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in silver nanoparticles with electron energy-loss spectroscopy measurements
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Raza et al. recently observed the extraordinarily large energy blueshifts of localized surface plasmon
resonances and additional surface plasmon resonances in silver nanoparticles encapsulated in silicon nitride
[S. Raza, S. Kadkhodazadeh, T. Christensen, M. D. Vece, M. Wubs, N. A. Mortensen, and N. Stenger, Nat.
Commun. 6, 8788 (2015)], which are not fully understood yet. By using the quantum model consisting of two
subsystems, respectively, for describing the center of mass and intrinsic motions of conduction electrons of
a metallic nanosphere and a coupling occurring between the center of mass and conduction electrons outside
the metallic nanosphere, we first deduced the general energy and line broadening size dependence of localized
surface plasmon resonances, which removes the divergent defect of usual 1/R size dependence. Second, we
proposed that the additional surface plasmon resonance in a metallic nanosphere originates from the transition
of the first excited state to the ground state of the center-of-mass subsystem with energy levels corrected
by degenerate-state pairs of the system composed of the center of mass and intrinsic motions of conduction
electrons. Then, we implemented this generation mechanism of additional surface plasmon resonances for
silver nanoparticles encapsulated in silicon nitride, and the calculated results are consistent with experimental
results. Furthermore, we obtained an energy expression of localized surface plasmon resonances, with which
we successfully explained the extraordinarily large energy blueshifts of localized surface plasmon resonances
in few-nanometer silver nanoparticles encapsulated in silicon nitride. Finally, we calculated the localized and
additional surface plasmon resonance energies of silver nanoparticles resting on carbon films, and the calculated
results perfectly explain the experimental measurements of Scholl et al. [J. A. Scholl, A. L. Koh, and J. A.
Dionne, Nature (London) 483, 421 (2012)]. Within this quantum model, the optical properties of metallic
nanoparticles are completely determined by degenerate-state or nearly degenerate-state pairs of the system
composed of the center-of-mass and intrinsic motions of conduction electrons. Our calculations also show
that additional surface plasmon resonances play almost an equal role as localized surface plasmon resonances
for metallic nanoparticles excited by fast-moving electrons.
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I. INTRODUCTION

Apart from the bulk plasmon resonance, the conduction
electrons in a metallic nanoparticle (NP) support another,
more important, self-sustaining collective oscillation, which is
the well-known localized surface plasmon resonance (LSPR),
and endow metallic NPs with particular abilities, such as
local electromagnetic field rapid oscillation inside metallic
NPs, colossal enhancement of local electric fields, extreme
sensitivity to dielectric environment variations, and squeezing
light beyond the diffraction limit [1,2]. These specialities of
LSPRs render the manipulation of visible light waves at the
nanoscales possible. Various applications continue to flourish
in many areas, such as surface-enhanced Raman scattering [3],
improvement of light confinement of photovoltaic devices [4],
single-molecule detection [5], single-photon generation, and
potential applications for quantum information transfer [6]
and compact laser-driven accelerators [7]. It has also found
applications in biochemistry and biomedical fields, such as
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biosensing [8], drug delivery [9], and cancer photother-
apy [10]. Recently, real-space and real-time observations of
a plasmon-induced dissociated reaction of a single dimethyl
disulfide molecule have been realized [11].

Paralleling with the explorations of deep physics of LSPRs,
unique findings and ideas continue to emerge. Marinica et al.
proposed a mechanism to actively control the optical re-
sponse of metallic NPs by applying an external dc bias
across a narrow gap [12]; Guzzinati et al. probed the sym-
metry of LSPRs with phase-shaped electron beams [13];
Roller et al. showed that coherent ultrafast nondissipative
energy transfer could take place between two gold NPs
with an interspaced silver island [14]. Such advances are
boosted by the development of powerful nanoscale charac-
terization techniques. Nowadays, electron energy-loss spec-
troscopy (EELS) combined with an electron monochromated
and aberration-corrected scanning transmission electron mi-
croscopy is able to achieve energy resolution even down
to 9 meV and ångström spatial resolution in the studies
of individual plasmonic structures or dynamic imaging of
clusters of a few atoms [15–19]. High energy and spatial
resolutions of EELS in a scanning transmission electron

2469-9950/2021/103(19)/195417(12) 195417-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7932-6067
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.195417&domain=pdf&date_stamp=2021-05-14
https://doi.org/10.1038/ncomms9788
https://doi.org/10.1038/nature10904
https://doi.org/10.1103/PhysRevB.103.195417


GUOZHONG WANG PHYSICAL REVIEW B 103, 195417 (2021)

microscope also allow the studies of vibrational modes in
nanostructures [20].

The LSPRs strongly depend on size, shape, tempera-
ture, material, and dielectric environment [21–25], which
provides multiple variables tailorable for various applica-
tions. Silver nanostructures are ideal for plasmon studies
owing to low intrinsic losses, narrow LSPR linewidths, and
large optical field enhancements [15]. For metal silver, the
fully occupied 4d bands described as a polarizable medium
modify the frequency of the classical Mie plasmon reso-
nance from ωM = ωp/(1 + 2εm)1/2 to ωM = ωp/[Re (εd ) +
2εm]1/2 [26,27], where ωp = (4πρee2/m)1/2 is the plasmon
frequency of bulk metal, εm and εd , respectively, the dielectric
constant of the environment and complex dielectric function
of 4d bands; while e, m, and ρe are the electron charge, mass,
and density, respectively. The localized 4d electrons fail to
fully screen conduction electrons outside NPs, which prevails
over the spill-out effect of conduction electrons and tends to
blueshift the LSPR energies. Many different experiments have
confirmed the LSPR energy blueshifts of silver NPs in various
dielectric environments [28–31]. It is obvious that atomic
configurations in the vicinity of the surface and spill-out effect
of conduction electrons become more and more prominent
with the particle size decreasing, which causes the optical
properties of metallic NPs to be size dependent.

From the classical limited mean-free path effect or the
calculation of dielectric constant of silver particles by using
quantum methods, the LSPR linewidth is usually described
by γ (R) = γ0 + g vF /R [29,32–36], where R, vF , and γ0 are
particle radius, Fermi velocity, and intrinsic linewidth. The
dimensionless g is considered to be a constant, however,
quite different values of g were obtained from experimental
data and theoretical models [22,37]. The LSPR line broaden-
ing of metallic NPs is the result of exciting single particles
into electron-hole states, which is the well-known Landau
damping mechanism [36,38]. By using the generalized non-
local optical response (GNOR) model, Mortensen et al.
obtained a positive term 1/R2 for line broadenings and fre-
quency shifts [39,40]. Based on experimental data [30], the
self-energy approach for particle polarizability [41], and dis-
persion relation corrected by the spatial spreading of induced
charge [42], the energy shifts of LSPRs were found to obey
the same 1/R size dependence. However, this 1/R law suffers
from the divergent defect for few-nanometer metallic NPs.

It has been well established that the LSPR is the dominant
response mode for metallic NPs with radii less than 200 nm
to external light excitation [22,43–45]. By using EELS, Raza
et al. recently observed additional surface plasmon resonances
(ASPRs) for silver NPs encapsulated in silicon nitride with
radius range from 4 nm up to 20 nm [46], which were in-
terpreted as the combined effect of many multipole surface
plasmon resonances. While the ASPR disappearance of silver
NPs with radii below 4 nm was ascribed to the decreasing of
EELS signals from high-order modes. The measured ASPR
energies of individual silver NPs do not have a constant value,
and the multipole mode combination viewpoint of ASPRs
fails to yield a feasible ASPR energy calculation method.
Furthermore, except for the dipole surface plasmon resonance,
there are no other individual multipole modes observed in
their experiments.

Raza et al. also observed an extraordinarily large LSPR
energy blueshift ∼0.9 eV when the particle radius decreases
from 4 nm to 1 nm [46]. Scholl et al. observed an energy
blueshift ∼0.5 eV for individual ligand-free silver NPs resting
on carbon films [47], and a similar result was also observed
for silver NPs dispersed on a silicon nitride substrate [48].
While the negligible energy blueshifts ∼0.25 eV appeared for
silver NPs embedded in solid Xe, Ar, and C2H4 [29,30]. These
experimental results show that the LSPR energy blueshifts
of silver NPs strongly depend on their surroundings. Be-
sides the screening effect of 4d electrons and the spill-out
effect of conduction electrons, it is believed that the stronger
quantum confinement, single-particle excitations, nonlocal
response, and numerous structural surface defects are the pos-
sible factors jointly determining the energy blueshifts of silver
NPs [21,43]. To understand the extraordinarily large LSPR
energy blueshifts of silver NPs is an arena to test various mod-
els or theories. To the best of our knowledge, all theoretically
predicted energy blueshifts of silver NPs are systematically
less than experimental results [31,48].

Nowadays, the understanding of LSPR energy shifts of
metallic NPs is still poor. Quantitative predictions require the
full consideration of quantum effects, which become more
and more important with the particle size decreasing. The
time-dependent density functional theory (TD-DFT) offers
the possibility to address the optical response of plasmonic
systems at the quantum ab initio level [49,50]. However, the
TD-DFT becomes computationally prohibitive because their
computational cost grows as fast as O(N3), such that their
reach is limited to systems with a few thousands of electrons,
where N is the total number of conduction electrons contained
in nanostructures. The semiclassical hydrodynamic Drude
models (HDMs) deal with differential equations of macro-
scopic particle density and current density rather than single
electron orbitals gaining the advantage of numerical efficiency
compared with TD-DFT, which manifests the HDMs as a
promising tool suitable to study the optical properties of large
plasmonic structures. By adding the second-order conduction
electron density gradient correction, the von Weizsäcker func-
tional, to the Thomas-Fermi kinetic functional, such HDMs
are called quantum hydrodynamic theories (QHTs) in the
literature, and the hard-wall boundary condition of HDMs
can be removed and the spill-out effect can be considered.
For example, the self-consistent QHT is able to give accurate
ground-state and excited-state properties of an inhomoge-
neous electron gas [51]. By assuming electrons in different
states mutually collide, a viscous stress tensor yielding a dy-
namical correction to the kinetic energy functional is expected
to play the role of the Landau damping mechanism [52]. It is
believed that QHTs combined with suitable electron ground-
state density are able to compete with the TD-DFT [53].
However, it is still challenging to build a QHT compatible
with all experimental findings [54].

If the optical properties of metallic nanostructures with
simple configurations were known, it would be helpful to
understand the optical properties of multiscale plasmonic sys-
tems composed of these simple blocks, such as the dimmers
made from two closely coupled metallic nanowires and the
honeycomb lattices of metallic NPs [55,56]. Therefore, a thor-
ough understanding of basic systems can facilitate the design
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of highly sophisticated plasmonic nanostructures with desired
optical properties.

In this paper, we will use a quantum model specially con-
structed for metallic nanospheres to solve some unfathomed
problems associated with silver NPs.

II. THE QUANTUM MODEL

For metallic NPs, the ionic cores can be treated as a uni-
form positively charged background according to the jellium
model [57], which is extensively adopted in numerous theoret-
ical models, such as TD-DFT [58], the matrix random-phase
approximation method [59], and field theory of quantum plas-
monics [60]. Due to strong quantum confinement, conduction
electron states are quantized into discrete levels. For a metallic
nanosphere containing N atoms with radius R encapsulated in
the medium with dielectric constant εm, based on the jellium
model one can construct a quantum model by separating the
conduction electron coordinates into the coordinate of cen-
ter of mass and the relative coordinates (SCRM). The total
Hamiltonian HT of the SCRM can be expressed as the sum of
two sub-Hamiltonians HC and Hr , respectively, for describing
the collective and intrinsic motions of conduction electrons,
and the coupling Hc between the center of mass and con-
duction electrons outside the nanosphere, they, respectively,
are [61,62]

HC =
∑

{n} (n + 1/2)h̄�pb̂†b̂, Hr =
∑

{α}εα ĉ†
α ĉα,

Hc = A(b̂† + b̂)
∑

{α,β}dαβ ĉ†
α ĉβ, (1)

where b̂† and b̂ are the creation and annihilation operators
of harmonic oscillator and their definitions can be found
in Ref. [63]; the εα and ĉ†

α (ĉα) are the eigenenergies and
creation (annihilation) operators associated with one-body
eigenstates |α〉 determined by the effective potential Veff con-
fining conduction electrons. The sub-Hamiltonian HC has
the standard harmonic oscillator structure with the frequency
�p = ωs

√
1 − Nout/N , where ωs is the unique input parameter

of the SCRM and slightly varies around the classical Mie
resonance frequency ωM due to numerous surface structural
defects, Nout the number of conduction electrons outside the

nanosphere, and the coefficient A = e2

4πε0R3

√
h̄N

2m�p
. The matrix

element dαβ calculated between two states |α〉 and |β〉 of Hr

is [63]

dαβ = 〈α|ξz(R3/| �ξ |3 − 1)�(| �ξ | − R)|β〉,

where �(x) is the Heavyside step function, �ξ the relative coor-
dinates of conduction electrons. To construct the SCRM, the
electrostatic potential between a single electron and the ionic
background is expanded to the second order of the coordinate
of the center of mass, which is the only approximation in
the SCRM. Because the magnitude of the displacement of
the center of mass of conduction electrons is much less than
the particle size, the SCRM is in essence quite precise to study
the optical properties of metallic NPs.

Within the mean-field approximation, the energy levels and
corresponding wave functions of conduction electrons can be

obtained by solving the Kohn-Sham equation,[
− h̄2

2m
∇2 + Veff(| �ξ |)

]
ψα ( �ξ ) = εαψ ( �ξ ), (2)

where the effective potential Veff, usually including ionic
background potential, Hartree potential, and exchange and
correlation potentials, can be obtained by local density ap-
proximation calculation [57,63]. The quantum states of the
total Hamiltonian HT can be expressed as |I, α〉, where I and
α are the quantum numbers, respectively, characterizing the
states of the center of mass and intrinsic motions of conduc-
tion electrons. Within the SCRM, the expression of the LSPR
frequency is easily derived from perturbation theory and the
result is [63]

�q(R) = �p(R) + 2A2

h̄

∑
{αβ}Fα fβ

|dαβ |2εβα

ε2
αβ − (h̄�p)2

, (3)

where the sum is over all the nondegenerate state pairs
{|0, α〉, |1, β〉} of the total Hamiltonian HT with 0 < εα −
εβ = εαβ �= h̄�p and the corresponding |dαβ | �= 0; fβ =
1/(1 + e(εβ−μ)/kBT ) the Fermi-Dirac distribution; T , kB, and
μ the electronic temperature, the Boltzmann constant, and the
chemical potential, respectively. We define Fα = 1 − fα . The
conduction electron energy levels explicitly appear, especially
in the denominator of Eq. (3), and negligible changes of en-
ergy levels would yield non-negligible deviation. Therefore,
Eq. (3) is too sensitive to the energy levels of conduction
electrons to be virtually useful unless precise enough energy
levels of conduction electrons are obtained by strictly solving
Eq. (2).

The line broadening of LSPRs caused by the Landau damp-
ing mechanism is [63]

h̄γ (R) = 2πA2
∑

{αβ}Fα fβ |dαβ | 2δ(εαβ − h̄�p), (4)

where δ(εαβ − h̄�p) is Dirac’s δ function representing the
condition of energy conservation.

For a sodium nanosphere containing 1760 atoms, the LSPR
frequency and line broadening calculated by using the SCRM
are perfectly consistent with the results of TD-DFT calcula-
tions [61], which indicates that the SCRM is really reliable to
study the optical properties of metallic NPs.

III. THE LSPR ENERGY SIZE DEPENDENCE

The LSPR energy and linewidth are of crucial significance
in many applications and intrinsically limit the optimiza-
tion of nanosized optical devices involving metallic NPs.
Within the SCRM, the LSPR energy shift and line broad-
ening are determined by the energy states of conduction
electrons and the input parameter ωs, which include all ef-
fects of material, shape, size, dielectric environment, and
surface details, such as facets and vertices [64]. The en-
ergy levels and wave functions of conduction electrons can
be obtained, in principle, by solving Eq. (2). Thus, the
effective potential of conduction electrons plays a central
role in the optical properties of metallic NPs. However,
the real effective potential confining conduction electrons
is so complex that to obtain precise enough energy levels
and numerical wave functions from Eq. (2) is extremely
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FIG. 1. (a) Surface plasmon resonance energies (blue crosses) measured in the EELS experiment for silver NPs dispersed on a silicon
nitride substrate [48]. The fitting function is h̄�q(R) = 3.25 − 3.46/R + 51.56/R2 − 117.51/R3, which is indicated by the green line.
(b) Measured linewidths of localized surface plasmon resonances (red crosses) of individual silver NPs coated with a silica shell [22]. The
fitting function is h̄γ (R) = 1.14 − 47.39/R + 729.06/R2 − 3428.79/R3, which is indicated by the blue curve.

time-consuming and quickly becomes prohibitive with the
particle size increasing, which is the very reason for the
exploration of other calculation schemes without resorting to
single energy levels and wave functions.

Equations (3) and (4) show that the size dependences of
the LSPR energy shift and line broadening are determined by
the product of matrix elements |dαβ |2 and the coefficient A2

and have the same form. Within the SCRM, the general size
dependence of LSPR energies and linewidths can be derived
and the expression is [65]

f (R) = f0 + E

R
+ K

R2
+ S

R3
. (5)

Besides the first two terms, two high order terms of 1/R
arise, which completely originate from quantum effects and
are able to eliminate the divergent defect of the usual size
dependence 1/R for tiny metallic NPs. The constant f0 is the
intrinsic linewidth γ0 or the classical Mie plasmon resonance
frequency ωM . Following the usual expression of the coeffi-
cient E = g1vF , the coefficients K and S can be, respectively,
expressed as g2v

2
F
/ωM and g3v

3
F
/ω 2

M
. Because the classical Mie

frequency ωM includes the main influence of dielectric envi-
ronments, we can expect that g1, g2, and g3 are approximate
constants without dimensions.

Figure 1 shows the fits of Eq. (5) to measured plasmon
energies of silver NPs dispersed on a silicon nitride sub-
strate [48] and linewidths of individual silver NPs coated with
a silica shell [22]. The fitting curves are able to globally
describe the experimental data, especially for the linewidths
in Fig. 1(b). The large energy spread of plasmon resonances
shown in Fig. 1(a) is related to the fact that part of the ex-
perimental data are ASPR energies and the ASPR and LSPR
energies do not obey the same size dependence.

The optical properties of metallic NPs are extremely sensi-
tive to the surface atomic configurations. The chemical control
of surface layers via ligand exchange could yield abnormal

optical response behaviors [66], which shows that the electron
density tail plays a crucial role in the optical response of
metallic NPs. In deducing Eq. (5), the possible chemical bond-
ing processes occurring between the surface atoms of metallic
NPs and external molecules, which is able to dramatically
alter the spatial distribution of conduction electron density
tail, interfacial dielectric constant, and the effective potential,
were not considered. Therefore, Eq. (5) cannot describe the
LSPR size evolution behavior of metallic NPs in complex
chemical environments.

IV. THE ASPRS OF METALLIC NPS

The ASPR was first identified as a surface mode for a semi-
infinite metal by Bennett with hydrodynamic equations [67],
and appeared in microscopic calculations for sodium parti-
cles [41,58]. However, the generation mechanism of ASPRs is
still unclear so far, and many quite different viewpoints of AS-
PRs exist. For examples, Raza et al. regard the ASPR in silver
NPs as the merger of many multipole modes [46]; Liebsch be-
lieved that the ASPR is the excitation that has dipolar angular
character but with an additional node in the radial distribution
of the dynamical surface screening charge compared to that
of the principal Mie plasmon oscillation [41]; while Tsuei
et al. deemed the ASPR the resonance in the electron-hole pair
spectrum and no longer bearing purely dipolar character [68].
Unlike the LSPRs, the ASPRs have neither been extensively
investigated nor attracted much attention until recently.

It is surprising that there exists a simple generation mecha-
nism of ASPRs within the SCRM. For a degenerate-state pair
{|0, α〉, |1, β〉} with εα ∼ h̄�p + εβ , the perturbation energy
correction to states |0, α〉 and |1, β〉 is easy to calculate and the
result is ±A|dαβ | for |0, α〉 and ∓A|dαβ | for |1, β〉. Because
the sub-Hamiltonian HC describes the collective motions of
all conduction electrons, the perturbation energy correction to
each state of a degenerate-state pair is virtually the correction
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to states of HC . It seems that these two sets of energy correc-
tions to the ground state |0〉 and the first excited state |1〉 of
HC with opposite signs would offset each other and produce
zero results. However, the positive energy correction A|dαβ | to
the ground state |0〉 would increase the collective oscillation
energy of conduction electrons, which violates the principle
that the ground state of a system would have the energy as
low as possible. Therefore, the ultimate result of perturbation
energy correction of the degenerate state pair {|0, α〉, |1, β〉}
is −A|dαβ | for the ground state |0〉 and A|dαβ | for the first
excited state |1〉. Thus, all degenerate-state pairs would yield
a new surface plasmon resonance with the energy given by the
expression

h̄�a(R) = h̄�p(R) + 2A
∑

{αβ}Fα fβ |dαβ |, (6)

where the sum is over degenerate-state pair set {|0, α〉, |1, β〉}.
It is natural to think of this new surface plasmon resonance as
the ASPR because in metallic NPs there only exist three kinds
of plasmon resonances, namely, the LSPR, ASPR, and bulk
plasmon resonance.

For a metallic NP with radius R less than 20 nm encapsu-
lated in homogeneous dielectric medium, the single-particle
effective potential Veff determining quantum states of con-
duction electrons is not only complex but hard to obtain.
Compared with Eq. (3), the energy levels and wave func-
tions of conduction electrons only indirectly appear in Eq. (6)
through distribution functions and matrix elements, which
indicates that Eq. (6) is much less sensitive to energy levels
of conduction electrons.

It has been shown that most of the energy levels and wave
functions of the Schrödinger equation with a Woods-Saxon-
like potential are almost the same as those of the spherical
potential well of finite depth [69], and the observable differ-
ence between corresponding energy levels of two potentials
focuses on the energy levels well above the Fermi energy.
However, the contribution of states with high energy levels to
Eq. (6) is suppressed by the Fermi-Dirac distribution factor.
On the other hand, the wave functions of spherical potential
well of finite depth decay slightly faster well outside the
metallic nanosphere than those of Woods-Saxon-like potential
well. However, the deviations of matrix elements calculated
by using wave functions of the spherical potential well of
finite depth from precise results are negligible for not-very-
small nanospheres. Therefore, the spherical potential well
of finite depth equal to the sum of Fermi energy and work
function is able to substitute for the complex single-particle
effective potential to calculate the ASPR energy of a metallic
nanosphere.

There are no quantum states strictly satisfying the con-
dition εα = εβ + h̄�p, thus the main obstacle to calculate
the ASPR energies by using Eq. (6) is how to single out
all degenerate-state pairs from possible quantum states |0, α〉
and |1, β〉. The energy levels of conduction electrons can be
broadened out according to the formula [70]

E (ε, εα ) = 2

π

√
εT εα

(ε − εα )2 + 4εT εα

, (7)

where εT = (h̄k0)2/2m, and k0 = 0.13N−1/3Å−1. Thus, the
width of an energy level changes from zero to 2

√
4εT εα .

FIG. 2. The ASPR energy of silver NPs encapsulated in homo-
geneous silicon nitride versus the particle radius. Blue crosses and
red squares, respectively, denote measured ASPR energies displayed
in Fig. 5 of Ref. [46] and calculated ASPR energies. The first
two measured ASPR energies perfectly correspond to the calculated
LSPR energies indicated by black empty circles. The blue squares
of the lower panel denote the values of the input parameter h̄ωs for
corresponding silver NPs.

We define truly degenerate-state pairs (TDSPs) and nearly
degenerate-state pairs (NDSPs) responsible for ASPR ener-
gies and LSPR energy shifts as state pairs with energies,
respectively, satisfying∣∣h̄�p − ∣∣εαβ

∣∣∣∣ � A|dαβ | (8)

and ∣∣h̄�p − ∣∣εαβ

∣∣∣∣ � (
√

4εT εα + √
4εT εβ ) . (9)

According to the SCRM, the ASPRs originate from the
degenerate-state pairs of the system. To test this view-
point, we calculated the ASPR energies of silver NPs
encapsulated in silicon nitride under the same settings
of experiments done by Raza et al. [46]. The conduc-
tion electron temperature is fixed at the room temperature
T = 300 K in all our calculations, and the Mie plasmon
resonance frequency is calculated by using the measured
frequency-dependent complex dielectric function of 4d band
for bulk silver εd (ω) = (59.8 + 55.1i)(ω/ωp)2 − (40.3 +
42.4i)(ω/ωp) + (10.05 + 8.06i) [48]. By taking the experi-
mental value 3.3 of environment dielectric constant εm [46],
we obtained the Mie plasmon resonance energy h̄ ωM =
2.8076 eV. The calculated and measured ASPR energies are
exhibited in Fig. 2, which shows a good agreement between
calculated and experimental results. Thus, we can prelim-
inarily conclude that both the generation mechanism and
calculation scheme of ASPRs based on the SCRM are reason-
able. For large silver NPs, Fig. 2 shows explicit discrepancies
between calculated and measured ASPR energies, which con-
tradicts with the predictive capability of the SCRM that,
the larger the metallic NPs, the better the calculated results.
These discrepancies occurring for large silver NPs, in turn,
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FIG. 3. The LSPR energy of silver NPs encapsulated in sili-
con nitride versus the particle radius. The blue crosses and red
pentagrams, respectively, denote measured LSPR energies by Raza
et al. [46] and calculated LSPR energies. The green curve indicates
the fitting function h̄�q(R) = 2.7534 + 2.4960/R − 1.3177/R2 −
0.6452/R3 of Eq. (5) to calculated LSPR energies. The blue squares
of the lower panel denote the values of the input parameter h̄ωs for
corresponding silver NPs. In this experimental settings, the input
parameter h̄ωs remains almost invariable for different silver NPs.

show that the perfect agreement between four calculated and
four experimental ASPR energies in the middle of Fig. 2 is
somewhat coincidental. The first two measured ASPR ener-
gies of silver NPs with radii 4.44 nm and 5.94 nm on the
left side of Fig. 2 are not consistent with calculated ASPR
energies. However, these two measured surface plasmon res-
onances can be explained as the LSPRs.

In principle, the SCRM generation mechanism of AS-
PRs predicts the existence of ASPRs for almost all the
metallic NPs. Because there are no or few TDSPs for few-
nanometer metallic NPs, the ASPR energies normally shift
from high ASPR energies of large metallic NPs to low en-
ergies [∼h̄�p(R)], according to Eq. (6). This behavior of
ASPRs naturally explains the experimental observation that
the ASPRs in few-nanometer silver NPs encapsulated in sil-
icon nitride fail to be observed at the high-energy region
containing the ASPRs of large silver NPs [46]. Whether or not
the ASPRs in few-nanometer metallic NPs are experimentally
observable strongly depends on the intensity ratio of ASPRs
to background signals. The ASPR energies ∼2.80 eV in silver
NPs with radii 4.44 nm and 5.94 nm, and ∼3.11 eV for silver
NPs with radius 3.0 nm were observed, which are shown
in Fig. 3 and are mistaken for the LSPR energies by Raza
et al. [46]. These experimental results are consistent with the
SCRM predictions.

However, the SCRM generation mechanism of ASPRs
does not exclude the occasional appearance of ASPRs with
large resonance energies for few-nanometer metallic NPs with
special sizes. Actually, for the silver NPs encapsulated in sil-
icon nitride with radius R ∼ 2.62 nm and the input parameter
h̄ωs ranging from 2.795 eV to 2.822 eV, the ASPR energies
vary from 3.23eV to 3.29eV even larger than those of large

silver NPs. Small sodium clusters with special sizes are also
able to support the ASPRs shown by the surface loss function
and dynamical polarizability calculated, respectively, by using
time-dependent density-functional approach and local-density
approximation method [41,58], which indirectly shows that
the SCRM generation mechanism of ASPRs in metallic NPs
is reasonable.

When the radius of metallic NPs increases from a few
nanometers to tens of nanometers, the ASPR energy gen-
erally increases from ∼h̄�p(R) to high ASPR energies of
large metallic NPs. When the particle radius further increases
to macroscopic sizes, how does the ASPR in metallic parti-
cles evolve? Figure 2 shows that the ASPRs in silver NPs
with macroscopic sizes seem to remain the ASPR ener-
gies of large silver NPs. However, according to the SCRM
generation mechanism, the size dependence of ASPR ener-
gies determined by the coefficient A and matrix elements
|dαβ | calculated between degenerate-state pairs varies with
the particle radius as ∼1/

√
R [65]. Therefore, the ASPR

together with the LSPR in metallic NPs would evolve into
the classical Mie surface plasmon resonance with the par-
ticle size increasing to macroscopic sizes. This evolving
mode of surface plasmon resonances is also given by the
classical electrodynamics combined with the measured di-
electric function for metallic particles excited by fast-moving
electrons [71,72].

The large energy spread of surface plasmon resonances
for silver NPs resting on different substrates was observed in
EELS experiments [47,48]. Besides shape variations, facets,
and the interaction between particles and the substrates, it is
undoubted that the ASPRs play a significant role in measured
large energy spreads of surface plasmon resonances.

V. THE LSPR ENERGY SHIFTS

Precise EELS experiments explicitly show that the LSPR
energies of few-nanometer silver NPs shift to higher energies
by remarkable deviations from the classical Mie surface plas-
mon resonance energy [46–48]. The EELS measurements also
indicate that the blueshifts of LSPR energies toward higher
energies are not purely monotonic but with a greater variety
in peak locations when the particle size decreases to few
nanometers. Both relatively small amplitude and monotonic
behavior of LSPR energies predicted by known theories and
models show that the LSPR energy shift of metallic NPs
is poorly understood, and the extraordinarily large energy
blueshifts for small silver NPs have not been satisfactorily in-
terpreted so far [31,47,48]. If extremely powerful computation
ability were possessed in the future, the TD-DFT would yield
the LSPR energies of metallic NPs perfectly consistent with
experimental measurements. Likewise, once the sufficiently
precise energy levels and wave functions were available, we
also believe that the frequency expression Eq. (3) would pro-
duce correct results of metallic NPs. However, Eq. (3) is too
sensitive to conduction electron energy levels to produce the
correct results by using the energy levels of the spherical
potential well of finite depth. Fortunately, Eq. (3) can be
transformed into an alternative form by some mathematical
manipulations, which greatly lowers its sensitivity to con-
duction electron energy levels. The new expression of LSPR
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FIG. 4. The surface plasmon resonance energy versus the particle diameter. The blue, red, and green squares, respectively, denote measured
plasmon energies by Scholl et al. [47], calculated energies of LSPRs and ASPRs. The black squares denote the values of the input parameter
h̄ωs for corresponding silver NPs. For clarity, all data are depicted in two plots, (a) and (b).

energies is (detailed derivation see Appendix)

h̄�q(R) = h̄�p(R) ± πA2

τ

∑
{αβ}

( fβ − fα )|dαβ |2, (10)

where the signs + and −, respectively, for the LSPR en-
ergy blueshifts and redshifts; the sum is over NDSPs with
εα > εβ and dαβ �= 0. However, there are a small number
of NDSPs not contributing to the LSPR energies expressed
in Eq. (10), and such NDSPs should be excluded [73]. For
silver NPs encapsulated in silicon nitride, we calculated the
LSPR energies of silver NPs, which are measured by Raza
et al. in the EELS experiments [46]. All the calculated LSPR
energies and experimental counterparts are exhibited in Fig. 3.
Nevertheless, for silver NPs with radii larger than 2.58 nm,
our calculated results are not consistent with measured ones.
We think that this inconsistency is induced by the improper
identification of the LSPRs and ASPRs and their energies
from EELS spectra [46]. For silver NPs with radii smaller than
2.58 nm, only LSPRs were observed in the EELS spectra,
and our calculated results are perfectly consistent with experi-
mental measurements naturally explaining the extraordinarily
large LSPR energy blueshifts measured by Raza et al. for few-
nanometer silver NPs [46]. Furthermore, we found that our
calculated LSPR energies are well described by the general
LSPR energy size dependence Eq. (5), which is also shown
in Fig. 3. It is obvious that the measured LSPR energies by
Raza et al. for silver NPs encapsulated in silicon nitride shown
in Fig. 5 of Ref. [46] failed to obey this rule, which should
perfectly follow the size dependence of LSPR energies.

To further test the SCRM generation mechanism of ASPRs
and the LSPR calculation formula Eq. (10), we calculated
the LSPR and ASPR energies of individual silver NPs rest-
ing on carbon films, which were first studied in the EELS
experiments by Scholl et al. [47]. Although metallic NPs
encapsulated in a homogeneous dielectric medium and rest-
ing on substrates are quite different experimental settings,

the theoretical treatments are the same. The background of
metallic NPs of the former situation is described by a constant
permittivity, while the latter situation being inhomogeneous
could be described by an effectively constant permittivity. The
constant or effective constant permittivity determines the clas-
sical Mie resonance energy of metallic NPs. We noticed that
the larger the particle size, the smaller the influence of carbon
films on the effective dielectric constant εm. Therefore, we
can expect that the input parameter h̄ωs for silver NPs resting
on carbon films would exhibit a larger variation amplitude
than that of silver NPs encapsulated in homogeneous silicon
nitride. According to the proposed effective dielectric constant
εm = 1.69 [47], the corresponding Mie plasmon resonance
energy h̄ ωM = 3.373 eV is even larger than the measured
LSPR energies of silver NPs with diameters ∼20 nm. Because
the LSPR energy of silver NPs blueshifts with the particle
size decreasing, this proposed effective dielectric constant is
obviously unreasonable. In our calculations, the input param-
eter h̄ωs varies in the range 3.0 eV < h̄ωs < 3.085 eV. The
calculated energies of LSPRs and ASPRs are shown together
with measured results in Fig. 4. Most of the measured plasmon
resonances (blue squares) perfectly correspond to either cal-
culated LSPRs (red squares) or ASPRs (green squares). There
also exists another situation. For a silver NP with special
sizes, the calculated peak locations of the LSPR and ASPR
happen to be so close to each other that they virtually merge
into one peak and are indistinguishable in EELS experiments.
We found that three measured plasmon resonances could be
perfectly explained as such merged peaks, which are indicated
by arrows in Fig. 4. We found that in this EELS experiment
by Scholl et al., more than half the measured surface plasmon
resonances are ASPRs for silver NPs with the particle diam-
eter ranging from 3.2 nm to 12 nm. Beyond this range, all
measured plasmon resonances can be explained as LSPRs.

When a silver NP has a diameter less than 2.0 nm, con-
duction electrons have considerable possibility to stay outside
the silver NP. To substitute the spherical potential well of
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finite depth for the effective potential confining conduction
electrons begins to deteriorate, which is the reason why the
first calculated LSPR energies of Figs. 3 and 4 are explic-
itly smaller than experimental results. Therefore, within the
SCRM, one has to use more precise energy levels and wave
functions of conduction electrons to calculate LSPR energies
of metallic NPs with radii below 1.5 nm.

Much larger LSPR energy blueshifts from 0.8 eV to 1.2 eV
appeared in our calculations for silver NPs resting on carbon
films with diameters in the ranges 3.26 nm < D < 3.32 nm
and 3.44 nm < D < 3.50 nm.

VI. DISCUSSION

By using the SCRM, we obtained the general size de-
pendence of LSPR energies and linewidths for metallic NPs
encapsulated in homogeneous medium. Besides the LSPR and
volume plasmon resonance, the ASPR is another significant
surface plasmon resonance of metallic NPs. Based on the
SCRM, we proposed that the ASPR of a metallic nanosphere
originates from all the TDSPs of the system composed of the
center-of-mass and intrinsic motions of conduction electrons.
Then, we implemented this SCRM generation mechanism
of ASPRs in silver NPs encapsulated in silicon nitride and
explained the ASPRs measured by Raza et al., which shows
that the SCRM generation mechanism of ASPRs is reason-
able. The ASPRs in metallic NPs are completely induced
by quantum effects and would evolve into the classical Mie
plasmon resonance when the particle size increases to macro-
scopic sizes. The SCRM generation mechanism shows that the
ASPRs in metallic NPs almost always exist. For few-
nanometer metallic NPs, the ASPRs generally do not disap-
pear but shift their peak locations to low energy region ∼h̄�p,
which is supported by measured ASPR energies (∼2.8 eV) of
silver NPs encapsulated in silicon nitride with radii 4.44 nm
and 5.94 nm.

Within the SCRM, the LSPR of a metallic NP is deter-
mined by the transition from the first excited state |1〉 to the
ground state |0〉 of the center of mass of conduction electrons
with these two energy levels corrected by all nondegenerate
states of the system. There are no essential differences be-
tween the origins of the LSPR and ASPR in metallic NPs.
Therefore, it is somewhat strange that LSPRs can be excited
by both lights and fast-moving electrons, while the ASPRs can
only be excited by fast-moving electrons. To the best of our
knowledge, there are indeed no reports of ASPRs observed
in experiments by using lights to excite plasmon resonances.
There are several possible reasons for the ASPRs unobserved
in the light excitation experiments, such as relatively low ex-
perimental precision, the light energy range being too narrow
to cover LSPR and ASPR peaks, or the peak locations of the
ASPR and LSPR being too close to be distinguished. It is well
known that the LSPR energies of sodium NPs redshift, while
the ASPR energies generally blueshift. Therefore, it seems
most likely to observe the ASPRs in light excitation experi-
ments of sodium NPs encapsulated in transparent medium.

It is usually considered that the optical properties of metal-
lic NPs are functions of the particle size. For silver NPs
resting on a silicon nitride substrate with the same size, the
EELS measurements show that the amplitude and linewidth

of the surface plasmon resonances can vary from particle
to particle [48]. Within the SCRM, it is natural to regard
the LSPR and ASPR energies and line broadenings as the
functions of the particle radius R and input parameter h̄ωs.
In a general way, the input parameter h̄ωs can be expressed
as h̄ωs = h̄ωM [1 − δεm/(Re(εd ) + 2εm)], where the quantity
δεm, the deviation from the dielectric constant εm of the di-
electric medium encapsulating metallic NPs, can be further
expressed as δεm = δεc + δεd + δεs, and these three terms
are, respectively, induced by atomic configurations in the
vicinity of surfaces, shape deviation from perfect spheres, and
effects related to the size of individual metallic NPs. The first
two terms in the expression of δεm generally exist, but the third
term δεs depends on experimental settings. For metallic NPs
encapsulated in a homogeneous medium, the first two terms
δεc and δεd are the main effects causing the input parameter
h̄ωs to be different from the Mie surface plasmon resonance
energy h̄ωM , while for metallic NPs resting on a substrate, the
inhomogeneous dielectric environments and the interactions
between metallic NPs and the substrate render the term δεs

significant, which is the reason why the variation amplitude
of the input parameter for silver NPs resting on carbon films
is evidently larger than that of silver NPs encapsulated in
silicon nitride. It is obvious that the input parameter h̄ωs has
different values for different metallic NPs even with the same
size leading to different TDSP and NDSP sets through h̄�p

according to Eqs. (8) and (9), which would yield different en-
ergies and line broadenings of LSPRs and ASPRs. The larger
the variation of the input parameter, the larger the variation
of LSPR and ASPR energies and line broadenings, which
naturally explains the experimental observations that the plas-
mon resonances of silver NPs resting on carbon films have
a larger energy spread than that of silver NPs encapsulated
in silicon nitride. To explain the measured optical properties
of metallic NPs by using the SCRM, besides the sensitivity
to particle sizes it is necessary to consider the sensitivity of
optical properties to the input parameter h̄ωs.

The primordial LSPR frequency formula Eq. (3) is ex-
tremely sensitive to energy levels of conduction electrons.
However, the sufficiently precise energy levels of conduction
electrons of a not-very-small metallic NP are unavailable in
most cases. Fortunately, it is possible to transform Eq. (3)
into an alternative form, which greatly lowers the sensitiv-
ity to the conduction electron energy levels. The calculated
LSPR energies of silver NPs encapsulated in silicon nitride
are not consistent with measured results except for silver NPs
with radii below 2.58 nm. We think that this inconsistency
occurring for not-very-small silver NPs originates from the
inaccurate identification of LSPR and ASPR energies from
EELS spectra. However, our calculated results perfectly ex-
plain the large energy blueshifts of few-nanometer silver NPs
encapsulated in silicon nitride measured by Raza et al.

We also calculated the LSPR and ASPR energies of silver
NPs resting on carbon films, which were studied by Scholl
et al. We found that the ASPRs play an important role in
accounting for experimental observations. Almost all mea-
sured surface plasmon resonances can be explained well by
the calculated LSPRs or ASPRs, while few of the measured
surface plasmons correspond to the merged resonance peaks
composed of the LSPR and ASPR with similar energies of
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individual silver NPs. Besides the appearance of ASPRs,
the dielectric environment of silver NPs resting on carbon
films changing with particle sizes is an important reason for
large energy spreads of measured surface plasmon resonances.
Our calculated results of silver NPs being consistent with
experimental measurements further indicate that the SCRM
generation mechanism and calculation scheme of ASPRs are
quite reasonable and the LSPR energy shifts of metallic NPs
can be calculated by using Eq. (10). We also found much
larger energy blueshifts for silver NPs resting on carbon
films with particle diameters in the ranges of 3.26 nm < D <

3.32 nm and 3.44 nm < D < 3.50 nm, which is about twice
as large as the LSPR energy blueshifts (∼0.5 eV) observed by
Scholl et al.

For silver NPs with radii less than 1.5 nm, our calculated
LSPR energies begin to be explicitly less than the measured
ones, which shows that the spherical potential well of finite
depth is no longer appropriate to substitute for the effective
potential Veff. However, the optical properties of metallic NPs
with radii less than 1.5 nm can be studied by using TD-DFT.
For metallic NPs with radii larger than 20 nm, the calculations
based on the SCRM are no longer time-saving. However, the
optical properties of large metallic NPs can be studied by
other models or theories, such as GNOR model and various
QHTs. Therefore, the SCRM could serve as a bridge linking
TD-DFT for very small metallic NPs with numerous models
or theories for large metallic NPs.

Our calculated results have shown that within the SCRM,
the optical properties of metallic NPs are completely deter-
mined by the TDSPs and NDSPs of conduction electrons,
which play a central role in our calculations. To the best of our
knowledge, there are no precise definitions for the NDSPs and
TDSPs in the literature. We defined them by Eqs. (8) and (9),
which works well going with the spherical potential well of
finite depth to calculate the optical properties of metallic NPs
with radii in the range 1.5 nm < R < 20 nm.

APPENDIX: DERIVATION OF EQ. (10)

In this Appendix, we will derive the alternative form of
Eq. (3). For two given energy levels εα and εβ with 0 <

εα − εβ �= h̄�p and the corresponding |dαβ | �= 0, the contri-
bution of the energy level pair {εα, εβ} to the second part
G(R) = �q(R) − �p(R) on the right side of Eq. (3) is well
over that of energy level pair {εβ, εα} due to the Fermi-Dirac
factor. Therefore, for each energy level pair {εα, εβ} involved
in the summing part of Eq. (3), we are allowed to include
the contribution of energy level pair {εβ, εα} to LSPR energy
shifts. This procedure symmetrizes the energy-level indices of
G(R), and the result is

G(R) = 2A2

h̄

∑
{αβ} ( fβ − fα )

|dαβ |2εβα

ε2
αβ − (h̄�p)2

. (A1)

Then, by introducing a small characteristic energy τ > 0 of
εαβ and changing h̄�p to ih̄�, where i is the imaginary unit
(i2 = −1), we can approximate the summing of G(R) over
energy level pairs by the integral

G(R) ≈ 2A2

h̄τ

∫ Z

0
( fβ − fα )

|dαβ |2εαβ

ε2
αβ + (h̄�)2

dεαβ, (A2)

where Z equals to the sum of the work function and Fermi
energy. We extend the integral lower limit −Z and a factor
1/2 emerges, and we change the integral variable εαβ to ζ .
Thus, Eq. (A2) becomes

G(R) ≈ A2

h̄τ

∫ Z

−Z
( fβ − fα )

|dαβ |2ζ
ζ 2 + (h̄�)2

dζ . (A3)

We further impose on the factor ( fβ − fα )|dαβ |2 suitable prop-
erties beyond the interval (−Z, Z ), that the integral limits
can be extended to ±∞ without causing explicit variation of
the integral value. Finally, we analytically continue the factor
( fβ − fα )|dαβ |2 to whole complex plane. Thus, Eq. (A3) can
be cast into the expression

G(R) ≈ A2

h̄τ

∫ ∞

−∞
( fβ − fα )

|dαβ |2ζ
ζ 2 + (h̄�)2

dζ , (A4)

which can be calculated by using the residue theorem. There
are two singular points ±ih̄� in the integrand, and the corre-
sponding residues are the same: ( fβ − fα )|dαβ |2/2. Therefore,
the integrated result of Eq. (A4) is

G(R) ≈ ±i
πA2

h̄τ
( fβ − fα )|dαβ |2. (A5)

The plus and minus signs, respectively, correspond to the
semicircular integration contours surrounding the upper and
lower complex planes.

At high temperatures, the Fermi-Dirac distribution is
turned into the Boltzmann distribution. Thus, the factor ( fβ −
fα ) in Eq. (A5) near the singular points can be approximated
by

fβ − fα ≈ eμ/kBT ζ

kBT
≈ ±ieμ/kBT h̄�

kBT
. (A6)

We need to change h̄� back to h̄�p, namely, h̄� → −ih̄�p,
thus ( fβ − fα ) would obtain an extra factor −i leading to
Eq. (A5) becoming real, and the result is

G(R) ≈ ±πA2

h̄τ
( fβ − fα )|dαβ |2, (A7)

which shows that in this expression of LSPR energy shifts,
only energy-level pairs of conduction electrons satisfying the
conditions εαβ = h̄� and |dαβ |2 �= 0 matter. Considering that
there may be more than one energy-level pair satisfying these
two conditions, we should sum over all such energy-level pairs
and the final result is

h̄�q(R) ≈ h̄�p(R) ± πA2

τ

∑
{αβ}

( fβ − fα )|dαβ |2, (A8)

where the plus and minor signs, respectively, denote blue and
red energy shifts of LSPRs.

We emphasize that the ( fβ − fα ) proportional to ζ or εαβ

in the vicinity of any one analytical point generally holds.
As long as ( fβ − fα ) being the complex function of ζ is
analytic at a point ζ0, we can approximate it by the first two
terms of the Taylor series near this point, that is, ( fβ − fα ) ≈
a0 + a1(ζ − ζ0) = (a0 − a1ζ0) + a1ζ , where a0 and a1 are
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constants. It is obvious that when the variable ζ changes to
−ζ , ( fβ − fα ) would change to −( fβ − fα ) as well, which re-
quires (a0 − a1ζ0) to be zero. Thus, ( fβ − fα ) is proportional
to ζ near this analytical point.

The LSPR energy shift G(R) could be further expressed as

h̄G(R) ≈ ±πA2( fβ − fα )|dαβ |2δ(εαβ − h̄�p). (A9)

Compared with the expression of LSPR line broaden-
ing Eq. (4), the magnitude of LSPR energy shift of a
not-too-small metallic NP is about half its LSPR line
broadening.

The characteristic energy τ (∼ |�εαβ | ∼ �εα + �εβ) nat-
urally takes the minimal value of the set {√4εT εα + √

4εT εβ}
of all NDSPs.
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