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Tuning of a bilayer graphene heterostructure by horizontally incident circular polarized light
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We theoretically investigated the Floquet states of bilayer graphene heterostructure under the irradiation by
horizontally incident circular polarized light. The in-plane and out-of-plane electric field of the light periodically
perturbs the intralayer and interlayer hopping, respectively. For circular polarized light, the two components of
the electric field have π/2 phase difference, so that the two types of hopping are periodically perturbed with the
π/2 phase difference, which modify the effective interlayer hopping. We focus on the model of bilayer graphene
in the heterostructure of antiferromagnetic van der Walls spin valve. The amplitude of the irradiation can tune the
band gap and topological properties of the bulk state. The spin-polarized quantum anomalous Hall phase with
Chern number being one is predicted. The incident angle of the irradiation can tune the band gap and dispersion
of the edge states in zigzag nanoribbons.

DOI: 10.1103/PhysRevB.103.195422

I. INTRODUCTION

Van der Walls heterostructures consisting of graphene
and varying types of substrates are outstanding candidate
as spintronic devices, which have been extensively in-
vestigated [1–5]. Proximity effect between graphene and
the substrates induces spin-dependent interactions, includ-
ing intrinsic and Rashba spin-orbit coupling (SOC) [6–8],
ferromagnetic and antiferromagnetic exchange field in the
graphene layer [9–16]. One of the most attractive het-
erostructures is Van der Walls spin valves, which consist of
bilayer graphene (BLG) being sandwiched between two sub-
strates [5,17]. Flipping the exchange field of one substrate
opens or closes the bulk band gap. In addition, the vertical
gated voltage can control the band gap as well. In the pres-
ence of SOC, the BLGs are driven into varying topological
states, such as quantum spin Hall (QSH), quantum valley Hall
(QVH), and quantum anomalous Hall (QAH) phases [7,18–
24]. By tuning the topological phase, the edge states
are controlled.

On the other hand, periodic perturbation of graphene drives
the quantum system into a dynamic state, which is described
by the Floquet theory [25–33]. The electronic structure of
the Floquet states can be measured by applying the experi-
mental method of angle-resolved photoemission spectroscopy
(ARPES) [34–38]. If the perturbation is due to irradiation by
normally incident circular optical field, the time reversal sym-
metric is broken, so that the system could be driven into the
QAH phase or Floquet topological insulator phase [39–48].
The Floquet topological phase is featured by the presence
of chiral edge states in graphene nanoribbon [49–55], which
enable robust topological transport through the nanorib-
bon [56,57]. The topological edge transport can be mea-
sured by on-chip photoconductive device that is driven by
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femtosecond optical pulse [58]. Combination of optical drive
and external magnetic field induces valley polarized state in
BLG [59]. Recently, varying types of topological flat band
in optically driven twisted BLG have been proposed, which
provide more candidates of strongly correlated topological
phases [60–63]. In the high frequency approximation, the
effect of the irradiation can be described by the Haldane
mass term [64,65]. The presence of the Haldane mass term
in the ferromagnetic van der Walls spin valve induces spin-
valley polarized QAH phase in the BLG [4]. A similar effect
could be engineered in the antiferromagnetic van der Walls
spin valve.

In this paper, we seek additional mechanism to tune the
antiferromagnetic van der Walls spin valve, which is irradi-
ated by horizontally incident circular polarized optical field.
The tuning parameters of the optospintronic system include
the incident angle as well as the polarization and intensity
of the optical field. For monolayer graphene, irradiation by
horizontally incident circular optical field has a trivial effect
that is similar to the irradiation by linear polarized optical
field, because the out-of-plane electric field has a negligible
effect on the intralayer hopping. By contrast, the interlayer
hopping between the two graphene layers in the BLG is per-
turbed by the out-of-plane electric field [62,66–68], so that the
irradiation can tune the band structure with nontrivial effect.
We theoretically studied the tuning of the antiferromagnetic
van der Walls spin valves, which is BLG with antiferromag-
netic exchange field, staggered sublattice potential, vertical
gated voltage, and (or) intrinsic SOC. The Rashba SOC due
to proximity effect is relatively small, which is neglected in
our model. We focused on the BLG with Bernal stacking
order, which is commonly found in experimental sample.
The bulk band structures and topological phases are modeled
by the high frequency approximation on the Dirac fermion
model [65,69,70]. We found that the irradiation with sufficient
intensity induces a topological phase transition for each band
valley. The band structures of the zigzag nanoribbons are
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modeled by tight binding model [71–73]. By engineering the
materials and optical parameters, the nanoribbon with one pair
of spin polarized chiral edge states with van-Hove singularity
is designed.

The paper is organized as follows: In Sec. II, the high
frequency expansion of the Dirac fermion model is applied
to study the tuning of bulk band gap and topological phase by
the irradiation. In Sec. III, the tight binding model is applied
to studied the topological edge state of the zigzag nanoribbon
under the irradiation. In Sec. IV, the conclusion is given.

II. TUNING OF THE BULK BAND STRUCTURE

The incident circular polarized optical field propagates
along the in-plane direction. The angle between the wave
vector of the optical field and the x̂ axis is θ . The optical
frequency is assumed to be h̄� = 7 eV, with the correspond-
ing wavelength being 177 nm. Because the wavelength of
the optical field is much larger than the lattice constant of
graphene, the spatial dependent of the optical field is ne-
glected. Thus, the optical field is described by oscillation
of the vector potential, A(t ) = x̂Ax sin(�t ) + ŷAy sin(�t ) +
ẑAz cos(�t ). The in-plane component of the vector potential is
designated as A‖(t ) = x̂Ax sin(�t ) + ŷAy sin(�t ). The ampli-
tude of the in-plane vector potential is designated as Ar , where
Ax = −Ar sin(θ ) and Ay = Ar cos(θ ). The left and right circu-
lar polarized optical field have Ar = ηAz with η = ±1. The
in-plane and out-of-plane component of the vector potential
have the same amplitude but have ηπ/2 phase difference. The
amplitude of the electric field is E0 = |Ar |/� = |Az|/�.

A. Effective Hamiltonian of Dirac fermion model

Because the optical frequency is larger than the bandwidth
of graphene, the band structure of BLG near the Fermi level
could be approximated by the Dirac fermion model. For the
BLG with Bernal (AB) stacking order and effective mass
terms �+ and �− at the top and bottom layer, the Hamiltonian
of the Dirac fermion model is

H =

⎡
⎢⎣

V + �+ h̄vF kτ
− 0 0

h̄vF kτ
+ V − �+ t+

⊥ 0
0 t−

⊥ −V + �− h̄vF kτ
−

0 0 h̄vF kτ
+ −V − �−

⎤
⎥⎦,

(1)

where kτ
± = τkx ± iky with τ = ±1 being the valley index

of the K and K′ valleys, kx and ky are the wave number
relative to the K or K′ point, 2V is the potential difference
between the top and bottom layers due to the gated voltage,
t+
⊥ = t−

⊥ = −0.39 eV is the interlayer hopping constant, and
vF is the Fermi velocity of graphene. The effective mass term
consists of three components, as �ς = λ

ς
� + λ

ς
AF ŝz + λ

ς
I τ ŝz,

where ς = ±1 represents the top and bottom layer. The first
term is the staggered sublattice potential. The second term
is due to the presence of antiferromagnetic exchange field,
where ŝz = ±1 is the spin index. The third term is due to
the presence of intrinsic SOC. The physical properties of
each spin and band valley can be revealed by studying the
model in Eq. (1).

In the presence of the irradiation, the Hamiltonian become
time dependent, which can be modeled by time-independent
effective Hamiltonian. Because the Bloch states are spatially
periodic along the in-plane direction, the dipolar approxima-
tion can be applied for the intralayer hopping terms in the
time-dependent Hamiltonian. Applying the Peierls substitu-
tion for the in-plane optical field, k is replaced by k +
e0A‖(t )/h̄ in the time-dependent Hamiltonian. On the other
hand, the Bloch states are spatially localized along the out-
of-plane direction, so that the interlayer hopping terms in
the time-dependent Hamiltonian are described by nonper-
turbative formula. The out-of-plane optical field induces a
time-dependent Peierls phase [74], so that t±

⊥ is replaced by

t±
⊥ e

±i2πdzAz cos(�t )

0 = t±

⊥
∑+∞

m=−∞ imJm(±2πdzAz/
0)eim�t , where

0 = π h̄/e0 is the magnetic flux quantum, and dz is the
distance between the two graphene layers [75]. As a re-
sult, the time-dependent Hamiltonian can be expanded as
H (t ) = ∑+∞

m=−∞ Hmeim�t . The effective Hamiltonian is given
as H eff = H0 + ∑

m>0
[H+m,H−m]

m�
+ O( 1

�2 ). Applying the high
frequency expansion to the Hamiltonian (1), the effective
Hamiltonian is given as

H eff =

⎡
⎢⎢⎣

V + �+ h̄vF kτ
− t⊥,1 0

h̄vF kτ
+ V − �+ t⊥,0 −t⊥,1

t∗
⊥,1 t⊥,0 −V + �− h̄vF kτ

−
0 −t∗

⊥,1 h̄vF kτ
+ −V − �−

⎤
⎥⎥⎦,

(2)

where t⊥,0 = t⊥J0(2πdzAz/
0), t⊥,1 = 2h̄vF (τAx + iAy)t⊥J1

(2πdzAz/
0)/(h̄�). Thus, the irradiation effectively changes
the interlayer hopping in two ways: Firstly, the vertical hop-
ping strength between the nearest neighbor interlayer sites is
renormalized; secondly, the quantum interfere between the in-
plane and out-of-plane perturbation generates the next nearest
neighbor interlayer hopping. The band structure and wave
function of the Floquet states can be obtained by diagonal-
ization of Eq. (2). If the BLG has AA stacking order, the
Hamiltonian of the Dirac fermion model is

H =

⎡
⎢⎢⎣

V + �+ h̄vF kτ
− t+

⊥ 0
h̄vF kτ

+ V − �+ 0 t+
⊥

t−
⊥ 0 −V + �− h̄vF kτ

−
0 t−

⊥ h̄vF kτ
+ −V − �−

⎤
⎥⎥⎦. (3)

Applying the high frequency expansion, one can find that
the effective Hamiltonian is the same as the unperturbed
Hamiltonian, because the commutations [H+m, H−m] are
equal to zero. As a result, the quantum state of the BLG with
AA stacking order is not modified by the horizontally incident
circular polarized optical field.

The topological feature of the Dirac fermion band is char-
acterized by the Chern number, which can be obtained by
integrating the Berry curvature over the momentum space.
The Berry curvature at each momentum is calculated as

Bn(k) = −
∑
n �=n′

2Im〈ψnk|vx|ψn′k〉〈ψn′k|vy|ψnk〉
(εn′k − εnk )2

, (4)

where n is the band index of the eigenstates |ψnk〉 with eigen-
value εnk, and vx(y) are velocity operators [55,76,77]. The
Chern number of each valley and spin is designated as Cτ

sz
.
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In the absence of the irradiation or intrinsic SOC, the BLG
is in the QVH phase, because the Chern numbers of opposite
band valleys are opposite in sign. The valley Chern number is
defined as the difference between the Chern number of the two
band valleys, i.e., C+

sz
− C−

sz
. The valley Chern number could

be positive or negative two. The phase boundary between the
two QVH phase with opposite valley Chern number is given
as 2V = −�+ − �−. In the presence of intrinsic SOC, the
BLG could be driven into quantum spin Hall (QSH) phase
or spin-polarized quantum anomalous Hall (QAH) phases, by
engineering the combination of (V , λ

ς
�, λ

ς
AF , λ

ς
I ). In the pres-

ence of irradiation, the Chern number of each valley and spin
could be tuned to zero, as shown in the following subsection.

B. Phase diagram

Counting the spin and valley indices, there are four band
valleys for the BLG. We firstly studied the idealized anti-
ferromagnetic spin valves, where λ

ς
� and λ

ς
I are zero, so

that �± = λ±
AF .

For the system with �+ = �− ≡ �0 and V �= −�0, the
BLG have finite gap, which corresponds to the OFF state of
the spin valve. For these systems, the band structures of two
valleys and spins are the same, so that we focus on the band
structure of spin sz = +1 and valley τ = +1 to study the
gap closing condition. Because the particle-hole symmetric
is preserved, the Fermi level is at zero. In the presence of
irradiation, as the amplitude of the optical field increases, the
band gap is decreased, closed, and reopened. The analytical
solution of the condition of gap closing is obtained by
diagonalization of the Hamiltonian in Eq. (2). Since the
Hamiltonian preserves the particle-hole symmetric, the gap
closes at energy zero. However, the optical irradiation breaks
the in-plane rotational symmetric, so that the gap closing does
not occur at the K or K′ point, but beyond the K or K′ point
with kx(y) �= 0. The solution that two energy levels equate
to zero occurs at the momentum point (kx, ky) with kx = kr

cos(kφ ), ky = kr sin(kφ ), kr = −2iArt⊥J1(2πdzAz/
0)/(h̄�)

±
√

−�2
0 ± it⊥J0(2πdzAz/
0)(�0 + V ) + V 2/(h̄vF ), and

kφ = θ − π . At the critical amplitude of the optical field
(Ar, Az ) that kr is real, the gap is closed. Thus, the critical
condition is obtained by numerically finding the zero point of
Im[kr] = 0 for a given (Ar, Az ). The critical amplitude of the
optical field is dependent on both �0 and V . The numerical
results of the critical value versus �0 + V for different V
are plotted in Fig. 1. After the amplitude of the optical field
exceeds the critical value and the gap is reopened, the Chern
number of the Dirac fermion band becomes zero. As a result,
the system is driven from QVH phase into a topologically
trivial phase. The Chern number of spin sz = +1 and valley
τ = +1 in each phase regime is marked in Fig. 1.

For the system with �+ = −�− = �0 and |�0| > V , the
BLG is gapless, which corresponds to the ON state of the
spin valve. For these systems, the band structures of the two
valleys are the same, but those of the two spins are different.
For the system with V = 0 and E0 = 0, the direct band gap
of each spin is zero. Turning on the irradiation opens a direct
band gap for each spin. Because the particle-hole symmetric
in this system is broken, the direct band gaps of two spins have
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FIG. 1. The phase diagram of the irradiated spin valve with
�+ = �− ≡ �0, λς

� = 0 and λ
ς

I = 0. The phase boundary with V =
0, V = 50 meV, and V = −50 meV are plotted as solid (black), blue
(dashed) and red (dash-dotted) lines, respectively. The Chern number
of the τ = +1 valley is marked in each phase regime.

different energy range. Thus, the band structure of the whole
system is gapless, as shown in Fig. 2(a). As the amplitude
of the irradiation increases, the direct band gaps of two spins
become larger and have overlapping energy range, so that the
band gap of the whole system is opened, as shown in Fig. 2(b).
The boundary between the phase regime with zero and finite
gap is numerically calculated and plotted in Fig. 2(c). For the
system with V �= 0 and E0 = 0, the direct band gap of each
spin is nonzero. Turning on the irradiation firstly decreases

FIG. 2. (a) and (b) are band structures of the BLG with �+ =
−�− = 50 meV, E0 = 12 V/nm, and E0 = 20 V/nm, respectively.
The other parameters are V = 0, λ

ς

� = 0, and λ
ς

I = 0. The band
structure of spin up and down are plotted as blue (solid) and red
(dashed) lines, respectively. (c) The boundary between the phase
regime with zero and finite band gap. (d) As the gate voltage is
changed to V = 50 meV, the boundaries between the phase regime
with zero and finite band gap are plotted as blue (solid) lines. The
phase boundary at which the direct band gap of each spin and valley
closes is plotted as a red (dashed) line.
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and closes the direct band gap and then reopens the direct
band gap. The critical value of the gap closing is plotted as
a red (dashed) line in Fig. 2(d). After the gap is reopened,
the Chern number of each valley and spin is switched to zero.
Meanwhile, the band gap of the whole system is tuned. As the
energy ranges of the band gap of two spins overlap, the band
gap of the whole system is opened. The corresponding phase
boundaries of the transition of the direct band gap (the whole
band gap) are plotted as blue (solid) lines in Fig. 2(d).

For the antiferromagnetic spin valve consisting of realistic
materials, λ

ς
� and λ

ς
I are nonzero. For example, if the van der

Walls spin valve consists of BLG being sandwiched between
two monolayers of MnPSe3, antiferromagnetic exchange field
as well as λ

ς
� and λ

ς
I are induced in the graphene layer by the

proximity effect. We consider a model with |λς
AF | = 50 meV,

λ
ς
� = 20 meV, and λ

ς
I = 60 meV to demonstrate the quali-

tative properties. In this case, the band structure of the two
spins and two valleys are different. The band gap of the
whole system is given by the overlapping energy range of the
band gap of both spins and both valleys. For the spin valve
with λ+

AF = ±λ−
AF , the band gap in the parameters space of

V − E0 are plotted in Figs. 3(a) and 3(b), respectively. For the
antiparallel exchange field with λ+

AF = −λ−
AF , the band gap in

most parts of the phase regime is negative, because the top of
the valence band is higher than the bottom of the conduction
band. Since the direct band gaps of different spin or valley
close at different parameters, the combination of the Chern
numbers of the two spins and valleys, (C+

+ , C−
+ , C+

− , C−
− ),

in varying phase regimes are different. The properties of
topological phase and edge states in each phase regime are
discussed in the next section.

The theoretically predicted Floquet-Bloch band structures
in this section can be measured by the vacuum ultraviolet
ARPES [34–38], because the optical frequency is assumed
to be 7 eV. In our simulation, the maximum amplitude of
electric field of the light is 20 V/nm, which corresponds to

peak power density of 1
2

√
ε0
μ0

E2
0 = 0.53 W/nm2. Assuming

that a Gaussian beam optical pulse with beam waist being
100 nm and pulse width being 1 ps is applied in experiment, a
maximum single pulse energy of 16.7 × 10−9 J is required to
scale the phase diagram in our studies.

III. TUNING OF THE EDGE STATES IN ZIGZAG
NANORIBBON

In this section, the irradiated BLG zigzag nanoribbons are
investigated by applying the tight binding model. The zigzag
edges of the nanoribbons are parallel to the ŷ axis, so that the
zigzag nanoribbon is periodic along the ŷ direction and has N
rectangular unit cells along the x̂ direction, with eight carbon
atoms in each rectangular unit cell. The periodic boundary
condition with Bloch phase is applied along the ŷ direction.
The width of the nanoribbons is 3NaC-C with aC-C = 1.42 Å
being the bond length between the carbon atoms.

In principle, the optical field of horizontally inci-
dent circular polarized light is described by the vec-
tor potential A = x̂Ax sin(k · r + �t ) + ŷAy sin(k · r + �t ) +
ẑAz cos(k · r + �t ), where k = kxx̂ + kyŷ with kx = k cos(θ ),
ky = k sin(θ ), k = nb�/c, and nb being the refractive index

FIG. 3. The band gap of the spin valve in the parameters space
of E0 − V are plotted as the color scale. The system parameters
are λ±

� = 20 meV and λ±
I = 60 meV; λ+

AF = λ−
AF = 50 meV in

(a), λ+
AF = −λ−

AF = 50 meV in (b). The Chern number of each spin
and valley, (C+

+ , C−
+ , C+

− , C−
− ), is marked in each phase regime, which

is separated by the boundaries where the direct band gap closes. In
(b), the boundaries that the band gap equates to zero are marked by
solid lines. The boundaries that the direct band gap closes at the band
valleys with szτ = 1 or szτ = −1 are plotted as dashed or dotted
lines, respectively.

of the background medium. For the case with θ = 0, and
then ky = 0, the optical field is uniform along the ŷ direction.
Thus, the unit cell is the same as that for nonirradiated BLG
zigzag nanoribbon. For the case with θ �= 0, the optical field
is nonuniform along the ŷ direction, which break the transla-
tional symmetry of the nanoribbon. If the wavelength along ŷ
direction (i.e. 2π/ky) is conformal with the size of the unit cell√

3aC-C, a supercell is needed to described the system. Since
2π/ky is much larger than

√
3aC-C, the nonuniform effect

could be neglected, so we apply the approximation that ky ≈
0. As a result, the optical field is given as A = x̂Ax sin(kxx +
�t ) + ŷAy sin(kxx + �t ) + ẑAz cos(kxx + �t ). As a further
approximation, kx could be assumed to be zero, which
is equivalent to assuming nb = 0 in the formula. If the
background medium has high refractive index, nb is large. Nu-
merical results showed that the band structures of the Floquet
states are weakly dependent on nb, when nb is smaller than
10, so that only the numerical result with nb = 1 is shown in
this paper. In another word, the BLG zigzag nanoribbons are
assumed to be suspended in vacuum.
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A. Tight binding model

The tight binding model of the BLG is given by the
Hamiltonian

H = −t
∑
〈i, j〉

c†
i c j − t⊥

∑
〈i, j〉⊥

c†
i c j +

∑
〈〈i, j〉〉

λ
ςi
I szνi jc

†
i c j

+
∑

i

λ
ςi
�κic

†
i ci +

∑
i

λ
ςi
AF szκic

†
i ci + V

∑
i

ςic
†
i ci, (5)

where the first and second summations cover the intralayer
and interlayer nearest neighbor hopping with strength being
t = 2.8 eV and t⊥ = 0.39 eV, respectively; the third term
represents the intrinsic SOC, whose summation cover the next
nearest neighbor intralayer hopping with strength being λ

ςi
I ;

ςi = ±1 represents the top and bottom layer; νi j = ±1 for the
next nearest neighbor intralayer hopping with right and left
turn. The fourth and fifth terms are the staggered sublattice po-
tential and the antiferromagnetic exchange field, respectively,
with κi = ±1 representing A and B sublattices. The sixth term
is the energy difference between the top and bottom layers due
to the gated voltage.

In the presence of the irradiation, the first three terms
in the tight binding Hamiltonian is perturbed. The hopping
terms include a time-dependent Peierls phase [74]. For the
intralayer hopping, the Peierls phase is γ (t ) = ei2πA(t )·ri j/
0 ,
where ri j = ri − r j , and 
0 = π h̄/e is the magnetic flux
quantum. For the interlayer hopping between two sites
with the same in-plane coordinations, the Peierls phase is
γ⊥(t ) = ei2πAz (t )d⊥(ςi−ς j )/(2
0 ), where d⊥ is the interlayer
distance. The time dependent factor for the intralayer and
interlayer hopping terms can be expanded as eiAr0 sin(kxx+�t ) =∑+∞

m=−∞ imJm(Ar0)e−imπ/2+ikxx+im�t and eiAz0 cos(kxx+�t ) =∑+∞
m=−∞ imJm(Az0)eikxx+im�t , respectively, where Ar0 =

2π (Axx̂ + Ayŷ) · ri j/
0 and Az0 = 2πAzd⊥(ςi − ς j )/(2
0).
As a result, the Hamiltonian can be expanded as
H = ∑+∞

m=−∞ Hmeim�t . According to the Floquet the-
orem [71–73], the quantum state can be expressed as
|�α (t )〉 = eiεαt/h̄

∑+∞
m=−∞ |uα

m〉eim�t , with εα being the
quasienergy level of the αth eigenstate and |uα

m〉 the
corresponding eigenstate in the mth Floquet replica. The
Floquet states can be obtained by solving the Floquet
Hamiltonian, which is defined as HF = H (t ) − ih̄ ∂

∂t .
The quasienergy is given by the eigenvalue problem of
HF |�α (t )〉 = εα|�α (t )〉. The Floquet states and the Floquet
Hamiltonian can be represented in the Sambe space, which
is the direct product space of the Hilbert space and the
Fourier space, where the Hilbert space is expanded by the
spatial wave function of the eigenstates {|uα

m〉, m ∈ N}, and
the Fourier space is expanded by the series {eim�t , m ∈ N}.
In this representation, the Floquet state and the Floquet
Hamiltonian is time independent. For numerical calculation,
the index of the Floquet replica is cutoff at a maximum
value as |m| < mmax. The Floquet Hamiltonian, designated
as H, can be represented as a block matrix Hm1,m2 , with
the block index m1 and m2 ranging in [−mmax, mmax].
For the diagonal and nondiagonal block, the matrices
are given as Hm1,m1 = H0 + mh̄�I and Hm1,m2 = Hm1−m2 ,
respectively. Diagonalization of the Floquet Hamiltonian
gives the eigenvalue Eα and the eigenstate. For the irradiation
with high frequency, mmax = 2 is sufficient.

FIG. 4. Band structure of the zigzag nanoribbons with �+ =
�− ≡ �0 = 20 meV, λ

ς

� = λ
ς

I = V = 0, and the amplitude of the
irradiation being E0 = 20 V/nm. Only the band structure of spin up is
plotted. The incident angle of the optical field is θ = 0 and θ = π/2
in (a),(c) and (b),(d), respectively. The width of the nanoribbon is
N = 50 and N = 10 in (a),(b) and (c),(d), respectively. The size
of the blue (solid) and red (empty) dots represents the degree of
localization at the left and right zigzag terminations, respectively.

B. BLG without intrinsic SOC

In this subsection, the zigzag nanoribbon with the cor-
responding bulk state in Fig. 1 is studied. Specifically, the
band structures of BLG zigzag nanoribbons with �+ = �− ≡
�0 = 20 meV, λ

ς
� = λ

ς
I = V = 0 is plotted in Fig. 4. For the

corresponding bulk state, the Chern number of each valley is
zero, so that no topological edge state is expected. The band
structure of the nanoribbon with width N = 50 and incident
angle θ = 0 contains two pairs of gapless edge states, as
shown in Fig. 4(a). At the M point of the Brillouin zone,
the pair of edge states localized at the left (right) termina-
tion are twofold degenerated at energy level �0 (−�0). The
degeneration can be broken by turning on the gated volt-
age V or by changing the incident angle θ . Thus, the edge
states are not topological. If the incident angle is turned to
θ = π/2, the gap of the edge states is maximized, as shown
by the band structure in Fig. 4(b). As a result, the incident
angle can control the band gap of the edge state, which in
turn controls the conductivity of the nanoribbons. The fi-
nite size effect pushes the bulk states into a higher energy
range but has small impact on the edge states, as shown in
Figs. 4(c) and 4(d), where the width of the nanoribbon is
decreased to N = 10.

C. BLG with intrinsic SOC

In this subsection, the zigzag nanoribbons with the corre-
sponding bulk state in Fig. 3(a) and width N = 50 are studied.
For a fixed gated voltage V = −50 meV, the bulk band gap
and topological phase can be tuned by the amplitude of the
irradiation, as shown in Fig. 3(a). In the absence of the irradi-
ation, the bulk state is in the phase regime with Chern numbers
being (−1,−1, 1,−1). This phase is designated as a spin-
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FIG. 5. Band structure of the zigzag nanoribbon with gated
voltage being V = −50 meV. The band structure of spin up and down
electron are plotted in the left and right column, respectively. The am-
plitude of the irradiation is E0 = 0 in (a),(b) and E0 = 16.5 V/nm in
(c)–(f). The incident angle of the optical field is θ = 0 and θ = π/2
in (c),(d) and (e),(f), respectively. The other parameters are the same
as those in Fig. 3(a). The size of the blue (solid) and red (empty)
dots represent the degree of localization at the left and right zigzag
terminations, respectively.

polarized QAH/QVH phase. The band structure of the zigzag
nanoribbon in this phase is plotted in Figs. 5(a) and 5(b).
For the spin up electron, the total Chern number is −2, so
that the bulk state is in the QAH phase. Two pairs of gapless
chiral edge states appear in the zigzag nanoribbon, as shown in
Fig. 5(a). For the spin down electron, the valley Chern number
is two, so that the bulk state is in the QVH phase. Two pairs of
valley-Hall edge states appear, as shown in Fig. 5(b), which is
consistent with the absolute value of the Chern number [78].
The valley-Hall edge states corresponding to K and K′ valleys
are connected with the same valence (conduction) bands, so
that the direct band gap is finite [79]. As the irradiation with
E0 = 16.5 V/nm being turned on, the Chern numbers are
switched to be (−1, 0, 1, 0). For each spin, the total Chern
number is the same as the valley Chern number. The total
Chern numbers of the two spins have opposite sign. One pair
of chiral edge states appears in the band structure of the zigzag
nanoribbon for each spin, as shown in Figs. 5(c)–5(f). The
chirality of the chiral edge states of the two spins is opposite
to each other.

The band structure of the topological edge states can be
tuned by changing the incident angle of the optical field. As
θ = 0, the bands of the edge state have a segment of flat band
near the Fermi level, as shown in Figs. 5(c) and 5(d). The
band structure has van-Hove singularities, so that the density
of state become nearly infinite at the corresponding energy
level. As θ = π/2, the bands of the edge states become nearly
linearly dispersive in a large range of momentum near the K

FIG. 6. The same plot as those in Fig. 5, except that the gated
voltage is V = 77.5 meV, and the amplitude of the irradiation is E0 =
19 V/nm in (c)–(f).

point, as shown in Figs. 5(e) and 5(f). In this case, the density
of states near the Fermi level is nearly a constant as of energy.
The tuning of the density of state by changing θ could be
measured by the pump-probe setup in experiment [65]. As
the frequency of the probe light is resonant to the energy
level with van-Hove singularity, the optical absorption could
be enhanced [80,81].

If the gated voltage is changed to be V = 77.5 meV, the
corresponding bulk states are in the phase regime with Chern
number being (−1, 1, 1, 1) or (−1, 0, 0, 0), as the amplitude
of the irradiation equates to E0 = 0 V/nm or E0 = 19 V/nm,
respectively. Similar to the previous case, in the absence
of the irradiation, the bulk state is in the spin-polarized
QAH/QVH phase. The corresponding band structures in the
zigzag nanoribbon are shown in Figs. 6(a) and 6(b). In the
presence of the irradiation, only the K valley of the spin up
band has a nonzero Chern number. Thus, the corresponding
bulk state is in the spin-polarized QAH phase. Only one pair
of gapless chiral edge states appears in the band structure
of spin up electron in the zigzag nanoribbon, as shown in
Figs. 6(c)–6(f). As θ = 0, the energy level of the van-Hove
singularities of the spin up electron is very close to the Fermi
level, while that of the spin down electron is near the edge
of the insulating band, as shown in Figs. 6(c) and 6(d). The
van-Hove singularities near the Fermi level could enhance the
spin-polarized carrier concentration, which in turn increases
the electrical conductivity. The properties could be applied to
improve the performance of an optospintronic device based
on BLG nanoribbon [82]. As θ = π/2, the band crossing of
the chiral edge states of spin up electron has nearly linear
dispersion near the K point. The tuning of the spin depen-
dent conductivity could be measured in a quantum tunneling
photoconductive device [58] (Fig. 6).
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IV. CONCLUSION

In conclusion, the presence of horizontally incident circu-
lar polarized optical field could modify the band structure and
topological phase of the BLG in antiferromagnetic van der
Walls spin valves. The high frequency expansion of the Dirac
fermion model reveals that the irradiation effectively changes
the interlayer hopping, which in turn tunes the physical prop-
erties of the Floquet states. The spin-polarized QAH phase
with Chern number being one is found, which has one pair
of spin-polarized chiral edge states. By changing the incident

angle of the optical field, the band gap of the trivial edge states
can be tuned; van-Hove singularity could be generated in the
dispersion of the chiral edge states.
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