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First-principles calculations of metal surfaces. II. Properties of low-index platinum surfaces toward
understanding electron emission
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The stability of low-index platinum surfaces and their electronic properties is investigated with density
functional theory, toward the goal of understanding the surface structure and electron emission, and identifying
precursors to electrical breakdown, on nonideal platinum surfaces. Propensity for electron emission can be
related to a local work function, which, in turn, is intimately dependent on the local surface structure. The
(1 × N) missing row reconstruction of the Pt(110) surface is systematically examined. The (1 × 3) missing row
reconstruction is found to be the lowest in energy, with the (1 × 2) and (1 × 4) slightly less stable. In the limit of
large (1 × N) with wider (111) nanoterraces, the energy accurately approaches the asymptotic limit of the infinite
Pt(111) surface. This suggests a local energetic stability of narrow (111) nanoterraces on free Pt surfaces that
could be a common structural feature in the complex surface morphologies, leading to work functions consistent
with those on thermally grown Pt substrates.
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I. INTRODUCTION

Field emission and electrical breakdown at real metal sur-
faces are complex phenomena at the heart of the operation of
many electronic devices. The fundamental understanding of
field emission as a prerequisite to vacuum breakdown remains
in its infancy. The principal working understanding of emis-
sion at surfaces is captured in the empirical Fowler Nordheim
relation [1–4]

J (E , φ, β ) = Aβ2E2

φ
exp

(
Bφ3/2

βE

)
, (1)

where the functional dependency of the emission current den-
sity J in Eq. (1) on the field E , work function φ, and an
empirical structural enhancement factor β is isolated from
other factors (subsumed into constants A, B). The vital role of
the work function in local emission is indicated by its presence
in the exponential (as well as in the prefactor). The work
function is directly dependent upon the structure. Moreover
this overall emission has an empirical fitting parameter β

related to structural effects (e.g., from field enhancement at
protuberances at the surface) and can vary several orders of
magnitude, up to 1000, inside the exponential. To understand
electrical breakdown at real—i.e., nonideal, thermally grown,
polycrystalline—surfaces will require relating growth process
to the resulting surface structure, and relating features to ef-
fective local work functions, and ultimately to emission and
breakdown. A goal of this paper is to seek first-principles
understanding of the relationship of surface structure and elec-
tronic properties, motivated by the desire to gain insight into
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the surfaces features leading to electron emission experimen-
tally observed at “real” metal surfaces [5].

Platinum is a noble metal that adopts the fcc crystal
structure. Yet despite adopting the simplest of crystal struc-
tures, each of the ideal low-index platinum surfaces exhibits
a surprising amount of complexity. The ideal (100) surface
reconstructs to form a quasihexagonal overlayer [6–8]. The
more open (110) surface reconfigures to a “missing row” re-
construction composed of alternating tilted (111) nanoterraces
[9–11]. The (111) surface—the close-packed hexagonal sur-
face that is the lowest-energy surface under ideal conditions—
is only itself marginally stable, a large tensile stress in the
surface making addition of atoms into the surfaces nearly
favored [12]. Elevated temperatures (above 1330 K) trig-
ger reconstruction to a denser yet (near-)hexagonal overlayer
incommensurate with the bulk-terminated hexagonal layer
[6,13–15]. The increased chemical potential of Pt in gas-phase
deposition also induces reconstruction, that remains stable
below 700 K [16]. Even the “simple” surfaces of platinum are
not simple.

In this paper we seek to understand the properties of real
platinum surfaces, to comprehend the local surface structure,
correlate with local work functions, and thereby connect to
electron emission behavior. Using density functional theory
(DFT), we examine the ground state structures of low-index
platinum surfaces, using a slab-consistent reference method
that enables fine-accuracy comparisons of different surface
models to resolve different surface reconstructions. In partic-
ular, we investigate (1 × N) missing row reconstructions of
the (110) surfaces. Noting an homologous mapping from the
(110) surface to a (111) surface in the narrow and wide limits
of a missing row reconstruction, we find that a (1×3) structure
is the lowest energy reconstruction, and that energy steadily
increases with large N [and wider (111) terraces] toward the
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asymptotic limit of the (111) surface energy. The local sta-
bility of narrower (111) nanoterraces indicates that these are
likely common features on a free Pt surface contributing to
the complex surface morphology observed in the experiments
[5]. Comparisons of the work functions computed from these
missing row models to the experiment are consistent with
this picture.

The next section presents representative experimental
results for thin-film Pt surfaces grown by sputtering, sum-
marizes other intriguing experimental literature concerning
grown Pt surfaces. The following section describes the com-
putation setup: the methods, choice of functionals, and the
design of the slab model for the surface calculations, taking
advantage of a new method for extracting convergent surface
properties using slab-consistent bulk reference energies [17].
The body of the paper describes the results for the Pt surfaces,
culminating with emphasis on designing accurate discriminat-
ing models for (110) surface reconstructions. We close with
a discussion of implications of the results for understanding
electron emission from real platinum surfaces and a final
section to conclude.

II. PLATINUM SURFACE CHARACTERIZATION

To develop a comprehensive understanding of surface mor-
phology and correlation of local features of that morphology
to work functions and electron emission, we begin with an ex-
perimental examination of a sputter-deposited, polycrystalline
(poly-Pt) thin film using a set of surface characterization
tools. The thin films were fabricated on substrate consisting
of a 40 nm ZnO adhesion layer sputtered onto 400 nm of
thermal a-SiO2 on Si(100), following a procedure outlined
in Ref. [18]. Onto this substrate, 90 nm of Pt was sputtered
and annealed in air at 900 ◦C, which created a polycrystalline
microstructure. Greater elaboration of the surface characteri-
zation techniques and a more detailed analysis of the results
is presented elsewhere [5], just the salient intriguing features
are presented here.

These sputtered Pt thin films are polycrystalline, with grain
sizes a few 100 nm. The Pt grains at the poly-Pt surface exhib-
ited a local crystallographic orientation, as determined from
EBSD (electron backscattered diffraction) measurements, that
was predominately (111)-oriented normal to the surface, to
within a few degrees. The overall complexity of this surface is
revealed in an AFM (atomic force microscopy) topograph of a
typical Pt film depicted in Fig. 1. While optically smooth, the
AFM topograph measures a surface roughness of several tens
of nm, despite the near-(111) orientation of all the substrate
grains.

The measured spatial variation in the local work function
is shown in Fig. 2. The PEEM measurement in Fig. 2(a)
mimics the spatial variability observed in the AFM topograph
in Fig. 1.

The analysis of the work function in Fig. 2(b) shows
the work function distribution has modest variation centered
around 5.7(±0.2) eV. This is far short of the 6.1 eV observed
for the work function of the flat (111) surface on a single
crystal Pt [19], indicating that electron emission from the
surface is dominated by features other than large (111) facets,

FIG. 1. AFM topograph of a representative polycrystalline
(111)-oriented Pt surface.

to within the resolution of the technique [few tens of nm per
pixel in Fig. 2(a)].

Previous experiments documented further unusual behav-
ior for growth on Pt(111)-oriented substrates. Kalf et al. [20]
observed the growth of stepped triangular pyramids in STM
images of homoepitaxy on Pt(111), rather than pyramids with
extensive (111) faces. This observation was echoed in later
studies of thermal growth that showed roughly triangular
hillocks [21], hillocks stacked with a (111) orientation [22].

Kalff had proposed that this growth was a natural conse-
quence of adsorption growth kinetics [20] that the stepped
pyramidal structure emerged directly from kinetic Monte
Carlo studies as a balance between surface diffusion barriers
and a step-hop barrier. In the computational analysis below,
we will argue that local energetic considerations might also
contribute to the growth and persistence of this stepped mor-
phology.

III. COMPUTATIONAL CHALLENGES

Density functional theory (DFT) calculations are the
state-of-the-art approach for modeling physical properties of
surfaces, such as atomic structural relaxations and surface
reconstructions, and electronic properties such as work func-
tions. Slab calculations of thin metal films within a supercell
approximation are used to model semi-infinite surfaces. A
model slab has two surfaces separated by a discrete number
of atomic layers, equivalent to a semi-infinite surface in the
limit of infinitely thick slabs.

Methods to extract surface properties from these slab
models evolved over the course of nearly three decades
[23–27]. In previous work [17] we have developed an im-
proved protocol based upon meticulously consistent levels of
standard accuracy between bulk and slab surface calculations
that proves to give faster, more reliable convergence of surface
energies with slab thickness, and thus greater accuracy at
much reduced computational cost.

Platinum surfaces have been a staple of surface science
studies for decades. Being a noble metal that crystallizes into
an fcc structure, platinum surfaces are relatively chemically
stable and easy to prepare. Simultaneously, the Pt surface has
been the subject of numerous computational studies, included
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FIG. 2. PEEM measurements of a representative Pt polycrystalline thin film: (note: not the same location as the AFM topograph of Fig. 1).
(a) PEEM measurement of the local work function across the surface; and (b) histogram of recorded local work functions.

as an examplar in foundation surface methods studies using
DFT, such as Singh-Miller and Marzari [27]. Properties of
more complex surfaces, e.g., relative energetics of potential
reconstructions from ideal bulk termination, are less well
studied, as are phenomena that govern evolution of surface
structure. Feibelman studied such processes as the energetics
of steps on Pt(111) surfaces [28] or diffusion of Pt atoms
on the Pt(111) and over steps [29]. To gain insight into
complex morphologies of grown surfaces entails a more
focused investigation of surface reconstructions, requiring
systematic investigation of large-area reconstructions with
precise relative accuracy.

IV. COMPUTATIONAL METHODS

The DFT calculations in this work were performed with
the SEQQUEST code [30], a pseudopotential DFT code us-
ing linear combinations of carefully optimized contracted
Gaussian basis sets to represent the electronic wave functions.
The local orbital basis with explicit use of range cutoffs proves
advantageous at enforcing boundary conditions in systems
with reduced dimensionality (such as slab models of surfaces).

The Pt atoms in the calculation are represented by a
ten-valence-electron pseudopotential generated within
Hamann’s generalized norm-conserving pseudopotential
(GNCPP) formalism [31], using the GNCPP code to
generate the LDA pseudopotential and the FHI98PP code
[32] for all other functionals. The 5d and 6s-6p shells are
treated as valence electrons, relegating the 5s-5p semicore
electrons to status as core electrons treated implicitly by the
pseudopotential. A nonlinear core correction (NLCC) [33] is
incorporated into the pseudopotential to take into account the
remnant exchange-correlation effects between these semicore
electrons and the valence elections, necessary to avoid a
spurious magnetism in fcc Pt that occurs using standard
pseudopotentials.

The platinum atom basis set is a carefully optimized
“double-zeta plus polarization” (DZP) contracted Gaussian
basis, providing two radial degrees of freedom for the strongly
occupied s and d orbitals, plus a single radial function for

the weakly occupied p shell to allow for angular polarization.
A known challenge for atom-centered local orbital basis sets
(cf. plane wave methods) in metals is accurately describing
the long-range fall-off of the electron density into vacuum
at the surface, particularly crucial to obtain convergent work
functions. To remedy this, we augment this Pt atomic-centered
basis with a set of “floating orbitals” on the surface, in the first
set of vacant sites above the surface atoms. The ghost atom
basis has s, p, and d orbitals consisting of a single diffuse
Gaussian each, decay constant 0.08, 0.12, and 0.16 bohr−2,
respectively. The adequacy of this procedure is verified in
direct tests comparing work functions (below).

The Pt surface calculations used several flavors of density
functionals:

(1) The local density approximation (LDA) as
parametrized by Perdew and Zunger [34]—empirically
observed to give better surface properties than generalized
gradient approximations.

(2) The generalized gradient approximation as formulated
by Perdew, Burke, and Ernzerhof (PBE) [35]—usually better
for bulk properties of transition metals such as Pt.

(3) The AM05 functional created by Armiento and Matts-
son [36] using a subsystem functional approach—specifically
devised to improve the treatment of an evanescent density
such as that outside a surface.

The LDA and PBE have been commonly used in DFT
studies of metals and metal surfaces, and are included here to
provide verification benchmarks against previous Pt surface
studies (such and Singh-Miller and Marzari [27]). The princi-
pal results in this study use the AM05, as it has specifically
been designed to eliminate surface errors present in standard
functionals (such as LDA and PBE).

The occupation of electronic states near the Fermi level
is smeared using a Fermi function fill factor. An (artificial)
electronic temperature of 0.003 Ryd (∼41 meV) is used to
smear the occupations near the Fermi level. Cognizant of the
perils of using smearing methods [37,38], errors that are likely
to be exacerbated at the surface (in occupying states above
the Fermi level), this temperature is set just large enough to
achieve electronic self-consistency (up to a slab thickness of
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TABLE I. Computed bulk properties of platinum: lattice parameters a0 (Å) and bulk modulus B (GPa).

LDA PBE AM05
a0 B a0 B a0 B

This work 3.894 310 3.969 253 3.928 284
With NLCC 3.909 305 3.985 243 3.925 280
Ref. [45] 3.909 – 3.985 – 3.923 –
Ref. [46] 3.894 312 3.971 247 – –
Ref. [26] 3.89 312 3.97 241 – –
Ref. [27] – – 3.99 246 – –
Experiment (0 K) 3.916 Å [43] 288 GPa [44]

∼40 layers), but smaller than a temperature that significantly
affects the electronic structure and might otherwise unaccept-
ably begin to corrupt results [38] for surface energies and
work functions.

The slab models for the simple low-index surfaces start
with a central layer in the middle of the slab, and incre-
mentally add an atomic layer on both sides of the slab to
create total slabs with an off number of layers. The slabs
are separated with sufficient vacuum (�10 Å) to isolate the
periodic slabs from one another (the SEQQUEST code explic-
itly enforces this isolation, checking for any overlap of slab
density with the vacuum boundary), and the slab and the
vacuum boundary are deliberately aligned to enable exactly
consistent conditions for the slab and bulk to obtain an ac-
curate slab-consistent bulk reference [17]. Atom positions are
relaxed to minimum energy configurations (ghost atoms are
held fixed to bulk terminated positions), using all available
symmetry, adapting for geometry updates a modified Broyden
method due to Johnson [39]. An atomic relaxation is deemed
converged when the total force on every atom is less than
0.0002 Ryd/bohr (5 meV/Å). The positions of ghost atoms
are not optimized. The energy gains are minuscule, and in-
cluding these ghost atoms in the full relaxation to resolve their
(somewhat noisy) small forces needlessly degrades the overall
convergence, for minimal benefit.

V. RESULTS AND ANALYSIS

A. Bulk properties of fcc platinum

Bulk crystal properties of fcc Pt obtained with this compu-
tational setup are presented in Table I. The computed lattice
constant a0 and bulk modulus B are shown, compared to
previous computational literature to verify the adequacy of
the computational methods used here and compared to ex-
periment to validate that the DFT provides adequate physical
accuracy. The lattice parameter and bulk modulus are ob-
tained from a (cubic polynomial) fit using a Birch-Murnaghan
equation of state [40–42]. Setting aside the artificial electronic
temperature, all the calculations are 0 K DFT calculations, so
that the appropriate comparisons are to experimental proper-
ties extrapolated to 0 K: the 0 K lattice constant is 3.916 Å
[43] and bulk modulus is 288 GPa [44].

The near-exact agreement of our local-orbital pseudopo-
tential results with all-electron FLAPW (full-potential linear
augmented plane wave) benchmarks [45,46] verifies the
quality of the pseudopotentials (replacement of the explicit

core electrons with a nonlinear core-corrected effective core
potential) and the local basis (rather than a larger, more
flexible plane wave basis). Our results also agree well with
the bulk results for previous work on Pt surface calculations
[26,27], indicating that later comparisons of the results for
surface calculations will be meaningful. The agreement of
our results with different FLAPW results—the widely ac-
knowledged benchmark of DFT—is better than the agreement
between different FLAPW calculations with each other, and
better than the differences between any of the DFT calcula-
tions and experiment.

The differences between the standard and NLCC pseu-
dopotential results are small, and not physically significant.
Nonetheless, we use the NLCC in the following. Without
the NLCC, the standard pseudopotentials spuriously yield
magnetic fcc platinum (ferromagnetic with 0.38 μB/Pt is
5 meV/Pt lower than paramagnetic platinum with the LDA,
0.53 μB is 25 meV lower with PBE, and 0.57 μB is 15 meV
lower with AM05), whereas the NLCC correction correctly
predicts paramagnetic fcc Pt. While we do not consider spin
polarization in this clean surface study, a follow-up study
might undertake to investigate atomic/molecular adsorption
chemistry on Pt surfaces, and a spurious magnetism would
corrupt those analyses.

The agreement of our current results with experiment, for
the lattice constant and bulk modulus, using both the standard
and nonlinear core-corrected pseudopotentials is very good,
typical for these DFT functionals. The values we present are
k-limit results, i.e., results extrapolated to infinite k sampling
as an average of results using 173 to 243 k grids (where
most literature work deems a 163 grid to be converged). In
addition to AM05’s more intrinsically accurate treatment of
surface effects [36], AM05 also has shown greater accuracy in
predicting bulk properties [47]. As seen in Table I, it outper-
forms LDA and PBE for fcc Pt, providing additional impetus
for using the AM05 to investigate structural properties of Pt
surfaces in this study.

B. Low-index platinum surfaces

It has been observed previously [26] that platinum surfaces
undergo only small relaxations (<0.1 eV). Without known
exception in the literature, the relaxations on low-index fcc
metal surfaces attenuate rapidly with distance from the sur-
face, typically diminishing to negligible relaxations within
2–3 layers. This feature is operationally convenient, enabling
thinner slab models for surface studies, e.g., earlier studies of
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FIG. 3. Computed surface energy for low-index platinum sur-
faces as a function of slab thickness, in eV/(1 × 1) atom. Lines
are only to guide the eye. The 110 result is repeated, counting 2
atoms per (1 × 1) surface cell, showing a close correspondence with
the 111. This will be useful in interpreting the 110 missing row
reconstruction in the limit of large N .

Pt surfaces used only 7 layers (the FLAPW study of Da Silva
et al. [26]) or at most 13 layers (the pseudopotential study
of Singh-Miller and Marzari [27]). In our platinum surfaces
we verified that an all-atom-relaxed slab gave results nearly
indistinguishable from slab calculations with only the top four
layers at each surface relaxed, in test calculations up to 17
layer slabs. Hence, in what follows, only the top four Pt layers
are relaxed, keeping the underlying layers (and the layer of
ghost atoms above the surface) fixed to their bulk positions.

Figure 3 shows the computed AM05 surface energy of the
unreconstructed, relaxed low-index (110), (100), and (111)
platinum surfaces, obtained using the surface-consistent bulk
reference energy approach [17], as a function of slab thick-
ness. In this plot, a surface k grid of 12×12 was used for the
(100) and (111) surfaces, and 17×12 for the (110).

The accuracy of the slab-consistent bulk reference in com-
puting the surface energy is immediately evident: an error
δEbulk in the bulk reference energy would manifest as an
N×δEbulk monotonic drift in the surface energy as function of
slab thickness. Using a single bulk-computed reference energy
for each surface, the computed surface energy is flat out to at
least 40 layers, without any extrapolative fitting of the surface
energy.

Moreover, for Pt at least, the surface energies are well
converged after seven or perhaps nine layers. This proves
computationally advantageous (convenient) in our later cal-
culations of Pt(110) reconstructions. The work function has
previous been noted to converge even more quickly with slab
thickness [24,48]. We documented similar behavior in system-
atic tests for Al in the first part of this work [17].

The benefit of a reliable slab-consistent bulk reference be-
comes obvious when one considers that the computed surface
energies are well converged with rather coarse (and compu-
tationally less intensive) surface k samples. This full surface
series was computed with k grids from 6×6 through 16×16

for the Pt(100) and Pt(111), and from 4×6 through 12×17 for
the Pt(110) surface. The surface energy converges to within
0.01 eV for the (100) surface with a rather coarse 8×8 k grid,
within 0.02 eV for the Pt(111) with 8×8, and within 0.01 eV
for the Pt(110) surface with 6×8. The work functions ex-
hibit comparable convergence, e.g., the Pt(111) � deviates at
most 0.05 eV.

This convergence is achieved without invoking very fine
accuracy independently in both bulk and slab calculations.
Using extrapolation methods, Da Silva et al. [26] required
at least 12×12 grids—more than twice as dense—to achieve
comparable convergence. What is necessary is that the bulk
and surface be explicitly and meticulously consistent so as to
have detailed equivalence in their accuracy (with the caveat
that the k sampling cannot be so coarse as to significantly
degrade the computed bulk lattice constant [17]).

Table II summarizes the converged results from this work
for the computed surface energy and the work function for
the low-index surface of Pt, and compares this to previous
works and to available experiment. These results agree well
with the previous results from Da Silva et al. (DS) [26]
and Singh-Miller and Marzari (SM) [27] at least as well as
these previous results agree with each other. We use NLCC-
corrected pseudopotentials where SM do not, and we quote
k-limit and slab-limit converged results, where DS and SM
quote results for smaller 7-layer and 13-layer slabs with a sin-
gle fixed k-point sampling, so small differences are inevitable.
This result verifies the fine numerical accuracy of the current
approach, and, in particular, verifies the efficacy of using
floating orbitals to eliminate basis set incompleteness errors in
the local orbital basis at the surface, even in complex surface
configurations [52].

These results constitute our baseline attempt to understand
the surface morphology and the consequent variability in the
work function exhibited in the experimental measurements of
Figs. 1 and 2.

C. Pt(110) missing row reconstructions

As noted above, each of the low-index platinum surfaces
reconstruct. The (110) is the focus of this study. The Pt(110)
has been observed to undergo missing row reconstructions,
and only exhibit the primitive ideal (1 × 1) structure at high
temperatures [9–11]. Both a (1 × 2) and (1 × 3) missing row
reconstruction has been observed [9,10] and characterized
[53–55]. Unresolved questions about the role of impurities
in the relative stabilities of these smaller missing row re-
constructions continued to be debated, even while a closely
related family of higher order (1 × 5), (1 × 7), (1 × 9) re-
constructions were observed, and attributed to composites of
(1 × 3) + n(1 × 2) missing row reconstructions intermediate
between the monolithic (1 × 3) and (1 × 2) missing row re-
constructions [56].

Figure 4(a) depicts the simplest (1 × 2) missing row recon-
struction, both in side view (along the direction of the missing
rows) and top view, where the missing atoms [with respect to
the ideal (1 × 1) surface] are indicated by hollowed dashed
atoms. For the (1 × 3) missing row reconstruction shown in
Fig. 4(b), the ridges (troughs) become taller (deeper) and
the terraces become wider. The (111)-oriented nanoterraces
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TABLE II. Computed surface energy σ [eV/(1 × 1) surface atom] and work function � (eV) for unreconstructed low-index Pt surfaces.

Pt(111) Pt(100) Pt(110)
σ � σ � σ �

LDA
This work 0.86 6.14 1.20 6.12 1.78 5.71
Da Silva (Ref. [26]) 0.91 6.06 – – – –

PBE
This work 0.67 5.79 0.95 5.74 1.40 5.35
Da Silva (Ref. [26]) 0.71 5.69 – – – –
Singh-Miller (Ref. [27]) 0.65 5.69 0.90 5.66 1.30 5.26

AM05
This work 0.77 5.79 1.09 5.75 1.59 5.35

Experiment
Measurement 1.03 6.10 – 5.82 – 5.35
Reference [49] [19] [50] [51]

become dominant in larger (1 × N) missing row reconstruc-
tions, such as the (1 × 8) depicted in Fig. 4(c).

The homology of these missing row reconstructions on the
(110) surface to the (111) surface is illustrated in Fig. 4(c).
The (110) missing row reconstruction reveals an homologous
mapping from the unreconstructed (110) surface to the (111)
surface on the terraces, with the proviso that atoms in the top
two layers of the (110) surface are drafted into making the
mapping.

Standard convention counts only the top atomic layer, one
atom per (1 × 1) cell of the ideal (110) surface. With this con-
vention, the (110) is a high-energy surface, as plotted earlier in
Fig. 3. However, using this insight concerning a homologous
mapping between the (110) and (111) surfaces, the two-atom
layer convention is perhaps more physically meaningful, and
reveals that the (111) surface and ideal (110) surface energy
(labeled as “110/2” in Fig. 3) are competitive.

FIG. 4. Schematic of the (110) missing row reconstruction:
(a) side view and top view of the (1 × 2) missing row reconstruc-
tion, where a line of surface atoms (dotted) is removed from the
ideal (1 × 1)-(110) surface. (b) Side view of the (1 × 3) missing
row reconstruction. (c) Side view of the larger (1 × 8) missing row
reconstruction, where (111) nanoterraces lining the trenches become
obvious, and reveal a homologous mapping between the ideal (110)
surface and (111) surface, under the condition that the top two layers
of atoms on the (110) surface are denoted as surface atoms.

Computational studies of Pt(110) surface structure have
been very few. Classical EAM (embedded atoms method)
potentials for Pt [57] determined that the (1 × 2) missing row
reconstruction was clearly more stable than the ideal surface
[58,59], but, lacking explicit consideration of the electronic
structure of the surface, this simple computational approach
could not confidently resolve the smaller energy differences
between this and larger missing row reconstructions. Com-
putational accuracy has not advanced beyond a recent DFT
study, which similarly was unable to resolve the relative sta-
bility of N = 2, 3, 4 missing row reconstructions to within the
accuracy of their calculations [60]. Using the greater preci-
sion and relative accuracy offered by the slab-consistent bulk
reference approach [17], we construct a computational model
than can more reliably resolve subtle energy difference among
these and even larger (1 × N) missing row reconstructions.

Constructing a viable computational model for a missing
row reconstructed surface is more complicated than for the
flat unreconstructed surfaces. The missing row models carve
deep troughs into the slab along (111) nanoterraces, nominally
reducing the thickness—and accuracy—of a slab model of a
surface. To mitigate this, the slab model duplicates the miss-
ing row structure on the other side of the slab, as illustrated
in Fig. 5.

FIG. 5. Slab model for a (1 × N)-(110) missing row reconstruc-
tion. As the (111) nanoterraces get wider with increasing N , the
model becomes a zigzag structure of (111) slabs with kinks. To map
onto a minimally sufficient 9 layer thick (111) slab (in the limit of
large N) requires a baseline (110) slab with 18 layers.
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To extend the missing row reconstruction, the (111) nan-
oterraces are widened. As N gets larger, this (110)-oriented
slab becomes a series of alternately tilted (111) slabs con-
nected at kinks defined by the ridges and trenches. These
(111) spans have half the number of atomic layers as the
(conventionally counted) baseline (110) slab from which this
model is derived. If at least 9 layers are required to (safely)
converge the surface properties of a (111) surface properties
from a (111) slab that mandates (at least) 18 atomic layers be
used in the baseline (111) slab. In our calculations of missing
row reconstructions, we use this 18-layer baseline (110) slab
to create the models. While this might be overly sufficient
for converging a (110) surface calculation, this provides the
minimally sufficient 9 layers in the (111) regions of the model,
so as to converge the total surface energy calculation in those
(111) regions to within the 0.01 eV/atom uncertainty (as
assessed above).

Additional numerical uncertainties can arise for calcula-
tions of surface energies of reconstructions of a different
extent, because of inequivalent effective k-point samplings.
In the calculations described in Sec. V B, we had used
k-samplings kA×kB = 6 × 4, 8 × 6, 10 × 7, 12 × 8, 14 × 10,
and 17 × 12 for the primitive (1 × 1)-(110) surface cells. The
k-limit surface energy (for the 8 × 6 k grids and greater) con-
verged to 1.594 ± 0.015 eV/(1 × 1) atom or 0.797 ± 0.007
eV/homologous-surface atom. This 7 meV uncertainty is an
overall uncertainty due to the k resolution. This could po-
tentially be magnified when considering relative energies of
larger (1 × N) reconstructions with inequivalent k sampling,
compromising the accuracy of any energy comparisons.

A kA×kB k grid in the (1 × 1) primitive cell is for-
mally equivalent to a kA×(kB/N ) k grid in a (1 × N) slab
unit cell. With the operational constraint that kB/N must
be exactly an integer, different (1 × N) cells factored from
necessarily different k-gridded baseline supercells will gen-
erally be afflicted with the full k-limit uncertainties, of
roughly the magnitude needed to resolve the energy dif-
ference between different-sized reconstructions. We mitigate
this uncertainty by renormalizing the surface in different
sized supercells to the energy of the (1 × 2) missing row
reconstruction computed in that slab model. A (1 × 2) miss-
ing row reconstruction can be periodically replicated in a
(1 × 2M) supercell, and then this formation energy used
to recalibrate all other missing row reconstructions in that
(1 × 2M) slab model. This mostly eliminates k-limit er-
rors in relative energies of different size reconstructions.
For example, in the following we use a k-grid equiva-
lent to a 17 × 12 in a (1 × 1) supercell to obtain (1 × 2),
(1 × 3), (1 × 4), (1 × 6), and (1 × 12) missing row recon-
structions in a (1 × 12) supercell, the 14 × 10-equivalent grid
in a (1 × 10) supercell to recalibrate the (1 × 10) missing row
to the (1 × 2) missing row [and verify the (1 × 5) missing
row], and adding a 17 × 14-equivalent k grid to investigate
the 7 × 1 and 14 × 1 reconstructions.

Figure 6 plots the surface formation energy for missing
row reconstructions of increasing size, from the relaxed, unre-
constructed (1 × 1)-(110) surface, up to (1 × 14) missing row
reconstructions with (111) nanoterraces 14 atoms wide.

The (1 × 2) missing row reconstruction is unmistakably
favored over the unreconstructed (1 × 1)-(110) surface, by

FIG. 6. Relative energies of (1 × N) missing row reconstructions
of the Pt(110) surface, per homologous surface atom, 2 atoms/
(1 × 1)-(110), relative to the (1 × 2) reconstruction. The dashed
(blue) line marks the asymptotic large-N limit of the surface en-
ergy computed for a flat (111) surface, which carries a numerical
uncertainty of ∼10 meV with respect to the energies for the (110)
reconstructions plotted here. The triangles plot the energies of com-
posite missing row reconstructions (see text), as a function of the
average terrace width of that reconstruction.

almost 50 meV, consistent with the field-ion microscopy
images by Kellogg [10] and ion scattering results of Fenter
and Gustafsson [53]. The (1 × 3) missing row reconstruction
is lower yet, by another 5 meV/atom. The (1 × 4) returns
upwards to slightly above the (1 × 2).

Experimental evidence exists for a (1 × 3) missing row
reconstruction on Pt(110) [9,11], although the controversy
whether this is stabilized by the presence of impurities re-
mains unresolved [56,61]. The current results support the
interpretation that the (1 × 3) missing row reconstruction is
the most stable missing row reconstruction, and that impuri-
ties are not necessary to stabilize this reconstruction. While
the 5 meV margin favoring it over the (1 × 2) missing row
may not be definitive (to within an uncertainty that could be
reasonably asserted), the (1 × 3) is definitively competitive
with the (1 × 2) missing row [as is the (1 × 4)]. This supports
the hypothesis that the larger scale (1 × 5), (1 × 7), (1 × 9) re-
constructions on the Pt(110) surface are composites of (1 × 3)
and (1 × 2) missing row stripes [56].

An alternate (1 × 3) structure where the bottom row of the
trough is filled proves to be 23 meV/atom higher than
the full missing trough structure (as is its complement, where
the top ridge row is removed). This also can be thought of as
a pair of 2-wide (111) nanoterraces alternating with a pair of
1-wide (111) nanoterraces, for an average 1.5-width nanoter-
race. Within this view, the energy for this (1 × 3) in Fig. 6 is
seen to be between the (1 × 2) missing row and the (1 × 1)
unreconstructed surface (plotted as the triangle in Fig. 6 at
N = 1.5).

A (1 × 5) alternative as a composite of a (1 × 3) and
(1 × 2) missing row troughs [or its complement as (1 × 3) and
(1 × 2) added-row ridges] has an average 2.5-width terrace.
These composite (1 × 5) reconstructions are 8 meV/atom
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FIG. 7. Computed work functions for Pt(110)-(1 × N) missing
row reconstructions.

more stable than the full (1 × 5) missing row model with
5-wide nanoterraces, and are intermediate between the (1 × 3)
and (1 × 2) missing row structures in Fig. 6. Similarly, the
(1 × 7) can be constructed as either a (1 × 3) and two (1 × 2)
troughs (or its complement as ridges) with an average nanoter-
race width of 2.33, or as a composite of (1 × 4) and (1 × 3)
troughs (or ridges) with Nave = 3.5. Both of these composites
are more stable than the full (1 × 7) missing row trough (by
12 and 11 meV, respectively), and are once more intermediate
between the full (1 × 3) minimum and its neighbors. This
supports the interpretation of Gritsch et al. of the appearance
of the (1 × 5) and (1 × 7) reconstructions as composite re-
constructions that are intermediate between a transition from
a (1 × 2) to a (1 × 3). The dominant aspect in the stability in
these reconstructions is the width of the nanoterraces.

Inspection of the asymptotic behavior of the series of
(1 × N) missing row reconstructions in Fig. 6 reveals that the
minimum energy reconstruction at (1 × 3) missing row drifts
steadily upwards with increasing (111) nanoterrace width N .
The widening (111) nanoterraces approach the energy cor-
responding to the correct asymptotic limit of a monolithic
(111) surface energy. This (111)-surface limit (indicated by
the dashed line in Fig. 6) is 25 meV/atom below the unre-
constructed (1 × 1) surface, but 25 meV above the (1 × 3)
missing row reconstruction.

This of large missing row reconstructions drifts to ∼5 meV
below the asymptotic limit (111) surface energy. This is well
within the roughly 0.01 eV uncertainty in the k-limit (111)
ideal surface energies determined above. The asymptotic
missing row calculation involving expanded (111) terraces
and the direct calculation of the (111) surface agree to within
an expected precision anticipated by the estimated numer-
ical uncertainties using the slab-consistent bulk reference
approach.

In a slab calculation the work function can be straightfor-
wardly extracted as the Fermi level with respect to vacuum.
The computed work function for these (1 × N) missing row
reconstructions, using the AM05 functional and nonlinear
core corrections, is presented in Fig. 7.

The work function begins at 5.36 eV for the unrecon-
structed (1 × 1)-Pt(110) surface, and then monotonically
increases with missing row size, converging to 5.69 eV for
the largest computed (1 × 14) reconstruction. Just as for the
surface energy, this asymptotic value falls short of the direct
calculation of the Pt(111) surface (Table II). Unlike the sur-
face energy, this difference in the work function is not a result
of model uncertainties. The formation energy of a (1 × N)
reconstruction is a global average over all the surface atoms,
which should trend to the asymptotic (111) surface energy as
N increases. The work function is a global extremal value: the
work function is the lowest energy required to remove an elec-
tron from anywhere on the surface. The (111) nanoterraces
get ever larger, but the global work function is determined by
the global minimum of the “local” work function, which is
associated with the ridge and valley kinks in the zigzag of the
slab model (Fig. 5).

VI. DISCUSSION

The computations show that the N = 2, 3, 4 missing
row reconstructions and their nanoterraces are locally stabi-
lized against widening of the (111) nanoterraces. This result
provides an additional rationalization for why epitaxially
grown Pt on a clean Pt(111) surface can result in triangu-
lar, stepped pyramids [20], or thermally grown Pt results in
hillocks being formed [21,22]. Previously, kinetic arguments
had been invoked to explain the stepped growth [20]. The
results here suggest that local total energy arguments also
can favor the growth of such stepped, (110) missing rowlike
facets.

That the atomically flat Pt(111) surface reconstructs to
have an incommensurate compressed quasihexagonal over-
layer at elevated temperatures has long been known [13].
Vicinal cuts just slightly away from (111) evolve to alternat-
ing stripes of these dense hexagonal overlayers and stepped
regions [14]. These steps tend to bunch together to form
narrower (111) nanoterraces [15]. This is further evidence
supporting the notion of very stable (111) nanoterraces, and
is evidence that the commensurate missing row structures are
competitive with the incommensurate quasihexagonal (111)
reconstruction.

This insight into the nanoscopic morphology of the
surface then leads to a possible explanation for the PEEM
local work function data exhibited in Fig. 2 for the sputtered
Pt surface. The strongly peaked feature at ∼5.7 eV in the data
corresponds well with the range that one might expect for
the (1 × 2) through (1 × 4) missing row reconstructions, as
plotted in Fig. 7, about 5.5–5.6 eV. This is good quantitative
agreement, particularly in light of the underestimate of the
limit (111) work function computed in Table II (for AM05
and PBE; LDA appears to do better) in comparison to the
experimentally determined (111), 6.1 eV [19].

VII. CONCLUSIONS

Leveraging the numerical accuracy enabled by the slab-
consistent bulk reference method developed in the previous
paper [17], a structural energy was used to reliably resolve
subtle energy differences between different Pt(110) surface

195427-8



FIRST-PRINCIPLES CALCULATIONS OF METAL … PHYSICAL REVIEW B 103, 195427 (2021)

reconstructions. The (1 × 3) missing row reconstruction was
found to be the lowest energy, slightly more stable than the
(1 × 2) and (1 × 4) missing row reconstructions. Within an
homology identified between (110) and (111) surface limits
via missing row reconstructions on the (110), the computed
larger missing row reconstruction energies properly converge
to the asymptotic limit of the (111) surface energy. Larger
1 × N reconstructions, such as the 1 × 5 and 1 × 7 patterns
observed by Gritsch et al., prefer structures that are compos-
ites of these smaller missing row structures with narrower
(111) nanoterraces. The (111) nanoterraces composing the
(110) missing row reconstructions prefer not to widen, in-
dicating a local stability in these features, and support the
notion that narrow (111) terraces should be common features
on a roughened thermally grown Pt. The inspiration of this
effort was to obtain greater understanding of features in the
nanoscale surface morphology of sputtered polycrystalline Pt
films with (111)-oriented grains leading to morphology of the
local work function, so as to gain preliminary insight into elec-
tron emission and ultimately into the initiation of electrical
breakdown. The computed results for the work functions of
these reconstructed surfaces are broadly consistent with the
PEEM measurements of local work functions on these thin
Pt films.
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