
PHYSICAL REVIEW B 103, 195431 (2021)

Effect of retardation on the frequency and linewidth of plasma resonances in a
two-dimensional disk of electron gas
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We theoretically analyze dominant plasma modes in a two-dimensional disk of electron gas by calculating
the absorption of an incident electromagnetic wave. The problem is solved in a self-consistent approximation,
taking into account electromagnetic retardation effects. We use the Drude model to describe the conductivity
of the system. The absorption spectrum exhibits a series of peaks corresponding to the excitation of plasma
waves. The position and linewidth of the peaks designating, respectively, the frequency and damping rate
of the plasma modes. We estimate the influence of retardation effects on the frequency and linewidth of the
fundamental (dipole) and axisymmetric (quadrupole) plasma modes both numerically and analytically. We find
the net damping rate of the modes to be dependent on not only the sum of the radiative and collisional decays
but also their intermixture, even for small retardation. We show that the net damping rate can be noticeably less
than that determined by collisions alone.
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I. INTRODUCTION

Plasma waves or plasmons in two-dimensional (2D) elec-
tron systems (ESs) were first discovered more than 40 years
ago [1–4]. Recognized as one of the basic and easily ex-
cited collective oscillations, they have presently become a
widely used platform for active fundamental and applied re-
search, with considerable application potential in the fields of
plasmonics, nanophotonics, and optoelectronics [5–10]. The
interaction of plasmons with electromagnetic radiation is used
ubiquitously to various studies in these areas.

Given an infinite homogeneous 2DES in a vacuum envi-
ronment, the dispersion of plasma waves was defined in [11]
as

q2 = ω2

c2
+

(
ω2

2πne2/m

)2

, (1)

where n and m are the electron concentration and effective
mass, q is the plasmon wave vector, and c is the speed of
light in vacuum (note that we use the CGS units throughout
the presented analysis). The derivation of Eq. (1) is based
on the assumption of infinite electron relaxation time. The
dispersion law that follows from Eq. (1) is restricted to the
region “below” the light cone ω = cq. For this reason, the ex-
citation of plasmons with electromagnetic radiation requires
introduction of an inhomogeneity into the 2DES or exter-
nal field. Therefore, metallic gratings [2,5,9,12,13], near-field
optical microscopy [6,14–16], or samples with confined ge-
ometries, e.g., disks or strips [17–20], are utilized. The 2D
disk, in particular, is one of the simplest configurations for
both manufacturing and theoretical analysis—fabricated with-
out metallic electrodes, such a system is perfectly suitable for
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making a more direct comparison between the experimental
data and theoretical calculations.

Plasmons in conductive 2D disks have been studied since
1985 [21–25], and most recently, they have been intently
discussed with regard to graphene structures [16,26,27].
However, most of this work has been concerned with the
quasielectrostatic (quasistatic) or nonretarded regime, when
the size of the sample is much smaller than the wavelength of
the electromagnetic radiation. Retardation effects, on the other
hand, significantly alter the properties of plasma oscillations,
even in an infinite system [28–30]. Thus, in a disk-shaped
2DES retardation affects plasmon spectra, drastically reduces
the plasmon damping rate, and considerably increases the
quality factor [31–35]. At the same time, taking into account
retardation effects greatly complicates the analytical treatment
of plasma modes, which might explain the prevalent use of
a numerical approach in this case [36–41]. In the presented
paper we demonstrate the feasibility of qualitative and in
some instances even quantitative analysis that accounts for the
retardation effects.

In a disk-shaped 2DES, the eigenplasma modes are
characterized by the radial number nr = 1, 2, 3, . . . and
the orbital (angular) momentum number l = 0,±1,±2, . . .

[21,22,31,37]. The l = 0 mode corresponds to the axisym-
metric oscillations where the charges and currents move
exclusively in the radial direction. This mode is also called
dark (or breathing) mode since it has a zero dipole moment,
and therefore interacts rather weakly with electromagnetic
radiation [33,42]. By contrast, in the l = 1 mode, the currents
flow through the center as well as along the edge of the
disk. The frequency of this mode is lower compared to the
axisymmetric mode.

To estimate the frequency of plasma resonances in a finite-
size sample, it is common to apply the phenomenological
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“quantization rule” of plasmon wave vector q in dispersion
law (1). For example, according to the rule in a disk-shaped
2DES with the radius R, the fundamental mode (l = 1, nr =
1) in the quasistatic regime is well described by q ≈ 1.1/R.
This approximation is sufficiently accurate for calculating the
plasmon frequency and even the damping rate when electro-
magnetic retardation effects are neglected. However, taking
the retardation into consideration results in an additional
contribution to the net plasmon damping rate due to electro-
magnetic radiation. This contribution is not described by the
dispersion law (1) as in the derivation of it only nonradiative
(localized near 2DES) modes were considered. Consequently,
the overall damping rate of the plasmon resonances in finite-
size 2DESs cannot be fully described by a simple quantization
rule of the plasmon wave vector.

In this paper, motivated by recent experiments [33–35],
we analyze the frequency and damping rate of the plasma
modes in a 2D disk for angular momentum l = 0 and l = 1
by calculating the absorption power of an electromagnetic
wave. First, we transform the Maxwell’s equations into an
integro-differential equation for the current density. Then we
expand the unknown components of the current density in a
Taylor-like series in a sense of the Galerkin method. Cutting
the series we find the current density approximately. Finally,
we determine the dependence of the frequency and linewidth
of the absorption peaks on a retardation parameter. The ab-
sorption maxima indicate the excitation of plasma waves.

The two factors affecting the linewidth are the collisional
(or dissipative) decay rate inversely proportional to the elec-
tron relaxation time and radiative decay rate related to the
emission of electromagnetic radiation. Although most often
the linewidth is assumed to represent purely additive effects
of these two kinds of damping [43–46], we find that the
linewidth is not merely the sum of these two decays. It
contains additional mixing contributions. To the best of our
knowledge, such intermixture of the plasmon dampings have
been discussed for the first time. Furthermore, we obtain some
analytical approximations for the frequency and damping rate
of the plasma modes with l = 0 and l = 1 excited in a 2D
disk.

In the following sections of the paper we introduce the
essential equations along with solution methods (Sec. II),
expand on the specifics of the axisymmetric (Sec. III) and
fundamental modes (Sec. IV), and close with discussion and
conclusions (Sec. V).

II. KEY EQUATIONS

Consider a 2D electron-gas disk of radius R in vacuum
in the plane z = 0. Let r = (x, y) be the radius vector in
the disk plane. Following the approach in Refs. [47,48],
we seek the system response to an incident external elec-
tric field Eext(r)e−iωt with oscillation frequency ω. The total
electric field Etot(r)e−iωt represents the superposition of the
external field and the field induced by electron density in disk
Eind(r)e−iωt . According to the theory of linear response, the
current density in the disk becomes

j(r) = σ (ω)Etot(r) = σ (ω)[Eext(r) + Eind(r)]. (2)

We consider Drude model for conductivity σ (ω) =
ne2τ/m(1 − iωτ ), where n, m, and τ are the 2D concentration,
effective mass, and carriers relaxation time, respectively. We
assume that equilibrium carrier concentration is homogeneous
(i.e., “hard wall” confining potential).

In fact, the Drude conductivity is governed by only two in-
dependent parameters, intrinsic to the system—the collisional
damping rate γ = 1/τ and ne2/m, with the frequency ω being
an extraneous parameter from the standpoint of the dynam-
ical response. The internal properties can be varied nearly
independently, even within a single sample, for example, by
changing the temperature or carrier concentration [49]. In the
case of restricted systems, the size of the system becomes an
additional parameter. However, it is convenient to introduce
the following dimensionless parameters:

γ̃ = γ R

c
= R

cτ
, �̃ = 2πne2R

mc2
. (3)

It will be shown that these very parameters determine the
characteristics of plasma waves in a disk. We refer to �̃ as the
retardation parameter. Notice that the sum of these parameters
(without R/c factor) define the absorption line broadening in
an infinite 2DES in the presence of magnetic field [32,50].

Based on Eqs. (3), the conductivity can be rewritten in
terms of the dimensionless parameters as

σ (ω̃) = i
c

2π

�̃

ω̃ + iγ̃
, (4)

where ω̃ = ωR/c = 2πR/λ is the dimensionless frequency,
which is equal to the ratio of the disk perimeter to the
wavelength λ of the external radiation. Here the case of
ω̃ � 1 corresponds to the quasistatic regime. In the follow-
ing analysis we focus mainly on the dependence of plasmon
characteristics on the retardation parameter �̃ for any values
of ω̃.

In a practical sense, considering standard high-mobility
GaAs/AlGaAs quantum wells with typical 2D electron con-
centration n ∼ 1011 cm−2, for the radius of disk-shaped
samples of up to 1.2 cm, the retardation parameter �̃ can reach
the value of 10 [34], whereas the dimensionless relaxation rate
γ̃ is less than or on the order of unity.

Mathematical analysis of plasmons poses quite a chal-
lenge since the relationship between the current density and
the induced electric field is nonlocal. For the self-consistent
derivation of the electric field induced in a disk we first
consider the corresponding electrostatic ϕ(r, z, t ) and vector
A(r, z, t ) potentials described by Maxwell’s equations in the
Cartesian coordinate system, in CGS units:


A(r, z, t ) − 1

c2

∂2

∂t2
A(r, z, t ) = −4π

c
j(r, t )δ(z), (5)


ϕ(r, z, t ) − 1

c2

∂2

∂t2
ϕ(r, z, t ) = −4πρ(r, t )δ(z). (6)

Here c is the speed of light, ρ(r, t ) and j(r, t ) are, respectively,
the charge density and density of current, and 
 is the three-
dimensional Laplace operator.

The above equations are derived in the Lorenz gauge

1

c

∂

∂t
ϕ(r, z, t ) + divA(r, z, t ) = 0. (7)
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Given the cylindrical symmetry, the system can be char-
acterized by the angular momentum l and radial number
nr . Hence, using the cylindrical coordinates (r, θ, z), we
can express the vector quantity under consideration in
terms of their radial Ar (r, θ, z, t ) = Ax cos θ + Ay sin θ and
azimuthal Aθ (r, θ, z, t ) = −Ax sin θ + Ay cos θ components,
with Az(r, t ) = 0—as there are no current sources to con-
tribute to the z component of the vector potential. Then,
applying the Fourier transformation with respect to time, i.e.,
considering the solutions of the form exp (ilθ − iωt ), we re-
formulate the Maxwell’s equations as follows:(

�l − 1
r2 − 2il

r2
2il
r2 �l − 1

r2

)
A(r, z) = −4π

c
j(r)δ(z), (8)

where �l = ω2

c2 + ∂2

∂r2 + 1
r

∂
∂r + ∂2

∂z2 − l2

r2 is the time and angle
Fourier transform of the d’Alembert operator in the cylin-
drical coordinates A(r, z) = [Ar (r, z), Aθ (r, z)]T and j(r) =
[ jr (r), jθ (r)]T . As a next step, the scalar potential ϕ is ex-

pressed through the vector potential from the Lorenz gauge in
(7). Thus, using the transformation

A(r, z) = SAS (r, z), S =
(

i −i
1 1

)
. (9)

we diagonalize the system in (8) to obtain(
�l+1 0

0 �l−1

)
AS (r, z) = −4π

c
jS (r)δ(z). (10)

Then, taking the Hankel transform of the result, we express
the transformed vector potential through the transformed cur-
rent. Then, applying the inverse Hankel transform and inverse
transformation S, we find the vector potential in the disk plane
to be

A(r, 0) = 2π

c

∫ R

0
Gl (r, r′) j(r′)r′dr′, (11)

with the following kernel:

Gl (r, r′) =
∫ ∞

0

pd p

β
S

(
Jl+1(pr′)Jl+1(pr) 0

0 Jl−1(pr′)Jl−1(pr)

)
S−1. (12)

Here, at p < ω/c, we choose the branch of the square root
relation β =

√
p2 − ω2/c2 with the negative imaginary part

since it corresponds to the waves outgoing from the disk.
After that we determine the induced electric field in the

disk plane z = 0,

E ind(r) = i
c

ω

[
D̂ + ω2

c2

]
A(r, 0), (13)

where

D̂ =
(

1
r

d
dr r d

dr − 1
r2 il d

dr
1
r

il
r2

d
dr r − l2

r2

)
. (14)

This is merely a composition of the gradient and divergence
operators grad div in the polar coordinate (without z com-
ponents). Substituting Eq. (11) into (13), we finally derive
the relationship between the current density and the induced
electric field:

Eind(r) = i
2π

ω

(
ω2

c2
+ D̂

) ∫ R

0
Gl (r, r′)j(r′)r′dr′. (15)

Once the dimensionless coordinate r/R is introduced, the
electric field in Eq. (15) is governed solely by ω̃—the dimen-
sionless frequency.

Importantly, the kernel Gl (r, r′) has parity (−1)l+1 with re-
spect to the (formal) transformation r → −r since its defining
Bessel functions of order l ± 1 have parity (−1)l+1. As the
parity is preserved by the differential operator D̂ in Eq. (14),
the induced field, and therefore the current density, can be odd
and even functions for l = 0 and l = 1, respectively.

Now let us consider the behavior of the current density
at the center and at the edge of the disk. The normal to the
edge component of the current should vanish at the edge, i.e.,
jr (R) = 0. At the center of the disk the behavior is far more

complex. Given the continuity equation

−iωρ(r) + d jr (r)

dr
+ jr (r) + il jθ (r)

r
= 0, (16)

the current density relation at the center of the disk becomes

jr (0) + il jθ (0) = 0, (17)

assuming there are no singularities in charge density and
derivative of the current density. For the axisymmetric mode,
it immediately leads to jr (0) = 0. For l �= 0 further Taylor
series expansion of the current density about r = 0 results
in an extra condition 2 j′r (0) + il j′θ (0) = 0 (with the prime
denoting the derivatives with respect to r), which ensures zero
charge at the center of the disk.

To calculate the response of the disk on an external elec-
tric field, one should solve Eqs. (2) and (15) with the above
mentioned boundary conditions. However, obtaining the exact
solution to these equations is virtually unachievable. There-
fore, to find an approximate solution, we expand the unknown
vector-function j(r) in a complete set of basis functions, inte-
grate the system over r, and then reduce it to a matrix equation
on the expanding coefficients. After that, we truncate the
matrix to retain only the dominant terms. Finally, by solving
the resultant matrix equation, we calculate the expansion coef-
ficients and, consequently, the desired current density, which
determines the response of the system. The accuracy of this
procedure can be assessed by the successive increase of the
number of basis functions.

Although any complete set of functions can be chosen, it
is most appropriate to consider functions that are analytically
integrable with the kernel (12) of the integral equation (15).
Fortunately, any power function is a suitable choice since it
can be integrated analytically with respect to the coordinates
r, r′ at least with the inner kernel of the integral operator
Gl (r, r′) (however, the integral over the parameter p of the
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Hankel transform is retained for some cases). Also, it is
worth noting that due to the kernel properties, the current
j(r) has parity (−1)l+1. All the characteristics mentioned
above constitute the key mathematical features that permit the
exact calculation of most given integrals, yielding analytical
expressions for the current density and related plasma charac-
teristics.

Having determined the current density in the system, we
calculate the absorption power

P(ω) =
∫ R

0

1

2
Re(j∗ · Etot )2πrdr = πγ

2�

∫ R

0
|j|2rdr, (18)

which provides us with information about the position and
width of the plasma resonances.

III. AXISYMMETRIC MODE (l = 0)

A. Numerical solution

For the axisymmetric mode the azimuthal components of
the current and induced electric field are absent. Using the
properties of the derivatives of the Bessel functions of the first
order, which determine the kernel G0(r, r′), the expression for
the induced electric field can be reduced to

E ind
r (r) = 2π i

ω

∫ ∞

0
βJ1(pr)F (p)pd p, (19)

where J1(x) is the Bessel function of the first kind,
β =

√
p2 − ω2/c2, and the auxiliary function F (p) =∫ R

0 jr (r)J1(pr)rdr is the Hankel transform of the current
density jr (r). In the case p < ω/c the imaginary part of β

becomes negative, indicating the waves outgoing from the
disk.

To excite the axisymmetric mode, we choose the external
electric field of the form

Eext = (
E ext

r , E ext
θ

)T = E0(1, 0)T . (20)

The exact origin of this kind of field is irrelevant to the main
subject of this paper. It may arise from a multipole expansion
of a complex field. For example, as a result of a decomposition
of excitation field in near-field scanning optical microscopy,
or of an oscillating dipole (or antenna) in the vicinity of the
disk.

For the radial component of the current we apply the series
expansion

jr (r) =
N∑

n=1

αn
r

R

(
1 − r2

R2

)n

, (21)

where αn are unknown coefficients, and N is the number of
basis functions under consideration. It is an odd power Taylor
series that satisfies the boundary conditions. Unlike the basis
functions chosen in Ref. [48] this one corresponds to parity
of the kernel Gl (r, r′) and, besides, it gives more physical
(smoother) dependence of charge density on the coordinate
r in the vicinity of the disk center. The given basis set of
functions can be orthogonalized, although we found it unnec-
essary. Comparing calculations results with those based on the
orthonormal basis set (including all powers of r as well as only
odd powers), we observe no significant differences.

FIG. 1. (a) Dependence of the absorption power (in arbitrary
units) of the axisymmetric plasma mode on the dimensionless fre-
quency of the incident radiation ω̃ = ωR/c, with R and c denoting
the disk radius and the speed of light. Calculation results are carried
out for the dimensionless collisional and retardation parameters γ̃ =
�̃ = 0.01, which are determined by Eqs. (3). Plotted data indicate the
first five resonances with nr = 1, 2, . . . , 5. The inset schematically
illustrates the excitation of the axisymmetric mode in the disk by
external radiation. (b) Comparison of the main absorption maxima
(with nr = 1) for γ̃ = 1 and different retardation parameter: �̃ = 0.5
(solid line), �̃ = 2 (dashed line), and �̃ = 4 (dot-dashed line). The
peaks are shifted on resonant frequency ω̃m and are normalized in
such a way that the absorption maximum equals unity. Ten terms of
the current density expansion series in Eq. (21) were used for both
figures.

To obtain the equation for coefficient αn, we consecutively
multiple Eq. (2) by kth basis function (1 − r2/R2)k

r/R for
k = 1, 2, . . . , N and then integrate the result with the weight
function r over the range r ∈ [0, R]. Here all integrals are
calculated analytically (including the integral with respect to
p). After that we arrive at a linear system of the unknown
coefficients αn, which is easy to solve. Thus, having deter-
mined the current density, we calculate the absorption power
spectrum, according to Eq. (18), and analyze it.

For the purpose of illustration, Fig. 1 shows examples of
the dependencies of the absorption power on the frequency
of external radiation. Figure 1(a) was calculated for γ̃ = �̃ =
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FIG. 2. Dependence of the dimensionless resonance frequency
ω̃m on the retardation parameter �̃ calculated for the plasma reso-
nances of the radial number nr = 1 and the orbital numbers l = 0
(solid curve) and l = 1 (dashed curve). Calculations are carried out
using ten basis functions for the l = 0 mode and five basis functions
for the l = 1 mode. Insets depict the charge and current distributions
for the respective resonance modes.

0.01, i.e., in a quasistatic regime, with ω̃ � 1 (and �̃ � 1),
using the first ten basis functions. The data clearly indicate
the first five resonances for nr = 1, 2, . . . , 5, with more pro-
nounced excitation of the mode with odd rather than even
values of nr . Also, the ratio of the resonant frequencies to
that of the lowest (nr = 1) resonance consistently comes to
the value of

√
nr with a high degree of accuracy. Thus, it is

evident that the phenomenological quantization rule of the 2D
wave vector q ≈ 3.5nr/R well describes the position of the
resonances, at least for small damping.

Below we focus only on the main resonance with nr =
1. From the dependence of the absorption power on the
frequency we find the resonant frequency ω̃m taken as a max-
imum of absorption as well as the linewidth 
ω̃ taken as
the full width at half-maximum. In general, they both de-
pend on γ̃ and �̃. In a practical case of particular interest,
ω̃m � γ̃ , when the resonant peak is well resolved (i.e., the
width of the peak is less than its position), the dependence
of the resonant frequency on the retardation parameter is
unique. This dependence is shown in Fig. 2. Thus, at small
frequencies ω̃m ≈ 1.87

√
�̃, which is consistent with Eq. (1)

and the quantization rule q ≈ 3.5/R [21,31]. For large �̃,
when the plasmon dispersion (1) approaches the dispersion of
light ω = cq, the resonant frequency tends to the asymptote
ω̃m ≈ 3.5, which likewise conforms to the given quantization
rule.

The dependence of the linewidth on the retardation param-
eter is depicted in Fig. 3. In general, it depends on the ratio
between the collisional and retardation parameters. In the case
γ̃ = 0, the linewidth clearly grows large with increasing �̃

reaching the asymptotic value about 2.3. However, at the finite
collisional damping rate the linewidth actually decreases with
increasing �̃ at small retardation. The narrowing of the peak
is clearly visible in Fig. 1(b), in which normalized absorption
spectra are shifted on resonant frequency for �̃ = 0.5, 2, 4.
Also, please see the lines marked by squares and diamonds in
Fig. 3. In the following discussion we focus on this particular

FIG. 3. Dependence of the dimensionless linewidth 
ω̃ =

ωR/c on the retardation parameter �̃ calculated for the axisym-
metric plasma resonance (l = 0, nr = 1). Curves marked by (blue)
circles, (red) squares, and (green) diamonds correspond to the
dimensionless collisional damping γ̃ = 0, γ̃ = 0.5, and γ̃ = 1, re-
spectively. Calculations are based on the first ten terms in Eq. (21).
The inset is a closeup of the data region of small retardation, with
dashed lines showing the approximations from Eq. (27). The gray
shaded area designates the overdamped region with strong plasmon
damping, i.e., 
ω̃ > ω̃m.

case and find the approximation of the linewidth dependence
on the retardation parameter. At small �̃ (at finite γ̃ ) the
plasmon is overdamped. Although in the overdamped regime
there still is weak resonance in the absorption spectra, it
hardly can be associated with the plasma oscillations in the
usual sense (there is no oscillations). Besides, the resonance
is highly asymmetric with respect to frequency and it has a
quality factor less unity. This regime is shown by gray shaded
fill in Fig. 3.

B. Approximate solution

To begin with, we approximate the current distribution by
a single basis function

jr (r) = α1

(
1 − r2

R2

)
r

R
, (22)

where α1 is the only unknown coefficient. Then the Han-
kel transform of the current becomes F (p) = 2α1J3(pR)/p2.
Next, we substitute Eqs. (19), (20), and (22) into Eq. (2), mul-
tiply the resultant equation by (1 − r2/R2)r2/R, and integrate
the product over the radius. For this calculation we introduce
the dimensionless coordinate r/R. After some algebraic ma-
nipulations, we arrive at

α1 = i24c�̃E0

15π
[
ω̃ + iγ̃ − 24�̃

ω̃
f (ω̃)

] , (23)

where

f (ω̃) = − 16

105π
+ 2H3(2ω̃)

ω̃4
+ H4(2ω̃)

ω̃3

− i
ω̃5 − 8ω̃3 + 48J3(2ω̃) + 24ω̃J4(2ω̃)

24ω̃4
. (24)

Here Hn(x) is the Struve function.
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Since the absorption power is proportional to |α1|2, the
resonance is determined by the minimum of the denominator
of |α1|. In the limit ω̃ → 0 we have

f (ω̃) → 16

35π
− 64ω̃2

2835π
− 256ω̃4

155925π
− iω̃5

4320
+ · · ·. (25)

Leaving only the first three terms in the expression (25) and
neglecting the collisional damping, we determine the position
of the absorption maximum ω̃m for �̃ � 1:

ω̃2
m ≈ 3.492�̃(1 − 0.172�̃ − 0.01406�̃2). (26)

In the lowest order in �̃ (the quasistatic limit), this result
perfectly matches the numerical solution and approximates
that obtained earlier, with better than 1% accuracy [21,40].

At high �̃ the frequency approaches asymptotic value
ω̃m ≈ 3.65, which slightly differs from that obtained nu-
merically. This means that one basis function is a good
approximation at least for small �̃.

The linewidth of the absorption resonance 
ω̃ is related to
the imaginary part of the denominator of α1. Hence, using the
last term in the Eq. (25) at ω̃ = ω̃m we obtain


ω̃ ≈ γ̃ + 0.068�̃3

+ γ̃ �̃(−0.172 − 0.058�̃ + 0.04�̃2). (27)

Evidently the linewidth is comprised of three contributions:
the collisional damping γ̃ , the radiative damping ∝ �̃3, and
the third term including the intermixture of γ̃ and �̃. There-
fore, the resultant approximation (27) clearly demonstrates
that the linewidth is not merely the sum of the collisional and
radiative decays in contrast to Refs. [43–46]. As can be seen
from the dashed curves in the inset to Fig. 3, the qualitative
dependence of the linewidth on the retardation parameter is
described relatively properly for small �̃. Indeed, retardation
appears to affect the collisional linewidth γ̃ more dramatically
than it follows from the approximate Eq. (27). In the next
subsection we consider these contributing factors in detail to
shed some light on the interplay of these parameters.

C. Qualitative description of the linewidth

In this part of the paper we give a physical explanation
of established linewidth dependencies in connection with the
properties of the disk plasma mode. Consider an external
electric field exciting plasma oscillations at a resonant fre-
quency defined in Eq. (26). Provided that energy losses over
an oscillation period are small compared with the energy
stored in the mode (i.e., far from the shaded region in Fig. 3),
the (dimensional) linewidth 
ω can be determined as 
ω =
P/W , where P is the power loss averaged over the oscillation
period and W is the energy stored in the plasma mode—
electromagnetic energy and kinetic energy of the carriers [51].
Let us next find P and W for the current density specified in
Eq. (22).

The net power loss can be treated as a sum of the losses
associated with the Joule heating (caused by carrier collisions)
PJ , and electromagnetic radiation Prad. From the differential
form of the Joule heating equation, we find

PJ = Re(σ−1)

2

∫
| jr (r)|22πrdr ≈ γ

π2R3

12c2�̃
|α1|2. (28)

At the same time, from the continuity Eq. (16), we deter-
mine the charge density at the resonance frequency: ρ(r) =
−i2α1[1 − 2(r/R)2]/(ωmR). In this case, the electric and
magnetic dipole moments are absent due to the symmetry of
the charge and current distributions. At low frequency (small
retardation), the radiation of the mode is defined by the elec-
tric quadrupole moment Q = iπα1R3diag{1, 1,−2}/(6ωm ),
where diag{} is a diagonal matrix. Therefore, the radiative loss
attributed to quadrupole radiation is given by

Prad =
∣∣˙̇Q̇∣∣2

180c5
≈ 0.011

π2R2�̃2

c
|α1|2. (29)

The total energy W is the sum of the carrier kinetic energy
Wk and the electromagnetic energy Wem. As long as losses
are small, W can be calculated virtually at any point in time.
However, it is somewhat easier to compute it at the moment
of the peak current—in the absence of the charges and (non-
radiating) electric fields. Hence, the kinetic energy can be
formulated as

Wk = π

�c

∫
| jr (r)|22πrdr ≈ π2R3

12�̃c2
|α1|2. (30)

At the same exact moment, the electromagnetic energy is
determined by the azimuthal component of the magnetic field
Hθ . Thus, some algebraic manipulation yields

Wem =
∫

dV
|Hθ |2
8π

= π2

c2

∫ ∞

ω
c

pd p

β
|F (p)|2

≈ π2R3

c2
(0.014 + 0.0073�̃ − 0.0063�̃2). (31)

In the given derivation process, we exclude the integration
interval from 0 to ω/c as it corresponds to the emission of
radiation, which leads to energy losses.

Finally, we find the linewidth as follows:


ω̃ ≈ γ̃ + 0.136�̃3 + γ̃ �̃(−0.172 − 0.058�̃ + 0.1�̃2).
(32)

It is the same approximation (27) up to second order of
�̃. Difference in the third order of �̃ appear since in this
section we evaluate the frequency of eigenmode with damping
and treat emission of electromagnetic radiation as losses for
eigenmode. In fact, it means that the frequency of the mode
is complex and electromagnetic field increases with distance
from the disk. While in the previous section we consider the
response of disk on external radiation at real frequency, and
therefore nongrowing fields with the increase of the distance
from the disk.

In the lowest order in �̃, the electromagnetic energy ra-
diation and radiative power loss can be neglected to yield

ω = γ . In the next order, the radiative power loss can still be
ignored. However, the first term in the expansion of the elec-
tromagnetic energy in �̃ is a constant since any radial current
produces circular magnetic fields above and below the disk,
which contribute to the electromagnetic energy. Consequently,
the linewidth is still proportional to γ , though it decreases
with increasing the retardation parameter. In the succeeding
orders in �̃, the radiative power loss must also be taken into
account as it contributes to the overall damping. However,
this effect is not very prominent being partially counteracted
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by the growing denominator of Wem, as well as a stabilizing
resonant frequency.

As follows from the derivation above, the approximation
(32) behaves similarly to (27) and it is valid for a rather narrow
range of parameters: �̃ � 1 (the quasistatic limit) and γ̃ �√

�̃ (low damping). That is why the dashed curve in Fig. 3
does not well match the numerical solution for γ̃ = 1.

So far we have demonstrated that the linewidth of the ab-
sorption peak relates to the plasmon damping, which is shown
to be more than the mere sum of the collisional and radiative
decay rates. As the denominator in Eq. (32) is found to depend
on the retardation as well as radiative loss, it makes the over-
all dependence of the linewidth on the retardation parameter
more complex, which can lead to substantial reduction in the
total damping compared to the collisional decay rate γ .

IV. FUNDAMENTAL MODE (l = 1)

To excite the plasma mode with orbital number l = 1, we
consider a circularly polarized electromagnetic plane wave

incident normally onto the system, with the electric field in
the plane of the disk given by Eext = E0(1, i)T . In this case
we expand the current density in an orthonormal set of basis
vector functions j(r) = ∑

Cnjn(r), with the scalar product
〈jm(r), jn(r)〉 = ∫

j∗m(r) · jn(r)dS = δmn [52,53], where the
integral is taken over the disk area, and Cn are the expansion
coefficients.

As follows from Sec. II, in the fundamental mode, the basis
vector functions must be even with respect to the radius r
for both components of the current density. For this reason
we choose a polynomial sequence initiated with a quadratic
function in r. However, it is not uniquely defined by the
boundary conditions at the edge and center of the disk, as well
as normalization. To eliminate the ambiguity, we consider the
quasistatic regime of j ∝ grad ϕ, where ϕ is a scalar electric
potential. Consequently, the components of the current density
become interrelated as jθ = il

∫
jr (r′)dr′/r. Applying this to

the basis set and using the Gram-Schmidt orthonormalizing
process, we arrive at the following functions:

j1 = 3

√
3

14

[
1 − r̃2, i

(
1 − r̃2

3

)]T

, j2 = 11

√
5

238

[
1 − 81̃r2 − 70̃r4

11
, i

(
1 − 27̃r2 − 14̃r4

11

)]T

,

j3 = 23

√
7

1054

[
1 − 378̃r2 − 950̃r4 + 595̃r6

23
, i

(
1 − 126̃r2 − 190̃r4 + 85̃r6

23

)]T

,

j4 = 117

7
√

62

[
1 − 370̃r2 − 1750̃r4 + 2695̃r6 − 1302̃r8

13
, i

(
1 − 370̃r2 − 1050̃r4 + 1155̃r6 − 434̃r8

39

)]T

,

j5 = 59

7

√
11

142

[
1 − 2565̃r2 − 19250̃r4 + 51940̃r6 − 57834̃r8 + 22638̃r10

59
,

i

(
1 − 855̃r2 − 3850̃r4 + 7420̃r6 − 6426̃r8 + 2058̃r10

59

)]T

, (33)

where r̃ = r/R.
Repeating the procedure outlined in Sec. III A, we substi-

tute the given current expansion into Eq. (2), consecutively
multiply it by the basis functions and integrate over the disk
area. Finally, solving the resultant system of equations for the
coefficients Cn, we find the desired current density. Examples
of the data calculated for the resonance with nr = 1 and its
linewidth are shown in Figs. 2 and 4, where the numerical cal-
culations are carried out based on the first five basis functions.

To obtain analytical expressions for the frequency and
linewidth of the fundamental resonance nr = 1 at small �̃,
we use only the first basis function from the set, similar
to Sec. III B. We find the integral with respect to r and r′

analytically, whereas that over the variable p we split into two
parts—one integral from 0 to ω/c and the other from ω/c to
∞. The former is evaluated approximately by expanding it to
the third order of ω/c while the latter is evaluated analytically
first, and then expanded to the third order of ω/c. Analyz-
ing the obtained coefficient C1, we arrive at the approximate
estimate of the resonant frequency

ω̃m ≈ 1.07
√

�̃(1 − 0.293�̃), (34)

and the linewidth


ω̃ ≈ γ̃ + 0.333�̃2 + γ̃ �̃(−0.586 + 0.150�̃). (35)

In the quasistatic limit the frequency is again in a good
agreement with that obtained earlier [21,40]. The qualitative
difference between the linewidth of the modes with l = 0 and
l = 1 is that the latter possesses a nonzero electric dipole
moment. Therefore, the radiative power of the mode is pro-
portional to �̃ and, as a result, in Eq. (35) there appears a �̃2

term.
We again derive that the linewidth (35) is not merely the

sum of the collisional and radiative decays and in general
cannot be obtained by applying the phenomenological “quan-
tization rule” to plasmon wave vector in a dispersion equation
for plasma wave in infinite homogeneous 2DES [28,34]. Be-
sides, it depends not only on the retardation parameter but
also on the collisional decay rate in contrast to the proposal
of Ref. [34]. However, detailed comparison between our cal-
culations and the experiment [34] cannot be done accurately
at the moment due to the following reasons: (i) the presence of
dielectric substrate with high dielectric constant in real sam-
ples as well as metallic environment, and (ii) experimentally
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FIG. 4. Dependence of the dimensionless linewidth 
ω̃ on the
retardation parameter �̃ calculated for the fundamental resonance
with l = 1, nr = 1. Blue circle, red square, and green diamond cor-
respond to γ̃ = 0, γ̃ = 0.5, and γ̃ = 1, respectively. The inset is a
closeup of the data region of small retardation, with dashed lines
indicating the approximations from Eq. (35). The gray shaded area
designates the overdamped region.

the resonance linewidth is determined from the dependence
of luminescence intensity on magnetic field rather than on
external radiation frequency (so far we have analyzed only the
dependence on frequency).

At large �̃ we find that the frequency of the resonance
ω̃m approximately approaches asymptotic value 1.4, while the
linewidth is slightly above 1.

V. DISCUSSION AND CONCLUSIONS

To make the analysis above more complete, we take into
account the dielectric permittivity of the surrounding medium

ε by making the following replacement of the key parameters:
ω̃m → √

εω̃m, 
ω̃ → √
ε
ω̃, and γ̃ → √

εγ̃ . As a result,
we find that the broadening of the linewidth associated with
the collisions does not change, while the radiative broadening
decreases with increasing ε. It may additionally reduce the
decay rate compared to γ .

In summary, we have studied numerically and analyti-
cally the fundamental (dipole) and axisymmetric (quadrupole)
plasma modes in a 2D disk of electron gas taking into ac-
count retardation effects. We find that the frequency and the
linewidth of the resonances can be fully described by two
dimensionless parameters: γ̃ corresponding to the collisional
damping rate, and the retardation parameter �̃ defined by
Eq. (3). We establish that for weak collisions γ̃ � ω̃, the
dimensionless frequency of plasma resonances ω̃ is defined
only by the retardation parameter �̃, as indicated by Eqs. (26)
and (34). As for the resonance linewidth, we discover that it
cannot be fully described by the sum of collisional (γ̃ ) and
radiative (∝ �̃2 for dipole and ∝ �̃3 for quadrupole modes)
damping rates. The reason for such a complicated behavior
of the linewidth is that with increasing retardation parameter,
the radiation decay and the energy stored in the mode both
grow simultaneously. The competition of these two processes
leads to the nonmonotonous dependence of the linewidth on
the retardation parameter, as well as the narrowing of the
linewidth compared to collisional damping at small values of
�̃, see Figs. 3 and 4.
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