h12 =

⎛
⎝z5 z3 z∗

4
z∗

4 z5 z3

z3 z∗
4 z5

⎞
⎠,

(33)
with z j = Jjeiϕ j . Here, h1 and h2 contain the intraorbital hop-
pings z1 and z2, and onsite energies ±δ. Interorbital couplings
are given by h12 with hoppings z3 and z4, and onsite terms
z5 (Fig. 14 in the Appendix). This gives a total of eleven pa-
rameters and the time-evolution operator becomes intractable
analytically. We therefore opt for a different approach where
we start from the desired S matrix and numerically compute
an effective trimer Hamiltonian:

H0

h̄ω
= 3i

2π
log S, (34)

such that S = e−iH0T/3h̄. The form of H0 depends on the branch
cut of the logarithm, but this is unimportant as it results in the
same network dynamics.

In a previous work [32], we demonstrated that the S matrix
of the two-channel oriented triangular network in the presence
of C3 and C2T can be written in the form given by Eq. (1) with

s f =
(

ei(φ+χ )
√

Pf 1 −√
Pf 2

−√
Pf 2 −e−i(φ+χ )

√
Pf 1

)
, (35)

sr =
(

eiφ
√

Pd1
√

Pd2

−√
Pd2 −e−iφ

√
Pd1

)
, (36)

FIG. 8. (a) Pseudo-Landau levels for φ = (n + 1/2)π where
solid (dashed) arrows correspond to a+ (a−) superpositions of valley
Hall states along the same link. (b) Triplet of 1D chiral zigzag modes
for φ = nπ that propagate in the l j directions.

and sl = (sr )t , where Pf 1 + Pf 2 + 2(Pd1 + Pd2) = 1. Here,
Pf 1 (Pf 2) and Pd1 (Pd2) are the intrachannel (interchan-
nel) forward scattering probability and deflection probability,
respectively. The relative phase shift between intrachan-
nel deflections of the two channels equals 2φ + π and
cos χ = (Pd2 − Pd1)/2

√
Pf 1Pd1 with 2

√
Pf 1Pd1 � |Pd2 − Pd1|

such that χ is real. Hence, we have four phenomenological
scattering parameters in total, which can be chosen as Pf 1,
Pf 2, φ, and Pd1 − Pd2. Note that this is not the most general
S matrix. Indeed, we assumed that the intrachannel scattering
probabilities for the two channels are equal, as well as taking
equal probabilities for interchannel deflections to the left and
right.

We thus have (b1, b′
1, b2, b′

2, b3, b′
3)t =

S(a1, a′
1, a2, a′

2, a3, a′
3)t where a and a′ are the amplitudes of

the three incoming modes of the two channels, respectively,
and similar for outgoing modes b and b′. The components are
defined similarly as before, e.g., a1 and a′

1 both propagate
along the downward diagonal link [Fig. 1(b)]. For simplicity,
we consider Pd = Pd1 = Pd2 in the remainder of this work.

A. Absence of forward scattering

We first consider the case without forward scattering (s f =
0). This is a natural starting point as the wave-function over-
lap between incoming and outgoing modes is expected to be
larger for deflections than for forward scattering, due to the
network geometry [23,54]. Now, there is only one parameter
given by the phase shift φ. For a given orientation, we find that
the gapped phases are always AFIs, where the gap is opened
via interchannel coupling, without breaking C2T symmetry.
To demonstrate this, we consider the limit φ = (n + 1/2)π
where the network is localized and the bands are given by de-
generate flatbands [24], as illustrated in Fig. 8(a). In this case,
the network decouples into two versions of the one-channel
network with broken C2T which conserves C2T on the
whole. The decoupled channels are obtained by unitary trans-
formation U = 13 ⊗ e−iπσy/4eiφσz/2, which sends (a, a′) →
(a+, a−) with a± = (aeiφ/2 ∓ a′e−iφ/2)/

√
2. For the localized

network, we then find that a+ (a−) corresponds to the case
Pl = 1 (Pr = 1) of the one-channel network. From the phase
diagram in Fig. 2, we see that the a+ modes host a trivial
phase, while a− modes host an AFI phase. For the other
valley, the roles of a± are reversed. For general φ, the a+ and
a− modes are coupled. However, as long as the gap is not
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FIG. 9. Phase diagram for a single valley of the two-channel tri-
angular network with C2T symmetry with Pf 1 = 0. In the absence of
forward scattering, the AFI phase extends from π/6 < |φ| < 5π/6
and the blue dots and red triangles correspond to the chiral zigzag
and flatband regime, respectively.

closed, the AFI phase persists, and we find that this holds for
π/6 < (φ mod π ) < 5π/6.

Outside of this range, the network is metallic. Indeed,
for φ = nπ , the network gives rise to three sets of decou-
pled 1D chiral zigzag (ZZ) modes [30–32] that propagate
in the l j ( j = 1, 2, 3) directions, which is illustrated in
Fig. 8(b). The ZZ modes have quasienergy bands εm j (k) =
h̄ω(m/2 + 3k · l j/4π ), which are shown in Fig. 10(a). More-
over, because of their 1D nature and linear dispersion, the
DOS of the ZZ modes is constant and equal to 4/

√
3h̄ωl2 for

a given valley and spin. Note that the velocity of the ZZ modes
is half that of the constituent modes, since they traverse twice
the direct distance.

B. Effects of forward scattering

In the limit Pf = Pf 1 + Pf 2 → 1, it is clear that the net-
work is metallic and therefore forward scattering tends to
destroy the AFI phase. The phase boundary where the gap
closes can be obtained analytically for Pf 1 = 0 from the net-

work model [32],

Pf 2|Eg=0 = 1 − (2 sin φ)−2, (37)

which is shown in Fig. 9 together with the gap Eg. For φ =
±π/2, the phase boundary always lies at Pf = 3/4 as in this
case the spectrum depends only on Pf . The corresponding
Floquet bands and DOS are shown in Fig. 10(b). We find
that the gap closes both at the �̄ and M̄ points of the trimer
lattice BZ with a quadratic band touching. One might expect
that the AFI phase always survives the longest at φ = ±π/2,
as in this case the gap attains its maximal value h̄ω in the
absence of forward scattering. By numerically computing the
gap closing points, we find this only holds for Pf 1 = 0, which
is demonstrated in Appendix C.

C. Valley anomalous Floquet phase

We have shown that the AFI phase in the two-channel
triangular network with C2T symmetry can be understood in
terms of the one-channel triangular network with broken C2T .
However, the main difference lies in the mechanism that opens
the gap. While in the one-channel case a gap is only opened
when C2T is broken on the whole, in the two-channel network
a gap is opened by interchannel coupling. Secondly, in the
two-channel case both valleys simultaneously host anomalous
edge states that counterpropagate at a given edge. Hence,
with respect to the total winding number it is topologically
equivalent to a trivial phase. However, as long as the edge
is smooth on the interatomic scale, intervalley scattering is
suppressed and the edge hosts a single pair of valley-chiral
modes per spin. In the vicinity of the flatband regime, the
anomalous edge modes consist mostly of a∓ modes for valley
K/K ′, as these modes host an AFI (W = ±1) phase, while
the a± modes host a trivial phase, respectively. It is thus
characterized by the valley winding numbers and we refer to
it as a valley anomalous Floquet insulator (VAFI) (Table I).
In mTBG, however, the type of edge configuration is not
immediately obvious and a generic edge will most likely gap
out the edge modes of the VAFI.

Finally, in Fig. 11, we show the spectrum in the VAFI
phase of a zigzag ribbon of the two-orbital trimer lattice,
similar to the system shown in Fig. 6(a). We note that in
Fig. 11(b) the bulk projection on the zigzag direction does not
give a symmetric dispersion with respect to the momentum.

FIG. 10. Floquet bands for the two-channel case along high-symmetry lines and DOS with γ /h̄ω = 0.005. The scattering parameters
are shown above the panels and cases (a), (b), and (c) are indicated by the dot, cross, and circle in Fig. 9, respectively. Solid (dashed) lines
correspond to the (opposite) network orientation (i.e., valley index) as shown in Fig. 1(a).
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FIG. 11. Spectrum of a zigzag ribbon with N = 8 [Fig. 6(a)] for
the two-channel case with C2T in the AFI phase for valley K with
(a) φ = π/2, Pf 1 = 0, and Pf 2 = 0.3, and (b) φ = π/4 and Pf 1 =
Pf 2 = 0.1. Gray (orange) curves correspond to chiral edge modes
localized on the left (right) edge.

However, the symmetry between opposite momenta along the
edge is restored by the other valley so that the total system
is time-reversal symmetric. As predicted, we observe chiral
edge states at each edge, which mostly consist of a− modes
since these host the VAFI phase in the limits |φ| → π/2
and Pf → 0.

IV. MAGNETOTRANSPORT

To conclude this work, we demonstrate the applicability
of the Floquet description by calculating the two-terminal
conductance for the setup that is shown in Fig. 12. The system
consists of two semi-infinite leads [55] and a central scattering
region. At zero temperature and in the presence of time-
dependent leads [56], the time-averaged zero-bias differential
conductance reduces to the well-known expression [57–59]

G = 4e2

h
Trω

[
�LGr

0�RGa
0

]
, (38)

FIG. 12. Setup for transport calculation where the length of the
center region is given by L = (3N − 1/2)l , shown here for N = 1.
Horizontal dashed lines indicate the unit cell in the transverse di-
rection such that the scattering region with Floquet Hamiltonian H0

contains a total of 6N sites per transverse cell, where the sites are
shown as numbered circles.

where Trω includes a trace over harmonics, which
can be thought of as different layers in an effective
multilayer system [56]. Furthermore, Ga

0 = (Gr
0)† =

(ε − H0 − �a
R − �a

L )−1 is the advanced and retarded Green’s
function of the system coupled to the right (R) and left (L)
leads and �i = 2Im[�a

i ] with i = L, R where �a
i = V0iga

iVi0

is the self energy of the leads. Here, we introduced the
Floquet Hamiltonian H0 of the scattering region, the tunnel
couplings V0i and Vi0 that couple the scattering region to
the leads (Fig. 12) as well as the surface Green’s function
ga

i of the leads. To illustrate this approach, we calculate the
conductance for the one-channel model in the AFI regime. In
the presence of a boundary, we find a quantized conductance
e2/h (for a given valley and spin) in the gapped regions,
signaling the presence of anomalous edge states [Fig. 13(a)].
In contrast, the conductance drops to zero for a bulk system
with periodic boundary conditions. We want to emphasize
that we consider driven leads since they are part of the
network. This is in contrast to transport in a driven system
with static leads. Therefore there is no Floquet sum rule for
edge transport in our setup [60].

We can extend the effective Floquet model to incorporate
the effect of a magnetic field B = Bez on the network. This
gives an additional Peierls phase accumulated during propaga-
tion between nodes. Here, we assume that the magnetic length
is large compared to the scattering region in the network,
such that the S matrix of the nodes is not affected by the
magnetic field. In this case, the dynamics of the network can
be mimicked by introducing new driving steps, namely

H (t ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H1, 0 < t < T/6,

H ′
1, T/6 < t < T/3,

H2, T/3 < t < T/2,

H ′
2, T/2 < t < 2T/3,

H3, 2T/3 < t < 5T/6,

H ′
3, 5T/6 < t < T,

(39)

with H (t + T ) = H (t ). The additional steps given by H ′
1, H ′

2,
and H ′

3 introduce the Peierls phases and are therefore given by
onsite terms. For example, in the Landau gauge A = B(x −
l/4)ey, the Peierls phase along horizontal links is zero, and
given by �P(x) [−�P(x)] along downward (upward) diagonal
links that start at a node with horizontal position x, where

�P(x) = π�

�0

x

l/2
, (40)

with � = B
√

3l2/2 the flux through a moiré cell. In the basis
shown in Fig. 1(d), we thus have

H ′
1(x)

h̄ω
= 3�P(x)

π
diag(1,−1, 0), (41)

H ′
2(x)

h̄ω
= 3�P(x)

π
diag(0, 1,−1), (42)

H ′
3(x)

h̄ω
= 3�P(x)

π
diag(−1, 0, 1), (43)

where x is the horizontal position of the center of the
corresponding trimer. It is straightforward to check that
the time-evolution operators indeed give the correct Peierls
phases. We have also verified this by explicitly calculating the
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FIG. 13. (a) Conductance at zero magnetic field of the one-
channel network in the AFI phase with (Pr, Pl ) = (0.6, 0.2) for
an infinitely-long strip of width W = 15

√
3l (solid) and the bulk

network (dashed) scaled to match the finite-width result. (b) Mag-
netoconductance of the two-channel network in mTBG in the ZZ
regime (φ = 0) for several Pf , where L = 8.5l and W � L. Arrows
indicate resonances due to paths enclosing a multiple of the moiré
cell area A = √

3 l2/2.

spectrum of a zigzag ribbon in a magnetic field with both the
network and Floquet model, where the S matrices for edge
nodes were derived from the Floquet model. It is important
to note that this does not correspond to the usual Peierls
substitution in the Floquet lattice model. This would intro-
duce an additional flux in the trimers, ϕ → ϕ + �/6, which
corresponds to a different S matrix in the network. Moreover,
the relation between scattering parameters and couplings is
modified as each step now lasts for T/6 instead of T/3. For
example, for the one-channel network, we now have

θ1 = J

h̄ω

π

2
cos ϕ, θ2 = J

h̄ω

π√
3

sin ϕ. (44)

It is worth mentioning that these extra steps increase the
amount of harmonics required to achieve convergence by al-
most one order of magnitude.

In Fig. 13(b), we show the conductance as a function
of the flux �/�0 for the two-channel network with φ = 0
and different Pf = Pf 1 + Pf 2. We find that the magnetocon-
ductance exhibits Aharonov-Bohm resonances whenever an
integer amount of flux quanta is threaded through the moiré
cell. This reproduces previous results obtained with the scat-
tering network approach. We refer to Ref. [32] for a detailed
discussion on these resonances.

V. CONCLUSIONS

We constructed an effective Floquet lattice model for the
oriented triangular scattering network, where the links of the
network support either one or two chiral channels. Here, the
latter case is realized in minimally twisted bilayer graphene
under interlayer bias. To this end, we first mapped the scatter-
ing process at a single node to the dynamics of a three-level
system or trimer. The dynamics of the scattering network were
then reproduced with a triangular lattice of trimers whose
couplings are turned on and off periodically.

We found that the one-channel network hosts a metallic
phase and two gapped phases, where the gap is opened by
breaking C2T symmetry. One of the gapped phases is a trivial
insulator, while the other is an anomalous Floquet insulator
characterized by Floquet winding number W = ±1 depending
on the network orientation. When C2 is conserved but T is
broken, the total winding number is finite, while it vanishes
when T is conserved. In contrast, in the two-channel network
the gap can also be opened by interchannel processes at the
nodes without breaking C2T . In this case, each gapped phase
corresponds to a valley anomalous Floquet insulator with a
pair of counterpropagating anomalous chiral modes at each
edge, characterized by a pair of valley winding numbers. This
phase has no net winding number and is thus only protected as
long as intervalley scattering is absent. The anomalous phase
that conserves C2T is most likely very challenging to realize in
minimally twisted bilayer graphene since both experiment and
theory indicate that the network remains metallic over a wide
range of parameters, e.g., the twist angle or interlayer bias.
However, in the presence of external fields that break C2T ,
one expects an anomalous Floquet phase to arise generically
above some critical field strength. The presence of anomalous
edge modes could then be probed by nonlocal transport mea-
surements. Furthermore, the Floquet scheme can in principle
also be realized in optical atomic lattices in which case one
can tailor the S matrix by controlling the hopping between
trimers.

Finally, we performed transport calculations with the ef-
fective Floquet model. For the one-channel network, we find
a quantized conductance in the AFI phase due to the edge
state, while for the two-channel network we reproduced pre-
vious results obtained with the network model in the chiral
zigzag regime. In particular, we showed that in the presence of
forward scattering at the nodes, Aharonov-Bohm oscillations
appear in the two-terminal conductance when a magnetic field
is applied perpendicularly to the network.

The effective Floquet lattice model that we constructed
allows for further research of the topological network in
minimally twisted bilayer graphene using standard methods.
Moreover, the explicit mapping to the driven system could be
interesting for the realization of similar network physics in
photonic crystals or optical lattices.
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FIG. 14. Trimer couplings for the two-channel network corre-
sponding to the two-orbital trimer Hamiltonian given in Eq. (32)
with z j = Jjeiϕ j . (a) Onsite couplings. (b) Intraorbital couplings.
(c) Interorbital couplings.

dation) within the framework of Germany’s Excellence
Strategy–EXC-2123 QuantumFrontiers–390837967.

APPENDIX A: ZIGZAG RIBBON

The discrete time-dependent Hamiltonian for a zigzag rib-
bon of the trimer lattice with width W = (3N − 1)l/2 (N =
1, 2, . . .) as illustrated in Fig. 6(a) for N = 4 can be written as

H (k, t ) =
⎧⎨
⎩

H1(k), 0 < t < T/3,

H2(k), T/3 < t < 2T/3,

H3(k), 2T/3 < t < T .

(A1)

In the basis given by 	 = (ψ1, . . . , ψ3N )t where the index
runs over all trimer sites with labeling defined in Fig. 6(a),
the matrix H1 is block diagonal and the matrices H2 and H3

are block tridiagonal. Explicitly, we have

Hj =

⎛
⎜⎜⎜⎝

H0 j Vj

V †
j

. . .
. . .

. . .
. . . Vj

V †
j H0 j

⎞
⎟⎟⎟⎠, (A2)

for j = 1, 2, 3 and where H01 = H0 from Eq. (3), V1 = 0, and
the remaining matrices are defined below for both the one- and
two-channel network. The Floquet Hamiltonian is obtained in
the same way as for the bulk.

1. One-channel network

In the one-channel case, we have

H02 =
⎛
⎝ 0 zeiq 0

z∗e−iq 0 0
0 0 0

⎞
⎠, V2 =

⎛
⎝0 0 z∗

0 0 ze−iq

0 0 0

⎞
⎠, (A3)

H03 =
⎛
⎝ 0 0 z∗eiq

0 0 0
ze−iq 0 0

⎞
⎠, V3 =

⎛
⎝ 0 0 0

z∗e−iq 0 z
0 0 0

⎞
⎠, (A4)

with z = Jeiϕ and q = k
√

3 l .

2. Two-channel network

For the two-channel network, the different couplings are
illustrated in Fig. 14 and the Hamiltonian matrices for the

ribbon become

H02 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ z1eiq 0 z5 z3eiq 0
z∗

1e−iq δ 0 z∗
4e−iq z5 0

0 0 δ 0 0 z5

z∗
5 z4eiq 0 −δ z2eiq 0

z∗
3e−iq z∗

5 0 z∗
2e−iq −δ 0

0 0 z∗
5 0 0 −δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

V2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 z∗
1 0 0 z∗

4

0 0 z1e−iq 0 0 z3e−iq

0 0 0 0 0 0
0 0 z∗

3 0 0 z∗
2

0 0 z4e−iq 0 0 z2e−iq

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A6)

H03 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δ 0 z∗
1eiq z5 0 z∗

4eiq

0 δ 0 0 z5 0
z1e−iq 0 δ z3e−iq 0 z5

z∗
5 0 z∗

3eiq −δ 0 z∗
2eiq

0 z∗
5 0 0 −δ 0

z4e−iq 0 z∗
5 z2e−iq 0 −δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A7)

V3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
z∗

1e−iq 0 z1 z∗
4e−iq 0 z3

0 0 0 0 0 0
0 0 0 0 0 0

z∗
3e−iq 0 z4 z∗

2e−iq 0 z2

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

APPENDIX B: FLOQUET WINDING NUMBER

The bulk topological invariant that characterizes anoma-
lous Floquet insulators is given by the Floquet winding
number introduced by Runder et al. [41]. Here, we calculate
the winding number for the one-channel triangular network in
the limit where the network is completely localized. To this
end, we need the time-evolution operator at all times,

U (k, t )

⎧⎪⎨
⎪⎩

S(t ), 0 < t < T/3,

T †
1 S

(
t − T

3

)
T1S0, T/3 < t < 2T/3,

T3S
(
t − 2T

3

)
T2S0T1S0, 2T/3 < t < T,

(B1)

with S(t ) = exp (−iH0t ), S0 = S(T/3), and where H0 and Ti

(i = 1, 2, 3) are defined in Sec. II. In case the Floquet oper-
ator is trivial, i.e., U (T ) = U (0) = 1, the winding number is
defined as

W [U ] = 1

8π2

∫ T

0
dt

∫
BZ

d2k

× Tr
(
U −1(∂tU )

[
U −1

(
∂kxU

)
,U −1

(
∂kyU

)])
, (B2)

where the momentum integral runs over the first Brillouin
zone. For the gapped one-channel network, the Floquet op-
erator is periodic for Pl = 1 or Pr = 1. In the former case, for
the orientation shown in Fig. 1, S(t ) = 1, so that U (t ) = 1
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FIG. 15. Phase diagram of the two-channel triangular network
with C2T symmetry. Colored regions correspond to the AFI phase,
while white regions are metallic.

is trivial at all times and W = 0. In the latter case, we have
J/h̄ω = 1/

√
3 and ϕ = π/2. We find that the trace is inde-

pendent of k and

W [Pr = 1] = l2�BZ

8π2
8π

∫ 1/3

0
ds sin

(
πs + π

3

)
sin(3πs),

(B3)

with s = t/T , l2�BZ = 8π2/3
√

3, and where the last fac-
tor evaluates to 3

√
3. Hence, we obtain W [Pl = 1] = 0 and

W [Pr = 1] = 1. If the orientation (valley) is reversed, W [P′
l =

1] = −1 and W [P′
r = 1] = 0, where the prime indicates dif-

ferent orientation. Moreover, when C2 is conserved but T
broken, P′

r,l = Pr,l and W = sgn(Pr − Pl ) where we used the
fact that the winding number does not change as long as
the energy gap does not close. On the other hand, when T
is conserved but C2 is broken, we have P′

r,l = Pl,r and the
total winding number vanishes. However, in the absence of
intervalley processes, one can still define two valley winding
numbers that can be nonzero (Table I). When both of these
symmetries are absent, there is no relation between scattering
parameters of opposite valleys and in general, we have

W = θ (Pr − Pl ) − θ (P′
l − P′

r ). (B4)

APPENDIX C: PHASE DIAGRAM

The phase diagram of the two-channel network with C2T
symmetry and Pd1 = Pd2 in the (φ, Pf 2) plane was obtained by
numerically computing the gap-closing points. This is shown
for several values of Pf 1 in Fig. 15.

APPENDIX D: TRANSPORT

We calculated transport in the l3 direction of the trimer lat-
tice. To this end, we use the setup shown in Fig. 12 where the
transport direction is given by the x axis. Here, we take a unit
cell made up of two rows of sites, which can be subdivided
into sets of six sites as shown in the figure. The Hamiltonian
for each step then has the same structure as Eq. (A1), where
each block is now given by a 6 × 6 (12 × 12) matrix for the
one(two)-channel case. For the one-channel network, we

obtain

H01 =

⎛
⎜⎜⎜⎜⎜⎝

0 z∗ 0 z 0 0
z 0 0 z∗ 0 0
0 0 0 0 z∗e−iq ze−iq

z∗ z 0 0 0 0
0 0 zeiq 0 0 z∗
0 0 z∗eiq 0 z 0

⎞
⎟⎟⎟⎟⎟⎠

, (D1)

and V1 = 0, while

H02 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 z∗e−iq ze−iq 0
0 0 0 0 0 z
0 zeiq 0 0 z∗ 0
0 z∗eiq 0 z 0 0
0 0 z∗ 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (D2)

and [V2]mn = zδm3δ1n + z∗δm6δ1n. Finally, we have

H03 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 ze−iq 0 0
0 0 z∗ 0 z 0
0 z 0 0 z∗ 0

z∗eiq 0 0 0 0 0
0 z∗ z 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

, (D3)

and [V3]mn = z∗δm6δ4n + zeiqδm6δ1n. The matrices for the two-channel case can be obtained similarly.
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