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First-principles calculations of metal surfaces. I. Slab-consistent bulk reference
for convergent surface properties
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The first-principles computation of the surfaces of metals is typically accomplished through slab calculations
of finite thickness. The extraction of a convergent surface formation energy from slab calculations is dependent
upon defining an appropriate bulk reference energy. I describe a method for an independently computed,
slab-consistent bulk reference that leads to convergent surface formation energies from slab calculations that also
provides realistic uncertainties for the magnitude of unavoidable nonlinear divergence in the surface formation
energy with slab thickness. The accuracy is demonstrated on relaxed, unreconstructed low-index aluminum
surfaces with slabs with up to 35 layers.
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I. INTRODUCTION

Fundamental physical properties of metal surfaces such
as the atomic relaxations and surface reconstructions, or
electronic work functions, have long been targets of first-
principles electronic structure studies using density functional
theory (DFT). In state-of-the-art approaches, slab calculations
of thin metal films of finite thickness within a supercell ap-
proximation are used to model semi-infinite solid surfaces. In
the limit of infinitely thick slabs, the desired limit of an iso-
lated surface is recovered. However, with the thin slab models
of a metal surface dictated by computational considerations,
the two surfaces of the slab will interact with one another and
engender quantum size effects [1] from confining long-range
electronic states into a slab of finite thickness. Friedel oscilla-
tions in metals can extend long distances [2] suggesting that
computationally intractable thick slabs might be necessary to
compute properties converged to a semi-infinite bulk surface.
Defining the slab formation energy as the relative energy of
a slab with respect to a bulk reference energy of the same
number of atoms (and assuming the two opposite surfaces of
a slab are equivalent) the surface energy of a slab Esurface(n)
with n atomic layers—the energy to cleave an infinite bulk
crystal—can be written as

Esurface(n) = 1
2 (Eslab − nEbulk), (1)

where Eslab is the computed total energy of a slab. Use of this
basic relationship shows the crucial role of the bulk reference
energy Ebulk: the surface energy diverges linearly with n with
any error in defining Ebulk, and specifically for Ebulk obtained
through an independent bulk crystal calculation [3]. I describe
a method that, in principle, rigorously and exactly defines the
bulk crystal limit of a slab model. The results will prove that
a bulk reference energy obtained directly through this slab-
consistent bulk crystal calculation leads to convergent surface
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formation energies. Moreover, this definition provides a di-
rect estimate of the uncertainty in surface energy calculation
due to the computed bulk reference energy. This approach is
demonstrated on relaxed, unreconstructed low-index surfaces
calculations of aluminum.

Boettger [3] was the first to document the nonconvergence
of surface energies obtained from thin-film calculations using
independent bulk crystal calculations for a bulk reference
energy. The insight that a thicker slab is created by insert-
ing additional nominal “bulk” atoms into the slab led to the
proposal that the bulk energy might be better approximated
by the incremental energy of adding an extra layer—an extra
bulk atom—in a slab. Fiorentini and Methfessel [4] showed
that using Ebulk derived from a linear fit of Eq. (1) over a range
of slab thicknesses led to better convergent surface energies.
As Boettger et al. [5] pointed out, this intuitive notion had
(implicitly) been applied much earlier by Gay et al. [6] to
fit a surface energy. The linear fit acquires, by definition, a
“convergent” surface energy. Such a fit, however, requires
numerous slab calculations larger than a converged slab thick-
ness to verify that a converged surface energy is actually
obtained. The uncontrolled variability due to quantum size
effects means that surface formation energies are unreliable
until a minimum thickness is reached, which is not known
a priori. That minimum thickness can only be empirically
determined.

This slab-thickness extrapolation becomes less practical
with larger surface cells, such as those needed to investigate
larger surface reconstructions. Da Silva et al. [7] showed
that independent slab and bulk reference calculations could
lead to convergent surface energies, provided slab and bulk
calculations were both performed at high accuracy. However,
a high level of accuracy for the slab calculation can be imprac-
tical, particularly for slab calculations with large area surface
cells. Singh-Miller and Marzari [8] analyzed these various
approaches for extracting surface properties from slabs, and
concluded that the extrapolation methods gave the most reli-
able convergence. Feibelman [9], in trying to compute step
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formation energies on Pt(111) surface with slab models of
vicinal surfaces, mentioned a different alternative: compute
Ebulk directly from a three-dimensionally periodic bulk crys-
tal, but design the bulk crystal unit cell to specifically align
to the orientation of the slab surface calculation, and ensure
that the bulk unit cell and slab unit cell sample the bulk and
surface Brillouin zone equivalently. In this paper I describe
how to extract a meticulously slab-consistent bulk reference
energy for any slab calculation that within Eq. (1) is guar-
anteed to yield directly convergent surface energies to within
a predictive uncertainty, without depending upon any fit of
surface energy of slabs of incremental thicknesses.

II. SLAB-COMPATIBLE BULK CRYSTAL
REFERENCE CELLS

Construction of a compatible bulk reference to a slab
calculation requires that atoms in the two limits are treated
equivalently, in real space grids and in sampling of the Bril-
louin zone (BZ) [10,11]. This mandates a different bulk
crystal unit cell specific to each surface, which will generally
mean different, surface-consistent, values for the bulk refer-
ence energy for different surfaces. A surface-consistent bulk
unit cell has the identical two-dimensional lattice vectors that
define the slab surface supercell, and then a third lattice vector
normal to the surface that extends until the top surface layer
repeats. This is illustrated in Fig. 1 for the low-index surfaces
of an fcc lattice with lattice constant a.

The primitive cell (dashed) for the (100) surface is a square
in the surface plane a/

√
2 on a side. The three-dimensional

(100)-consistent bulk crystal cell is defined by using these
and a third vector and along the (100) surface normal, a
(a/

√
2)2 × a tetragonal unit cell containing two atoms. The

(110)-consistent bulk cell is also a two-atom tetragonal cell,
defined by the a × a/

√
(2) rectangle matching the slab surface

primitive cell vectors, and a full lattice constant a along the
(110) surface normal for the bulk repeat vector. The (111)-
consistent cell is hexagonal,

√
3a deep, and contains three

atoms.
For an atom in a slab calculation to have a numerically

equivalent environment to the bulk reference calculation, the
atoms must have the same registry to the real space integration
grid. Hence, the (nonperiodic) slab repeat vector should be an
integral number of the slab-consistent bulk layer repeat vector,
and the atomic layers aligned to be an integer number of
layers away from the vacuum boundary. Additionally, to take
advantage of the equivalence of the individual layers in each
of these bulk reference cells, the real space grid dimensions
in the bulk should be even numbers for the (100) and (110)
compatible bulk cells so as to make the two atoms in these
cells in identical registry to the real space grid, and evenly
divisible by three in the (111) cell to make the atoms in each
of the three equivalent layers in the same registry with respect
to the real space grid.

A slab calculation with a kA × kB BZ sampling in the limit
of an infinitely thick slab is then formally equivalent to a
(slab-consistent) bulk calculation with an identically aligned
kA × kB × k⊥ sampling of the BZ, in the limit of infinitely
large k⊥. Extrapolations to larger k⊥ to achieve convergence of
the slab-consistent bulk calculations is straightforward. In the

FIG. 1. Construction of slab-consistent bulk crystal unit cells for
low index surfaces of a simple fcc crystal with lattice constant a. The
dashed lines in the top view outline the two-dimensional primitive
unit cells for the slab models of the (100), (110), and (111) surfaces
of an fcc crystal, which define the primitive vectors, constrained to
the surface plane, of the slab-consistent bulk crystal reference cell.
The third primitive vector of the slab-consistent cell is normal to the
surface plane. The (100) and (110) have two equally spaced (equiv-
alent) layers in the slab-consistent bulk cell, while the (111) requires
three equally spaced (equivalent) layers to form the slab-consistent
bulk cell.

following I show that this extrapolation can be used to directly
calculate a bulk reference energy that ensures convergence
of the computed surface energy in Eq. (1). This eliminates
the need to extrapolate from fits to slab energies of varied
thickness, and provides good accuracy even with coarser two-
dimensional surface BZ sampling. The bulk calculations also
provide a diagnostic to determine how coarse a surface sample
can be made before significant errors emerge.

III. COMPUTATIONAL METHODS

The DFT calculations are executed with the SEQQUEST

code, which uses pseudopotentials to eliminate explicit treat-
ment of core electrons and carefully optimized contracted
Gaussian basis sets to represent the electronic wave functions.
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I present calculations using both the local density approxi-
mation (LDA) [12] as formulated by Perdew and Zunger [13],
and the generalized gradient approximations (GGA) created
by Perdew, Burke, and Ernzerhof (PBE) [14], functionals
standardly used in studies of metal surfaces, including alu-
minum [7,8]. I complement these with results using the PW91
functional [15] and using the AM05 functional developed by
Armiento and Mattsson [16] specifically designed to improve
upon the treatment of surface effects in DFT.

The LDA pseudopotentials were generated with Hamann’s
generalized norm-conserving pseudopotential (GNCPP) code
[17] and the PBE and AM05 pseudopotentials, while also us-
ing the GNCPP form [17], were generated with the FHI98PP
code [18]. The Ne-core three-electron Al pseudopotential
used the default settings for s and p potentials, and added
a d potential with a cutoff of R = 1.2 bohrs to give a more
faithful description of the local potential, all these potentials
left in the unmodified “semilocal” form. Where indicated, a
nonlinear core correction (NLCC) [19] is included.

The aluminum atom basis set is a “double-zeta plus po-
larization” contracted Gaussian basis, providing two radial
degrees of freedom for the strongly occupied s and p orbitals,
plus a single d function to allow for angular polarization.
To give accurate treatment of the evanescent electron density
extending outside the surface, the atomic-centered basis is
augmented with “floating orbitals”: ghost atoms fixed to the
positions of the first missing layer of atoms above the last
aluminum atoms on the (100), (110), and (111) surfaces. A
ghost atom has single-Gaussian s, p, and d orbitals, where
the Gaussians are roughly the same as the outermost (po-
larization) Gaussian in each aluminum atom basis orbital:
decay constants of 0.09, 0.08, and 0.20/bohr2, respectively.
This simple prescription is shown (below) to be quantitatively
effective in removing basis set errors from localized orbitals
for calculations of surface properties of Al.

A Fermi function filling factor with an electronic tempera-
ture of 0.003 Ryd (∼41 meV) is used to smear the occupations
near the Fermi level. This artificial temperature is large
enough to achieve electronic self-consistency (up to slabs of
∼40 layers), but smaller than that which might significantly

affect the energy and might otherwise unacceptably begin to
corrupt results [20].

Slab models are constructed starting from an atom in a
central layer in the middle of the slab supercell and creating
slabs of greater thickness by incrementally adding an atom
layer on both sides, topping both surfaces of the slab with
ghost atoms at the positions of the next layer of (missing)
atoms. The vacuum boundary is set to be an integer number
of bulk repeat layers from the center, with sufficient vacuum
(∼10 Å) to separate the repeating slabs (SEQQUEST explicitly
checks for overlap of electronic density at the vacuum bound-
ary). All atom positions in the slab calculations are relaxed to
minimum energy configurations, invoking all available sym-
metry, using a modified Broyden method due to Johnson [21]
adapted for geometry updates. An atomic relaxation is deemed
converged when the total force on every atom is less than
0.0002 Ryd/bohr (5 meV/Å). Relaxation of ghost atoms leads
to negligible energy lowering. To avoid the noisy numerics
that accompanies resolving their positions in the optimization,
in the results reported here, ghost atom positions are always
held fixed.

IV. RESULTS AND ANALYSIS

A. Bulk fcc properties

The slab calculations of aluminum surfaces all use the op-
timal (k-converged) bulk fcc lattice parameter obtained with
each functional. Table I presents my calculated lattice param-
eter and bulk modulus for Al using the LDA, PBE, PW91,
and AM05 functionals. These bulk Al calculations are done
in a one-atom rhombohedral fcc cell with an 183 real space
integration grid and �-centered regular (even-dimension) k
meshes ranging from 163 to 323.

The lattice parameter and bulk modulus are obtained from
a (cubic polynomial) fit using a Birch-Murnaghan equation of
state [22–24] to 14–16 fixed a0 calculations equally spaced
within ∼ ± 2% around a0. The optimized a0 are converged
to ∼0.001 Å after a k mesh of 163. The bulk modulus B fit
for each k mesh exhibits intrinsic numerical uncertainties (to
the number and locations of data points, and to the form of

TABLE I. Bulk properties of aluminum: lattice parameters a0 (Å) and bulk modulus B (GPa).

4.032a 79.38b

LDA PBE PW91 AM05

Experiment a0 B a0 B a0 B a0 B

This work 3.970 82.5 4.053 76.2 4.048 74.1 4.024 82.8
w/NLCC 3.976 84.1 4.034 78.1 4.041 74.2 3.998 86.1
PAWc 3.99 84 4.04 78 4.05 74 − −
RSPTd 3.986 82.5 4.043 77.1 − − 4.008 86.2
Da Silva et al.e 3.98 84 4.04 78 − − − −
Singh-Miller and Marzarif − − 4.06 74 − − − −
aExtrapolated to 0 K from a0 (293 K) = 4.0490 Å, following Ref. [27] and the thermal expansion data collated in Ref. [28].
bAt 4 K, Ref. [27].
cReference [26] using a projector augmented wave method.
dReference [25] using the full potential RSPT code.
eReference [7] using a full-potential linear augmented plane wave method FP-LAPW.
fReference [8] using a norm-conserving pseudopotential plane wave method.
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equation of state) of ∼1 GPa. The computed B quoted in Ta-
ble I also varies ∼ ± 0.8 GPa for k meshes from 163 through
323. Even assuming a perfect representation of the form of the
equation of state, the B can be trusted to no better than 1 GPa.
Similarly, the equilibrium total energy (not shown) varies by
1 meV/Al over this same range of k samplings. Above 163 k
samplings are generally considered very highly converged k
meshes [7]. This magnitude of variability foreshadows the
limits in defining a precise bulk reference for surface forma-
tion energy computations.

The DFT structural properties agree well with experiment,
confirming the suitability of DFT for aluminum, and agree
well with results from all-electron [7,25] and projector aug-
ment wave based [26] calculations, verifying the quality of the
pseudopotentials and basis sets used in this work. The results
also agree well with the previous DFT studies for aluminum
surfaces of Da Silva et al. [7], and Singh-Miller and Marzari
[8], making possible meaningful quantitative comparisons to
their results. Nonlinear core corrections improve agreement
with the all-electron bulk benchmarks, but have only minor
effects on my pseudopotential surface results, and are ignored
henceforward.

B. Slab-consistent bulk reference energies

While the one-atom bulk fcc calculations produce a bulk
energy for aluminum, these are not directly usable as bulk
reference energies in surface formation energy calculations,
unless the two-dimensional slab k-point sampling is similarly
highly converged [7].

The vertical tetragonal 100-consistent bulk reference cell
has real space grid dimensions of 16 × 16 in the square
a0√

2
× a0√

2
surface plane and 24 along a⊥ = a0, while the flat

tetragonal 110-consistent bulk reference cell has a 24 × 16
real space grid in the rectangular a0 × a0√

2
surface place and 16

along its a⊥ = a0√
2
. With even-dimensioned grids, both atom

positions in the cell are coincident with a grid point. The
hexagonal (111)-consistent bulk reference cell has a 152 real
space grid in-plane, and 42 grid points spanning the three Al
layers in this cell. Each of the three atoms are in identical reg-
istry with the real space grid, the grid dimension purposefully
made evenly divisible by three.

Variations in the k⊥-dependent slab-consistent aluminum
reference energy are depicted in Fig. 2 for the (100)-consistent
bulk reference calculation with the PBE, the (111) with the
LDA, and the (110) with the AM05 functional. Plotted as
differences from the k-limit averages of Al energies in the fcc
calculations, these results highlight the perils of using a single
bulk reference energy for all surface formation energies, and
the need to use appropriate surface- and planar-k-sample-
specific averages for reference energy. The (111), with the
longest a⊥, converges (within variations of 0.5 meV/Al) with
modest k⊥ < 16. The (100) varies within a range of 1 meV/Al
at k⊥ � 16 and above. The (110), with the smallest layer
thickness a⊥, varies almost as much as 8 meV/Al for k⊥ �
16, and only dampens variations to 1–2 meV after k⊥ � 24.

Even for the (111) however, the different k‖ samples con-
verge values that differ by as much as 10 meV/Al. For a
bulk-specific calculation, this precision might be acceptable.

FIG. 2. Variations of surface-consistent aluminum bulk reference
energies versus k⊥ dimension, referenced to the k-limit average of the
one-atom fcc bulk energy.

For plausibly converged slab calculations requiring 10–20
layers, this uncertainty would inject large errors, especially
for the (110)-oriented cell. The variability in these k⊥-limit
values represent a practical limit on the accuracy with which
the bulk reference energy can be determined. This irreducible
uncertainty can be used to estimate uncertainties in derived
quantities such as the surface energy.

That it requires a 24 × 24 k‖ sampling to obtain a bulk ref-
erence energy converged within 1–2 meV/Al of the bulk fcc
energy, indicates that this would be the minimum k‖-sampling
necessary to converge a surface energy from an independent
surface calculation. The construction of a slab-consistent bulk
reference energy cancels this variability in the bulk reference
energy in the computation of the surface energy, leading to the
accelerated convergence with k‖ described in the next section.

For constructing the slab-consistent bulk reference ener-
gies, I average energies over well-converged k⊥ = 16 through
32 to obtain a k⊥-limit reference energy specific to the surface
and the in-plane k‖ sample, and an associated uncertainty from
the variability over that range.
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FIG. 3. Surface formation energy of the unrelaxed Al(111) surface using the LDA functional, as a function of the surface k-sample grid
versus the slab thickness (number of layers). Lines are guides for the eye.

C. Analysis of surface energies

The low-index aluminum surfaces exhibit minimal relax-
ations. In these calculations, the relaxed (100) surfaces show
a typical energy lowering of 3 meV from the unrelaxed (bulk-
terminated) structure, the (111) a negligible 1 meV, and the
(110) a larger, but still minor, relaxation of 10–15 meV, irre-
spective of functional (LDA, PBE, AM05, or PW91) or slab
thickness. For simplicity, most of the analysis that follows
will be focus on the unrelaxed slab results, the relaxed slab
analysis being almost identical (except for one illuminating
example discussed below).

Figure 3 shows the LDA surface formation energy of the
unrelaxed Al(111) surface obtained with the slab-consistent
(surface and k sample) bulk reference energy defined above,
for slab thicknesses up to 35 layers. As anticipated by Da
Silva et al. [7], and confirmed by Singh-Miller and Marzari
[8], there is no divergence when a large and matching k-point
sampling is used.

Plotted in Fig. 3, the surface energy varies with slab thick-
ness progressively more strongly as the k‖ mesh gets coarser,
from 16 × 16 to 12 × 12 and reduced even further to 8 × 8.
The 8 × 8 might have a slant, amounting to a small shift
of ∼20 meV in surface energy from 15 to 35 layers. This
is within the 0.02 eV scatter of computed surface formation
energies across this entire series, and could be entirely at-
tributable to the k-limit uncertainty, ±0.5 meV/atom, in the
computation of the 8 × 8 (111) bulk reference energy (see
Fig. 1). All of the series converge to within the uncertainties
in the k-limit averages of the slab-consistent bulk reference
energies.

The k‖-resolved bulk reference energies differ by as much
as 8 meV/atom from each other for the Al(111) surface (see
Fig. 1), and are as distant as 5 meV from the highly converged
k-limit fcc bulk energy. Errors in a reference energy of this
magnitude would lead to an unacceptable drift of � 0.1 eV
in the ensuing surface energy calculations out to 35 layers.
The absence of this divergence in any of the current results

demonstrates that a slab-consistent bulk energy is the correct
reference energy to use in Eq. (1) to obtain convergent surface
energies from DFT slab calculations.

Each k-resolved series converges, and converges to the
same surface formation energy, �0.41 eV/surface atom (1 ×
1 surface cell). Even the coarse 8 × 8 k mesh is sufficient
to give a surface energy within 0.01 eV/surface atom of the
largest highly converged k-mesh result.

The close-packed (111) surface is typically the most stable
surface of an fcc metal, and surface calculations are usually
numerically well behaved. This is convenient to show con-
vergence of different methods for extracting surface energies
from slabs with increasing thickness [7,8,11], but does not
illustrate the challenge that slab-based calculations of surface
can face. The other, more open surfaces are less well behaved
and represent more stringent and discriminating tests of con-
vergence with slab thickness.

The computed formation energies for the Al(100) surface,
in this case using PBE (the overall convergence behavior
is insensitive to the choice of functional), are depicted in
Fig. 4. The k samples larger than 12 × 12 mostly overlap
each other and converge well to a (100) surface formation
energy of 0.46 eV/atom (1 × 1 surface cell). The unrelaxed
8 × 8 series (the solid blue line connecting solid circles),
however, diverts from the others. Out to 15 layers, this for-
mation energy decreases almost linearly with slab thickness,
and then flattens only above 25 layers, converging to 0.42
eV/atom. Furthermore, in contrast to the denser k sampling,
a full geometry optimization for the 8 × 8 series results in a
significant lowering. Rather than the 1–3 meV total relaxation
energy lowering characteristic for the other series on the 100
surface, the k‖ = 8 × 8 surface energy relaxes ∼0.02 eV for
thin slabs, increasing to > 0.06 eV for thick slabs, and appears
to be diverging.

The unrelaxed 8 × 8 series illustrates the hazard of using
an empirical fit to extract an effective bulk reference energy
and surface energy. Truncated at 15 layers, an empirical fitting
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FIG. 4. Surface formation energy of the unrelaxed Al(100) surface (solid lines) using the PBE functional, as a function of the surface
k-sample grid versus the slab thickness (number of layers). The dashed line traverses the surface formation energies for the relaxed surface
with an 8 × 8 k sampling.

approach to a bulk reference energy might plausibly be mis-
taken to show good convergence, incorporating the apparent
(roughly) linear decrease out to 15 layers into an erroneous
bulk reference energy. The more rigorous surface-consistent
bulk reference indicates a decreasing surface formation en-
ergy, and convergence to a fixed surface energy only above 25
layers.

Hints of similar behavior might be inferred in the plots
for the denser k‖-point series. This suggests that the extent
of quantum size effects (QSE) in Al might be more significant
than generally believed, as seen in previous work for Al sur-
faces [29,30]. The current calculations indicate that effects of
QSE on the surface energy, albeit small, can be detected out
to a slab thickness of 24 a0.

The relaxed k‖ = 8 × 8 series for Al(100) aggravates this
behavior, seeming to contradict the hypothesized convergence
of this surface-consistent bulk reference approach. The sur-
face relaxation energy steadily increases and the total surface
energy continues to diverge even after 25 layers. The relax-
ations, rather than being small and limited to the top two or
three layers, are seen to extend to the center of the slab, the
interlayer spacing increasing by 2.2(2)% from the bulk value.
This divergence of the surface energy is not directly due to an
incorrect bulk reference energy, but stems from the coarse 8 ×
8 surface k sample that leads to an incorrect bulk reference
structure. The surface-compatible 8 × 8 × k⊥ k sampling is
inadequate for bulk Al. A bulk cell optimization shows the
in-plane lattice constant shrinking by 1.4(1)% and the normal

FIG. 5. Surface formation energy of the unrelaxed Al(110) surface using the AM05 functional as a function of the surface k-sample grid
versus the slab thickness (number of layers).
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TABLE II. Properties of low-index aluminum surfaces: surface energy σ (eV/surface atom) and work function � (eV). Computed
uncertainties in σ (slab thickness, k-point variation) is 0.01 eV, and in � is 0.03 eV.

Al(100) Al(111) Al(110)

σ � σ � σ �

Experiment
− 4.41(±0.03)a 0.51b 4.24(±0.02)a − 4.28(±0.03)a

LDA
Unrelaxedc 0.54 4.53 0.41 4.27 0.82 4.22
Relaxedc 0.53 4.49 0.41 4.26 0.80 4.22
Fall (1998)d − 4.38 − 4.25 − 4.30
Da Silva (2006)e − − 0.39 4.21 − −
Nguyen (2019)h − − − − 0.82 4.22

PBE
Unrelaxedc 0.47 4.34 0.35 4.12 0.71 4.07
Relaxedc 0.46 4.34 0.35 4.11 0.70 4.07
Da Silva (2005)f 0.48 4.24 0.36 4.06 0.72 4.07
Da Silva (2006)c − − 0.33 4.04 − 4.04
Singh-Miller (2009)g 0.45 4.30 0.30 4.02 0.70 4.09
Nguyen (2019)h 0.48 4.20 0.24 4.05 0.72 4.06

PW91
Unrelaxedc 0.44 4.38 0.34 4.14 0.67 4.10
Relaxedc 0.44 4.35 0.33 4.12 0.66 4.10

AM05
Unrelaxedc 0.55 4.34 0.42 4.10 0.83 4.04
Relaxedc 0.54 4.33 0.42 4.10 0.82 4.04

aReference [31].
bReference [32], converted from quoted 1.14 J/m2 to eV/atom using a0(293 K) = 4.05 Å.
cCurrent work, quoting large k‖ (21 × 21 for the 100 and 111 and 24 × 16 for the 110) and averaging over slab thickness of 17–35 layers.
dReference [34], using a norm-conserving pseudopotential code with 9 (for 111) or 8 (100,110) layers.
eReference [7], using a full-potential code with 7 layers [for the Al(111) surface].
fReference [33], using a full potential code with between 15 (for 111) and 23 (for 110) layers.
gReference [8], using a norm-conserving pseudopotential plane wave method code with 13 layers.
hReference [30], using a plane-wave code with up to 30 layers.

lattice constant increasing by 3.7(2)% from the fcc bulk value
(the uncertainty in parentheses due to variations in cell pa-
rameters with k⊥). The optimal slab-compatible (tetragonally
distorted) bulk crystal lattice parameters differ significantly
from the optimized bulk fcc lattice parameter used to construct
the slab model, leading to artificial interlayer relaxations in the
slab calculations [10].

Using the k‖ sampling—and orientation-specific lattice
constants—modifying the bulk reference structure in the
construction of the slab model would remove this divergence
and lead to a convergent surface energy. Simply fixing the
inner layers to their bulk positions would also mitigate this
pathology. Depending upon the quantity of interest, these fixes
might be sufficient. However, the significant restructuring of
the crystal indicates that this surface k‖ sample leads to a poor
description of the bulk metal. This serves as a warning and
defines an assessable criterion for accepting a computational
model. This failure could be anticipated by bulk cell opti-
mization of k samplings suspected to be too coarse, testing
adequacy of the k‖ sampling in the bulk reference calculations
before attempting the more expensive surface calculations.

Figure 5 presents the convergence behavior for the Al(110)
surface, this time using AM05 as the representative functional.

Unlike the (111) or (100) surface, where the surface energy
was well converged at 15 layers, the (110) surface energy is
still varying significantly, and does not appear to fully stabilize
until more than 25 layers. Without a rigorous slab-compatible
bulk reference, it would be very difficult to infer convergence
to a surface energy for the more open (110) surface.

D. Converged surface properties

The surface-consistent bulk reference approach enables
computing surface properties that are converged, with a realis-
tic measure of quantitative confidence. In Table II I summarize
the fully converged (layer thickness and k-point) results for
low-index Al surfaces, using slab-consistent references, and
incorporating realistic estimates of uncertainties. In addi-
tion to the surface energies discussed above, the results for
computed work functions are also presented. Work func-
tions are a very sensitive numerical quantity in DFT surface
calculations—and highly discriminating tests of localized or-
bital methods. Experimental work function data is available
for each of the low index Al surfaces [31], whereas the surface
formation energy has only been measured for the Al(111)
surface [32].
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With the use of a rigorous surface-consistent bulk reference
energy, with its k⊥-limit uncertainty and from extrapolation
with slab thickness, I determine a numerical uncertainty of
0.01 eV/surface atom in the surface energy for each surface.
This is ten times smaller than the physical error (difference
from experiment) due to the DFT approximations. The com-
puted surface energies closest to experiment, using the LDA
and AM05 approximations, are 0.1 eV smaller than experi-
ment. This numerical uncertainty is also comparable to the
differences between the current converged extrapolations and
the surface formation energies computed in previous works
[7,8,33]. And also comparable to differences between these
previous works—as should be expected as these all are typ-
ically quoted as single-point results of different thicknesses
and different k-point samplings.

There is good agreement between the current local orbital
results for the surface energy and the previous plane-wave
basis works [7,8,33,34] for each of the low-index Al surfaces.
This is testimony that the simple prescription of adding ghost
atoms with floating orbitals at the first set of vacated sites at
the surface of a metal slab is an effective means to fix basis set
insufficiencies in surface calculations using local orbitals.

Surface energies are exceedingly challenging to determine
experimentally. Only the (111) surface energy has been ob-
tained for aluminum: a surface energy of 0.51 eV/surface
atom quoted by Gay et al. [32]. The predictions using the
LDA and AM05 are within 0.1 eV, a very good accuracy—the
best physical accuracy one can reasonably expect of the DFT
approximation for structural energies.

The GGA is commonly preferred to the LDA for bulk
metal calculations, but the GGA has been shown to lead to
generally inferior predictions of surface properties [16]. The
PBE results and PW91 results (often taken to be synony-
mous with GGA) presented in Table II deviate slightly (but
not greatly) more from experiment than the LDA and AM05
results. While these two GGA functionals are less equivalent
than typically assumed [26], in the case of aluminum, the PBE
and PW91 surface results are very similar to each other, and
also not that dissimilar from the LDA and AM05 results. The
aluminum system is, fortuitously, very forgiving with respect
to the choice of DFT functional.

The work function can be more readily measured exper-
imentally, and the work function for aluminum have been
reported to be 4.41, 4.24, and 4.28 eV for the (100), (111), and
(110) faces, respectively [31]. These can be measured with
good accuracy (within 0.03 eV experimental uncertainty),
and are straightforwardly extracted from DFT calculations for
metals (as the position of the computed Fermi level below the
vacuum level).

The computed LDA work function is within 0.1 eV of
the experimental work function for each surface, higher for
the (100), lower for the (110), and within experimental and
theoretical uncertainties for the (111) faces. The GGA func-
tionals systematically underestimate the work function, by
about 0.2 eV. The AM05 functional mimics the GGA results,
rather than the rather good LDA results. This is unexpected,
given that AM05 incorporates specific modifications to bet-
ter treat surface effects [16], and that AM05 gave improved
results comparable to the LDA for the Al surface energies.

The deviation is small, however, and might benefit from more
systematic study in other materials.

The work function is an exceedingly sensitive computa-
tional quantity, and, in particular, the work function is strongly
dependent upon accurately describing the long-range evanes-
cent density above the surface that is short changed in an
atom-centered local orbital method. The work function results
presented in Table II show good agreement between the cur-
rent local orbital basis calculations and previous, plane-wave
basis results, The differences are within the computational
uncertainties, comparable to differences between the different
plane-wave results, and less than the physical uncertainties,
i.e., the difference of any of the DFT results and experiment.

V. SUMMARY AND CONCLUSIONS

A slab-consistent bulk reference approach has been de-
scribed and shown to produce convergent surface formation
energies in slab-based calculations. This bulk reference en-
ergy, designed to be meticulously consistent with the target
slab surface model, leads to assured determination of conver-
gence, in contrast to an a posteriori reference energy obtained
from empirical fits to varied slab thicknesses. Moreover, this
definition describes an (irreducible) uncertainty in the bulk
reference energy, leading to predictable, a priori estimates of
numerical uncertainties in surface energy calculations. Rather
coarse surface k‖ meshes were shown to give good results
for the surface energy (and work function), demonstrating
that one does not need extremely high quality meshes for
both slab and for bulk calculations to obtain accurate, con-
verged surface properties. This can be particularly valuable
in reducing computational costs for larger-area surface slab
models, such as might be needed for investigating extended
surface reconstructions or multicomponent alloys with large
unit cells. An a priori criterion can be applied on the bulk
reference structure to detect and assess the minimum k-point
sampling necessary to obtain good results to a predictable
accuracy.

It was further shown that local orbital methods, despite
their lack of long-range tails, can give results as converged
as plane-wave calculations. The simple expedient of adding
ghost atoms is seen to eliminate any meaningful deficiencies
in the atom-centered basis sets. The explicit consideration
of numerical uncertainties is pivotal in making this assess-
ment: any basis set errors are less than or comparable to
other numerical uncertainties in the DFT slab calculations,
which, in turn, are much less than the physical uncertain-
ties (errors) in the DFT approximation itself. It is possible
to benefit from the computational efficiencies of local or-
bital methods, without compromising the accuracy in the
calculation.

These methods were tested and verified with compre-
hensive assessment for three different low-index aluminum
surfaces, (100), (111), and (110), with thickness extending
out to 35 layers. The customary use of closed-packed (111)
surfaces for assessing methods to compute surface prop-
erties is shown to be not very discriminating because of
the conveniently good numerical behavior of close-packed
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surfaces. The properties of more open (100) and (110) sur-
faces show greater variability with slab thickness, these
exhibiting detectable quantum size effects in slab calcula-
tions as thick as 25 layers (or beyond). These more open
surfaces are better (more discriminating) tests for slab-based
surface calculations. The slab-consistent bulk reference en-
ables definitive determination of convergence, modulo the
uncertainty in the k⊥ limit, which would not be possible with
empirical a posteriori fits to a reference bulk energy. This was
specifically illustrated in the coarsest (k‖ = 8 × 8) Al(100)
surface model, where the insufficiency in the model was eas-
ily detected, where an empirical fit to thin slabs could be
deceiving.

The notion of a slab-consistent bulk reference makes for
more rapidly convergent surface calculations, but additional
import stems from the systematic treatment of uncertainties
that this definition makes possible. For the aluminum example
considered here, the uncertainties could be used to assess
convergence, in making quantitative assessments numerical
aspects of the calculations and of basis set sufficiencies, about
the comparative assessment of functionals and methods with
respect to each other, and with respect to experiment, all with

quantitative confidence. This framework will be crucial for
probing subtle energetics of more complex systems, such as
assessing subtle energetics of different reconstructed surfaces
such as in Pt [35].
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