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Computational physics and chemistry are called to play a very important role in the development of new tech-
nologies based on two-dimensional (2D) materials, reducing drastically the number of trial and error experiments
needed to obtain meaningful advances in the field. Here, we present a thorough theoretical study of the structural
and electronic properties of the single-layer, double-layer, and bulk transition metal dichalcogenides MoS2,
MoSe2, MoTe2, WS2, WSe2, and WTe2 in the 2H phase, for which only partial experimental information is
available. We show that the properties of these systems depend strongly on the density functional theory approach
used in the calculations and that inclusion of weak dispersion forces is mandatory for a correct reproduction of
the existing experimental data. By using the most accurate functionals, we predict interlayer separations, direct
and indirect band gaps, and spin-orbit splittings in those systems for which there is no experimental information
available. We also discuss the variation of these properties with the specific chalcogen and transition metal atom.
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I. INTRODUCTION

The isolation of monolayer graphene by micromechani-
cal exfoliation [1] can be considered a milestone in material
sciences. Since then, scientists have invested a lot of effort
in studying layered materials, whose fundamental 2D units
stick together by Van der Waals (VdW) forces. A plethora
of stable 2D materials have been proposed [2,3], and more
than 150 have been already synthesized [4] since 2004. These
materials can be used as building blocks of new Van der
Waals heterostructures, whose properties can be tailored by
carefully choosing the blocks (and their order) to suit a spe-
cific technological demand [5]. This new scenario poses a
new challenge for theoreticians: to describe the properties
and potential industrial applications of possible 2D materials
even before they are synthesized [2]. This scenario renders the
research in materials science and engineering much faster and
more affordable economically, because it allows for the identi-
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fication of the promising heterostructures (and discarding the
unpromising ones) anticipating the synthesis step, which is,
usually, the most arduous and time consuming part of the
research. In this context, it is of paramount importance to
have a faithful description of the properties of the simulated
materials, keeping low the computational costs.

Density functional theory (DFT) within the Kohn and
Sham formulation is a reliable and efficient method to treat
many electron problems, thus giving access to a computa-
tionally affordable modeling strategy to describe many-atoms
systems such as large molecules and solids [6]. Being centered
on the description of the electrons, DFT results have proved
to be very reliable for systems in which the chemical bonding
has a prevalent covalent nature, whereas the approximated
way in which DFT treats the electron correlation had the
shortcoming of making it struggle with systems in which weak
dispersion forces have the leading bonding role, due to the
improper description of the mutual dynamical charge polar-
ization of the atoms. Several corrections to the original DFT
formulation have been introduced to mitigate this problem.
Some of them rely on the use of more elaborate, often ad-hoc,
exchange-correlation functionals [7–12], while others result
from the inclusion of additional terms in the total energy of
the system [13–20]. These corrections, usually named van
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der Waals (vdW) corrections, have become very relevant in
the description of the structural and electronic properties of
layered materials. Furthermore, vdW-DFT approaches have
already shown a good performance in describing the proper-
ties of graphene, graphene-based materials [21–23], and other
more complex 2D materials [24–26], although the identifica-
tion of the most appropriate functional or correction is still a
matter of active research. Hence, the study of the performance
of these approaches with transition metal dichalcogenides
(TMD) is of paramount importance.

Transition metal dichalcogenides are a distinguished class
of layered materials. TMDs are constituted by a transition
metal (M) and a chalcogen (X), an element of group VI of
the periodic table, appearing with an MX2 stoichiometry. Bulk
TMDs are made of triatomic layers, the 2D building blocks,
stuck together by dispersion forces, which make them easy to
exfoliate to form single and few-layer films. Many transition
metals have shown their ability to form TMDs with sulfur,
selenium, or tellurium. Depending on the M-X combination,
several stable and metastable phases can be observed, each
one characterized by specific properties (see, e.g., Refs. [27]
and [28] and references therein). Some TMDs are insula-
tors or semiconductors, whereas others are metallic; some
of them have the capability to turn superconducting when
cooled down to low temperatures or can even exhibit topolog-
ical phases. For these reasons, single-layer TMDs constitute
a very powerful tool kit for material engineering, as they
give access to unlimited possibilities for the properties of the
heterostructures.

Another very remarkable characteristic of TMDs is the
high sensitivity of their properties to stress and strain, which
stems from the high sensitivity of their band structure to
changes in the crystallographic parameters [29–33]. This
phenomenon, which enriches even further the possible tech-
nological applications of these materials, turns out to be a
real challenge for theoreticians, since a small error in deter-
mining the lattice constant can result in huge differences in
the predicted band structure and, ultimately, lead to wrong
predictions of the physical properties. Furthermore, even for
fixed values of the lattice constant, the electronic properties
of single-layer TMDs are also very sensitive to the adopted
modeling method. The 1T’ phase of WTe2 can be used as
a very representative example of this phenomenon. This 2D
material was first reported as metallic from calculations mak-
ing use of the PBE exchange-correlation functional plus spin
orbit corrections [34], whereas a later study using a hybrid
functional [35] and a similar lattice constant reported a sizable
band gap. It is important to mention that high-quality predic-
tions can, in principle, be achieved for single-layer TMDs by
using hybrid functionals or post DFT methods, such as the
GW one [36]. However such approaches are computationally
very costly for systematic studies and, in practice, they are
prohibitively expensive when large supercells have to be used
to match the periodicity of the material. This is the case, e.g.,
of multilayer TMDs. For this reason, in this work we will limit
ourselves to DFT approaches.

All the above points to the need to carry out, as a prelim-
inary step, systematic studies of the available state-of-the-art
DFT methods to identify the most appropriate ones for the
description of the structure and electronic properties of TMDs.

FIG. 1. 2H phase of TMDs. (a) The metal atom sits at the center
of a right triangular prism, with the chalcogen atoms at the vertices.
(b) Top view of the single-layer TMD with a possible choice of
the in-plane lattice vectors a1 and a2, whose length is the in-plane
lattice constant a. (c) Side view of the bulk TMD; the red-dashed line
highlights the basic two-layer unit, which is repeated periodically in
the vertical direction, with an out-of-plane lattice constant c; several
other length definitions used in the text are also highlighted.

In this work, we have performed such a detailed study for the
case of the single-layer, double-layer, and bulk TMDs MoS2,
MoSe2, MoTe2, WS2, WSe2, and WTe2 in the 2H phase. Our
results complement those of Refs. [37–40], which focused on
bulk layered materials, by expanding the set of analyzed meth-
ods and quantifying their error in predicting the properties
of 2D forms (single layer and double layer) of 2H TMDs.
By using the most accurate functionals, which are identified
by direct comparison with the available experimental data,
we predict lattice constants, interlayer separations, direct and
indirect band gaps, and spin-orbit splittings for those systems
where there is no experimental information available. We
predict simple trends in the calculated properties and provide
numerical data for all considered systems in order to con-
tribute the increasing number of materials science databases
created in the last few years (see, e.g., Ref. [41]).

II. THE 2H PHASE OF TMDs

We will focus our study on the hexagonal (2H) phase of
TMDs, in particular, we will analyze materials containing
sulfur, selenium, or tellurium as chalcogen, and molibdenum
and tungsten as transition metal. As shown in Fig. 1(a), in the
2H phase of a TMD the metal atoms are located at the center
of a triangular right prism forming six coordination bonds
with the chalcogen atoms located in the vertices of the prism.
The single-layer 2H-TMD is made of three atomic layers,
organized in two interpenetrated triangular sublattices, which
give rise to a graphenelike honeycomb structure [Fig. 1(b)].
For the double layer, two TMD single layers are piled on top
of each other in the so-called eclipsed AA’ stacking, in which
the M atom of the top layer is place directly above the X
atom of the bottom layer, and vice versa. The AA’ stacking
has been reported to be the most stable one for MoS2, MoSe2,
WS2, and WSe2 double layers [42]. This double-layer unit is
periodically repeated in the out-of-plane direction to obtain
the 2H phase of bulk TMDs. The out-of-plane lattice vector
(of length c) is perpendicular to the TMD plane [Fig. 1(c)].
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FIG. 2. (a) Band structure and DOS of a single-layer MoS2 as obtained in this work, using the TS method and including SO corrections
(see Sec. III). The displayed energy window includes the highest (in energy) valence bands and the first few lowest conduction bands; in the
DOS, the fundamental gap of the system �E is highlighted. In (b) a zoom of the energy region close to the Fermi level (located in the middle
of the band gap) is given; the dashed lines correspond to the band structure obtained without SO corrections; the arrows define the possible
direct and indirect band gaps (legend in the bottom right corner). In (c) the 2D first BZ is shown highlighting (green line) the path used for the
band plot and the high symmetry points; the gray shaded region represents the irreducible 2D wedge of the first BZ.

The 2H phases of TMDs are semiconducting materials,
characterized by a band gap of the order of 1–2 eV [43–47].
As an example, in Fig. 2, we show the band structure and
the density of states of a single-layer MoS2, as obtained in
this work by a DFT approach using the PBE functional [48]
plus the Tkatchenko-Scheffler (TS) correction [16,17] and
including the spin orbit (SO) coupling. In Fig. 2(b), we zoom
in on the band structure, focusing on the bands close to the
Fermi level to highlight some typical features of this material,
which are common to other TMDs in the 2H phase. A lot
of information can be gained by analyzing the highest-energy
valence band (hereafter HVB) and the lowest-energy conduc-
tion band (LCB). The HVB has two maxima at the � and K
points of the 2D Brillouin zone (BZ)—these maxima are very
close in energy. The LCB has two minima, also very close in
energy, at the K and T points of the BZ. Interestingly, the en-
ergy position of these features depends strongly on structural
factors such as the lattice constant, the number of TMD layers,
the thickness of each TMD layer, or the interlayer distance.
This complex mixture of minima and maxima gives rise to
interesting optical properties for the single- and few-layer
TMDs. For example, the single-layer 2H MoS2 presents a
direct band gap (at the K point), whereas the double layer
and the bulk material present an indirect band gap [29,49].
Furthermore, for this material, it has been shown that the size
and nature (direct or indirect) of its band gap can be modified
by applying external pressure, i.e., by inducing stress and
strain to its lattice [29–33].

An interesting feature of 2H-TMDs is the lack of inver-
sion symmetry. This fact has a direct effect on the electronic
bands, which are spin split due to the spin-orbit (SO) coupling

[27]. The splitting reaches its maximum in the HVB at the
K point—the distance in energy between the spin split states
(�SO) can be used as a measure of the strength of the SO
in the material. Also interesting is the fact that in the band
structure of the double-layer TMD the HVB at the K point
is expected to have degeneration 2, which is lifted by the
interlayer interaction. Thus, the splitting of these two elec-
tronic levels (before taking into account SO corrections) can
be used as a measure of the interaction between the layers in
the double-layer TMDs.

III. THEORETICAL METHODS

All the calculations have been carried out using DFT within
the PAW formalism [50], as implemented in the VASP code
[51–53]. We have adopted a 400 eV energy cutoff for the
plane-waves basis, using a total energy threshold of 10−6 eV
for the self-consistent field calculations. The reciprocal space
sampling was carried out using an unshifted 18 × 18 × 1
Monkhorst-Pack grid [54], for slab calculations, and 18 ×
18 × 7 for bulk calculations, which, taking advantage of the
symmetry operations, resulted in 37 and 148 k points, re-
spectively, in the irreducible wedge of the BZ. In all slab
calculations, we have adopted an interslab distance of at least
20 Å to ensure negligible influences between the system repli-
cas. All the geometry optimizations were carried out until
the maximum force acting on the atoms was less than 0.005
eV/Å. For the optimized structures, we have run an additional
single-point energy calculation including the SO correction to
obtain the band structure and the density of states (DOS). In
such runs, the lattice symmetry was switched off and the full
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BZ was sampled with a total of 324 and 2268 k points in slab
and bulk calculations, respectively.

Several choices have been adopted for the exchange and
correlation energies. We have carried out calculations without
including vdW corrections using the local density approxima-
tion (LDA) exchange-correlation functional as parametrized
by Ceperley and Adler [55], and the generalized gradient
approximation (GGA) exchange-correlation functional [56] in
the PBE parametrization [48]. To incorporate vdW corrections
to the PBE functional, we have carried out calculations using
the empirical Grimme D2 correction [13] (D2), the Grimme
D3 correction, with [15] (D3-BJ) and without [14] (D3)
Becke-Johnson damping, the original Tkatchenko-Scheffler
correction [16,17] (TS), the Tkatchenko-Scheffler method
with iterative partitioning of the Hirshfeld charges [18] (TS-
iter), and the exchange-hole based correction of Steinmann
and Corminboeuf [19,20] (dDsC). We have also used sev-
eral nonlocal exchange-correlation functionals designed to
explicitly include the effect of weak dispersion forces [7], in
particular the DF functional [8], developed by Dion et al. [9],
and subsequent modifications, specifically the DF2 functional
of Langreth and Lundqvist [10] and the rev-DF2 functional by
Hamada [11]. We have also used the three available opt-vdW
functionals [57], namely opt-PBE-vdW, opt-B88-vdW, and
opt-B86b-vdW (shortened as optPBE, optB88, and optB86b,
respectively) and the SCAN+rVV10 (shortened as SCAN)
functional by Peng et al. [12].

IV. RESULTS

A. Single-layer 2H TMDs

1. Structural parameters

We have computed in-plane lattice constants of single-
layer TMDs, in the 2H phase, using the DFT approaches
described in Sec. III. To accomplish this task, given a method,
for each material, we have run several geometry optimiza-
tions, in which the coordinates of all the atoms were left
free to relax whereas the in-plane lattice constant value was
chosen in a relevant length range. Doing so, we obtain the total
energy of the optimized structure as a function of the lattice
constant, which can be fitted using a model function [58]
to obtain the best value for the in-plane lattice constant and
the in-plane Bulk modulus (B2D). The values for the lattice
constant, the 2D bulk modulus, and the band gap obtained
for the six single-layer TMDs considered in this work are
collected in Tables I–VI (see Appendix C 1). In these tables,
we also provide other relevant computed quantities and the
experimental values when available. Figures give an overview
of these results.

In Fig. 3, we compare with the experiments the numerical
values of the optimized lattice constants resulting from the
different methods. Since the 2H phase is not the equilibrium
configuration of WTe2, there are no experimental values avail-
able for this system. One can see that the different methods
have a similar performance for the six single-layer TMDs.
A closer look at the plots reveals that the LDA functional
systematically underestimates the lattice constant, which is
not surprising due to the well-known overbinding nature of the
LDA functional. The PBE functional gives reasonably good

FIG. 3. Comparison of the in-plane lattice constant a resulting
from the different methods used in this work with the available ex-
perimental values (Expt.) [44,59–61] for the six single-layer TMDs.

results, even though it slightly overestimates the experimental
values by roughly 1% on average. Both the LDA and the
PBE predictions are in fairly good agreement with the ones
reported in previous theoretical works (see, e.g., Refs. [62]
and [36]). The discrepancy between PBE and experimental

FIG. 4. 2D bulk modulus (B2D) for the six single-layer TMDs.
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FIG. 5. Comparison of the layer thickness �X resulting from
the different methods used in this work as obtained for the single-
layer (red diamonds), double-layer (blue hollow squares), and bulk
(green hollow circles) for the 2H TMDs. In all the subfigures the
available experimental values (Expt.) [44,59,61] for the single layer
are reported for comparison.

values is, in general, mitigated by applying a vdW correction
method, among which we single out the Grimme D3 methods
and the Tkatchenko-Scheffler corrections as the ones that tend
to predict most accurately the lattice constants of the TMDs
studied here. As for the nonlocal functionals, the DF and DF2
methods systematically overestimate the lattice constants, be-
ing the two methods that show the largest distance from the
experimental values. Much better results are obtained with
the rev-DF2 functional, whereas among the “opt” functionals,
the best results are obtained with the optB86b-vdW func-
tional. It is important to mention that, for the LDA, PBE,
PBE+correction, and SCAN methods, the inclusion of the
SO coupling in the optimization of the lattice constants does
not lead to any appreciable change, while for the nonlocal
functionals used in this work the resulting values are in worse
agreement with the experiments (see Appendix B).

In Fig. 4, we report the values of the 2D bulk modulus
(given in N/m), calculated as described in Appendix A, for
all methods considered in this work. From this figure, we
observe that, regardless of the applied method, the bulk mod-
uli obtained in this work underestimate by roughly a factor
2 the experimental values for MoS2 (171 N/m) and WS2

(177 N/m), the only ones available in the literature [63].
This underestimation is due to the phenomenological model
function used to obtain the bulk modulus, which is designed
to describe 3D bulk materials (see Appendix A). Much more
accurate modeling is needed to describe the elastic properties
of 2D materials [64]. Furthermore, it is well known that DFT

FIG. 6. Direct band gaps at the K point (red bars) and indirect
band gap between the K and � points (blue bars), as obtained without
including the SO coupling; in each panel the horizontal grid line
marks the position of the experimental value of the direct band gap
[46,67–71], when available.

approaches fail to provide accurate values for the elastic prop-
erties of semiconductors [65]. Nonetheless, the comparison
of the bulk moduli provided in Fig. 4 is very informative,
because this quantity gives information on the energy needed
to induce a change in the structural parameters of the mate-
rial. In practice, it influences the choice of the final in-plane
lattice constant of an interface made of different materials
when lattice constant matching is required, which is the usual
situation in periodic DFT approaches. Focusing on the results,
we observe similar plots for the different materials, with the
exception of the D2 method that shows an erratic behavior,
proving that the different approaches predict similar trends for
the different materials. In particular, we observe that the LDA
and the SCAN functionals tend to yield the highest values of
the bulk modulus, whereas the DF and DF2 functionals yield
the lowest values.

Another important quantity is the layer thickness �X , de-
fined as the vertical distance between the chalcogen atoms
of each single layer [see Fig. 1(c)], since it determines, with
the in-plane lattice constant, the critical interatomic distances.
The values of �X for the single layer, as calculated with the
different methods, are reported in Fig. 5 (red diamonds). In
this case, in contrast with the in-plane lattice constant and the
bulk modulus, the results of the different approaches generally
agree with each other, within a maximum spread of ∼1.5%.
Furthermore, looking at the experimental values for this
quantity, we find that all the approaches tend to give a reason-
ably good prediction, since the maximum relative difference
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between the experimental and calculated values is never
higher than 2%. Once again, the DF and DF2 approaches tend
to give the highest values of �X , whereas LDA and SCAN
give the lowest ones.

2. Electronic properties

In Fig. 6, we show the calculated direct (at the K point)
and indirect (between the � and K points) band gaps, and
we compare them with the experimental values of the di-
rect band gap, when available. In general, all methods tend
to slightly underestimate the band gaps for all the TMDs
studied here, with the exception of MoTe2, for which most
of the methods seem to predict an accurate value. The LDA
functional tends to give the highest values for both direct and
indirect gaps for all the materials, whereas the DF and DF2
methods give the lowest values. We point out that the relative
difference between the highest values of the gaps, predicted
by the LDA functional, and the lowest ones, predicted by
the DF2 functional, is as high as 25%. Another important
result is related to the relative values of the direct and indirect
gaps. From Fig. 6, we can see that, for all the materials, the
ratio is not constant and depends strongly on the adopted
method. This fact is especially relevant in MoS2 and WS2,
for which, in some cases, the predicted value of the indirect
band gap is lower than the direct one. This result reveals
that different choices for the modeling of the van der Waals
interaction may cause a different prediction of the general
physical properties of the material. In fact, some approaches
predict that the TMDs of the form XS2 are indirect band-gap
semiconductors, instead of direct band-gap semiconductors.
It is important to point out that including the SO coupling in
the band structure calculations results in an overall reduction
of all the gaps, with the direct gaps being mostly reduced, as
a consequence of the large band splitting in the HVB at the
K point. We can then observe that the inclusion of the SO
coupling results in a worse numerical prediction of the band
gap, emphasizing that more sophisticated theories are needed
for a correct description of this quantity. On the other hand,
the SO coupling restores [66] the correct physical nature of
the single-layer S-containing TMDs, as it predict them to be
direct gap semiconductors.

At this point, it is worth considering the relative spread
of the predicted data for the three quantities analyzed so far.
In the case of the lattice constant, we observe that in the
worst case (DF2 functional), the discrepancy is of the order
of 4–5%, whereas, in general, the computed values show a
relative spread around the experimental value of the order of
1–2%—such discrepancies, usually, are acceptable in DFT
calculations. For the bulk modulus, we have found a spread of
±15% around the numerical average, hence the relative spread
of the predicted values for the bulk modulus is much higher
than for the lattice constant. This wider range could lead to
serious errors when interfaces are modeled. Finally, a similar
window of predicted values is also observed for the band gap,
in which we witness the interplay of two effects. On one hand,
the different exchange-correlation functionals predict differ-
ent band structures, which result in different band gaps. On the
other hand, the different functionals predict different values of
the lattice constant, which, due to an inherent property of the

FIG. 7. Band structure of MoS2 along the M�KM BZ path, as
calculated by the TS method, without taking into account the SO
coupling, for eight different values of the lattice constant a in the
3.05–3.30 Å range.

2H phases of the TMDs, gives rise to strong modifications
of the band structure and ultimately to different values of the
band gaps. As an example of this phenomenon, in Fig. 7 we
show the calculated band structure for MoS2, using the TS
method, for different values of the lattice constant. In this
figure, we observe noticeable variations of the dispersion of
different bands, even though the lattice constant was chosen in
a interval within a 5% distance from the experimental value.
Furthermore, the HVB and LCB are the most affected bands,
evidencing that different values of the lattice constant results
in noticeable differences in the band gap values. Finally, we
observe that the band modifications are not rigid shifts, hence
in addition to the variation of the band gap different choices
of the lattice constant change also the nature of MoS2, from a
direct gap semiconductor to an indirect gap semiconductor.

The possibility of changing the value of the band gap,
and the band gap nature, from direct to indirect, in MoS2,
by inducing structural deformations was already predicted
[29,30] and subsequently observed experimentally [31–33].
How this fact affects the prediction of the band gap obtained
by different exchange correlation functionals is further inves-
tigated in Fig. 8, in which we plot the direct and indirect band
gaps as a function of the lattice constant for MoS2. In this
figure, we display results for (i) LDA, which underestimate
the lattice constant; (ii) DF2, which highly overestimate it;
(iii) PBE, which slightly overestimate it; and (iv) TS, which
predict the experimental value. The four plots reveal a com-
plex behavior of the direct and the indirect band gaps when
the lattice constant increases. Both the direct gap, �EK−K and
the indirect gaps, �EK−� and �ET −� , decrease with a, even
though they exhibit different decreasing rates. The decrease
of �EK−� is the fastest, whereas the decrease of �ET −� is
the slowest. On the contrary, the indirect band gap �ET −K

increases with a. As a consequence, the indirect band gap
�ET −K has the lowest value for small values of a. We can also
observe that, in a small range of values of the lattice constant
a, the material behaves as a direct band gap semiconductor,
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FIG. 8. Direct and indirect band gaps as a function of the lattice
constant, for four different methods analyzed in this work. Three
different indirect band gaps are considered. In each panel, the hor-
izontal grid line marks the experimental value of the direct band gap,
whereas the vertical grid lines mark the experimental (Expt.) and the
calculated (Cal.) values of the lattice constant, as predicted by each
method.

with the gap at K . Finally, for large values of a, the indirect
band gap �EK−� is the lowest gap. The different dependence
(increasing or decreasing, with a different rate of change) of
each band gap on the value of the lattice constant appears
to be independent on the modeling method. This fact could
be correlated to the different orbital composition of the wave
function of each band at the different points in the BZ [72].
Nevertheless, a comparative look at the four plots in Fig. 8
shows that the different methods lead to overall different
predictions. For instance, depending on the method, we find
that the different functions cross at different values of a. In
summary, regardless of the applied functional or correction
method, we see that the value of the lattice constant plays
a key role in determining the value of the band gap and the
direct-band-gap or indirect-band-gap semiconductor nature of
the material.

B. Double-layer 2H TMDs

The very important feature of vdW correction methods
or vdW functionals is their capability to describe chemical
binding of dispersive nature. Therefore, such methods should
be more appropriate to investigate multilayer TMDs. To inves-
tigate this issue, we have first studied a double layer of each
of the analyzed TMDs, which can be considered the simplest
system for which one can test the interlayer interaction of
single-layer TMDs. To set up the double-layer calculations,
we use the unit cell as described in Sec. II and fix the in-plane
lattice constant to the optimized values as obtained in the
single-layer calculation (hence we use different values of a for
the different methods). In test calculations we verified that the
optimized in-plane lattice constant for the double layer differs
by a maximum of 0.01 Å from the value of the single layer
(see Appendix D). Given these initial conditions, we optimize
the position of all the atoms.

FIG. 9. Interlayer distance (�L) for the double-layer TMDs as
obtained with the different methods.

The relevant quantities are collected in Tables VII–XII
(Appendix C 2). A visual representation of the interlayer spac-
ing (�L) is given in Fig. 9. We can identify some trends in
the performance of the different approaches that are common
to all TMDs. For all TMDs, the PBE functional predicts the
highest value of the interlayer separation �L. This result
highlights the well-known fact that the PBE functional is not
appropriate to describe a situation in which the interaction has
a leading vdW nature. The DF, DF2, and optPBE-vdW func-
tionals also predict high values of the interlayer separation. On
the other hand, the LDA and D3-BJ yield the lowest values.
Finally, it is worth pointing out that even if we discard the
predictions of the PBE functional, we, once again, find a pretty
wide range of predicted data, with the relative difference be-
tween the highest predicted values and the lowest ones of the
order of 15–20%. This last observation is in striking contrast
with what happens to the thickness of each layer, �X , in the
double layer (see Fig. 5). Indeed, we find that all the methods
tend to give a value of �X within a ∼2% of relative spread.
Furthermore, regardless of the modeling method, the values
for the double layers are very similar to those for the single
layers. Hence, the discrepancies between the methods is much
stronger in the quantities related to interlayer interactions.

Turning our attention to the electronic properties of the
double layers (see Fig. 10), we find that, in general, all the
methods predict the double layer TMDs to be indirect gap
semiconductors, in agreement with what it is reported in the
available experimental studies [46,67,71]. Interestingly, there
are a few notable exceptions, namely the PBE and DF func-
tionals, which predict a direct fundamental gap for some of
the materials. In general, we witness once again a correlation
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FIG. 10. Direct band gaps at the K point (red bars) and the
minimum indirect band gap K-� (blue bars), T -K (orange bars), and
T -� (green bars) as obtained without including the SO coupling for
the double-layer TMDs. In each panel the horizontal grid lines mark
the position of the experimental value of the fundamental (black) or
direct (red) band gaps [46,67,71] when available.

between the structural properties and the electronic properties,
observing that the methods that predict a large �L tend to
predict close values for the direct and indirect band gaps,
with some cases in which the direct band gap is lower than
the indirect one. Figure 10, in which we also distinguished
the different indirect band gaps, provides a clear evidence
of the sensitivity of HVB energies at the K and � points,
which depend strongly on the interlayer interaction. A similar
argument holds for the minima in the LCB, which are located
at the K and T points of the BZ. Hence, a slight variation in the
arrangement of the atoms, due to the chosen DFT approach,
results in a shift of the band features and of the BZ points
responsible for the minimum indirect band gap. Finally, from
Fig. 10, we observe that all the employed DFT approaches
underestimate the gap with respect to the experimental values
for MoS2, WS2, and WSe2, the only materials for which
experimental data are available.

C. Bulk 2H TMDs

To complete our study, we have assessed the performance
of the different vdW approaches to describe the properties of
bulk 2H-TMDs. To do so, we adopted the calculated in-plane
lattice constant a of the single-layer material. As in the case of
the double layer, test calculations (Appendix D) indicate that
this procedure entails a maximum 0.01 Å difference between
the adopted and the optimized in-plane lattice constant of
the bulk material. In the geometry optimizations, we relaxed

FIG. 11. Out-of-plane lattice constant c for the bulk TMDs,
compared to the available experimental values (Expt.) [59–61], as
obtained with the different methods used in this work.

the positions of all atoms in the 3D minimal unit cell while
changing the value of the out-of-plane lattice constant c in
a suitable length interval. In this way, we obtained the total
energy as a function of c, which was then fitted with a model
function to get the optimal c and the out-of-plane bulk modulus
Bz. We have also calculated the electronic properties for the
optimized values of c with and without SO coupling. The rel-
evant quantities for the six TMDs and all the adopted methods
are reported in Tables XIII–XVIII (see Appendix C 3). The
results for out-of-plane lattice constants c, the direct �EDir,
and the fundamental �EFund band gaps are shown in Fig. 11
and Fig. 12, respectively.

Figure 11 shows that the quality of the predictions of the
different methods for the out-of-plane lattice constant c is
similar for the different materials. As in the case of double-
layer TMDs, the PBE functional overestimates c by a large
amount, whereas all the PBE+vdW correction approaches
(excluding the dDsC) lead to a more reasonable agreement
with the experimental value. The LDA functional tends to
underestimate the experimental lattice constant even though,
in general, it gives values in line with the PBE+correction
schemes. As of the nonlocal functionals, the DF and DF2
tend to overestimate by large amounts the experimental val-
ues, whereas the ref-DF2 functional does a much better job.
Finally, the opt-vdW functionals tend to overestimate c, even
though the opt-B86b-vdW functional gives results very close
to the experimental values. It is important to point out that,
since the quantity c has a value larger than 10 Å, a relatively
small (1%) discrepancy from the experimental values entails
an error of ∼0.15 Å, which is a significant amount. Regarding
the intralayer features, on the other hand, we observe that the
predicted values of �X for the bulk materials (green circles
in Fig. 5) show a much smaller relative spread (� 2%) and
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FIG. 12. Direct band gap (red bars) and fundamental band gap
(blue bars) as obtained without including the SO coupling for the
bulk TMDs. In each panel the horizontal grid lines mark the position
of the experimental values for both band gaps (Expt.) [43–47] when
available.

they do not differ significantly from the values obtained for
the single layer and the double layer.

As for the electronic properties (see Fig. 12), we observe
that all the functionals tend to slightly underestimate both the
direct and the fundamental band gaps. We further observe that
the functionals that tend to overestimate the value of c lead to
the highest values for the gap and to the best agreement with
the experimental values. Since a large value of c means small
interlayer interactions (i.e., we are approaching the single-
layer case), we conclude that the better agreement in these
cases is due to a cancellation of errors. Finally, we observe
that including the spin-orbit coupling leads to a reduction of
all the values of the band gaps, similar to what we have found
in the single-layer case.

V. DISCUSSION

From the assessment of the different DFT approaches
presented in the previous sections, we can select the “best”
methods and use them to find trends and propose realistic
values of specific physical quantities that are hardly measured
in experiments or for which the experimental record is not
complete yet. We base our choice on the performance of
each method on reproducing the in-plane lattice constant of
the single-layer and the out-of-plane lattice constant of the
bulk materials, for which complete experimental records exist.
Going back to Fig. 3 and Fig. 11, we can recognize D3,
D3-BJ, TS, TSiter, rev-DF2, and optB86b as the approaches
that more closely reproduce the experimental measurements.

FIG. 13. (a) Best prediction of the interlayer distance �L for the
double-layer TMD films. The points represent the numerical average
of the values obtained from the D3, D3-BJ, TS, TSiter, rev-DF2, and
optB86b approaches, whereas the error bars are obtained from the
minimum and the maximum values resulting from those methods.
(b) Comparison of the band gaps of the double-layer TMD films. The
vertical bars are the best predictions for the direct (red) and indirect
(blue) band gaps, and the points represent the available experimental
points with the same color convention. The same set of methods as
in (a) was used to calculate the best prediction.

Hence, we can get best predictions for physical quantities
(for which no experimental measurements are available) by
averaging the calculated values obtained by these methods. In
Fig. 13, we carry out such an analysis for double-layer TMD
films, focusing, in particular, on the interlayer distance �L
[Fig. 13(a)] and the value of the band gap [Fig. 13(b)]. It is
important to mention that the 2H phases of WTe2 (single-
layer, double-layer, or bulk) have not been observed yet in
any experiment. However we provide the prediction data also
for this material because it is not possible to exclude, a priori,
that such systems will be synthesized in the future.

Figure 13(a) shows that the interlayer separation �L is
almost independent on the transition metal. We only observe a
faint increase of �L when Mo atoms are replaced by W atoms.
On the other hand, a strong variation of �L with the chalcogen
is observed, with �L increasing with the atomic number of the
chalcogen. The relative difference in �L between MTe2 and
MS2 TMDs is of the order of 30%. Interestingly, similar trends
are observed in the values of the in-plane lattice constant in
the single-layer (see Fig. 3) and in the out-of-plane lattice
constant in the bulk materials (Fig. 13).

Turning our attention to Fig. 13(b), we can observe that,
as already pointed out, the predicted band gaps underestimate
the experimental values. Nevertheless, in Fig. 13(b) we can
recognize several interesting trends. First of all, both band
gaps increase slightly when the Mo is replaced by W. On the
other hand, we observe that both the direct and the indirect
gaps decrease when the atomic number of the chalcogen atom
increases. Moreover, we observe that the rate of variation of
the direct gap is much faster than the one of the indirect gap.
Finally, the double-layer TMDs containing Te are predicted to
have very similar values for the direct and the indirect band
gaps.

We conclude our study by analyzing the energy splitting
due to the SO coupling in the HVB at the K point of the
BZ, indicated as �SO in Fig. 2. As already pointed out,
in the 2H TMDs, �SO can be considered as a measure of
the strength of the spin-orbit coupling, which is one of the
key factors in the emergence of nontrivial topological phases
in TMDs (see, e.g., Refs. [27] or [35]). In Fig. 14(a), we

195416-9



PISARRA, DÍAZ, AND MARTÍN PHYSICAL REVIEW B 103, 195416 (2021)

M
oS

2

M
oS

e 2

M
oT

e 2

W
S

2

W
Se

2

W
Te

2

100

200

300

400

500

∆S
O

(m
eV

)

Prediction

Single
Double

M
oS

2

M
oS

e 2

M
oT

e 2

W
S

2

W
Se

2

W
Te

2

100

200

300

400

500

∆S
O

(m
eV

)

Experiments

Single
Double

(b)(a)

FIG. 14. (a) Best predictions of �SO for the single- and double-
layer TMDs. The predictions are obtained by averaging the values
calculated with the D3, D3-BJ, TS, TSiter, rev-DF2, and optB86b
approaches. (b) Experimental values of �SO for the single [67–71]
and double [46,71] layer TMDs.

report the best prediction of �SO for the single-layer and
the double-layer TMDs analyzed in this work. Starting from
the dataset of the single layer, we can observe that, given
a transition metal, �SO increases slightly with the atomic
number of the chalcogen atom. Furthermore, as expected, by
replacing Mo by W, a strong increase in �SO is observed due
to the larger atomic weight of the metal. The good agreement
between our predictions and the experimental data for the
single-layer TMDs proves that our predictions for the double-
layer systems [Fig. 14(a)], for which the experimental set is
not complete, are accurate. In particular, one can see that
�SO for the double-layer TMDs follows the same trend as
for the single-layer TMDs. We finally conclude that, for a
given TMD, the value of �SO for the double-layer case is
slightly higher than that for the single-layer case. This is the
consequence of the interlayer interaction in the double-layer
system, which further splits the HVB states and generates, in
principle, a four-peak fine structure (in the single layer is a
double peak), which extends over a wider energy window.

VI. CONCLUSIONS

In summary, our work shows that a proper choice of the
DFT approach is crucial to obtain a reasonable description
of the structural and electronic properties of TMDs. We have
found that even small differences in specific structural pa-
rameters, like the lattice constant, lead to large differences
in the predicted electronic properties of single and few-layer
TMDs, due to the intrinsic sensitivity of these materials to
structural deformations. Our results are particularly relevant
for the modeling of heterostructure containing TMDs in the
hexagonal (2H) phase. Identifying a calculation method that
is capable of predicting the lattice constant of a building block
material in a heterostructure is a mandatory preliminary step,
because the lattice constants of the constituent materials (and
their stiffness) dictate the choice of the periodicity and the
method of matching between the different 2D building block
of the heterostructure.

More specifically, we have shown that, as expected, the
very popular PBE functional is not able to appropriately de-
scribe interlayer interactions in double-layer and bulk TMDs
and can also lead to non-negligible inaccuracies in the descrip-
tion of single-layer TMDs. Hence a PBE+correction or an
ad-hoc vdW functional is needed to study interfaces made of
TMDs. But not all the vdW methods are equivalent. Our re-

sults indicate that D2 and dDsC approaches should be avoided
for this particular kind of systems, whereas either the Grimme
D3 or the Tkatchenko-Sheffler corrections (in both variations
analyzed here) yield reasonable results. We have also found
good agreement with the experimental measurements with
the rev-DF2 and the optB86b functionals. The other nonlocal
exchange-correlation functionals analyzed in this work lead,
in general, to significant discrepancies when compared to
the experimental values. In particular, DF and DF2 methods
lead to important discrepancies with experimental values and
should be avoided for the TMDs analyzed in this work.

By using the results of the best methods, we have proposed
best predictions of some quantities for the simplest interface
that can be created out of the single-layer TMDs, namely
double-layer films. Specifically, we have proposed values for
the interlayer separation, for which no experimental record
exists. This interlayer separation follows the same trend as
the in-plane lattice constant in single-layer TMDs and the
out-of-plane lattice constant in bulk TMDs. We have also
found that increasing the atomic number of the chalcogen in
double-layer 2H TMDs decreases the band gap. Moreover, we
found that the direct and indirect band gaps are comparable in
double-layer MoTe2 and WTe2. Finally, we have shown that
the HVB splitting in double-layer TMDs due to spin-orbit
coupling (�SO) for which the experimental record is rather
poor, follows the same trend as that observed in the single-
layer systems. We hope that the results presented in this paper
will help to fill the gap in our knowledge of few-layer TMDs,
for which experimental information is more difficult to extract
than for the single-layer and bulk TMDs.
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APPENDIX A: FITTING PROCEDURE

In order to get the lattice constant and bulk modulus of
a given material, we have calculated the total energy (E ) by
means of DFT calculations for different values of the volume
(V ) and fitted it to the Birch-Murnaghan phenomenological
equation [58]:

E (V ) = E0 + 9V0B

16
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In Eq. (A1) the minimum energy E0, the equilibrium volume
V0, the 3D bulk modulus B and the parameter KP, which has
the meaning of variation of the bulk modulus with the volume,
are used as fitting parameters. For the single-layer calcula-
tions, in order to use Eq. (A1), we have introduced an arbitrary
width w for the materials. The optimized lattice constant was
determined from the area of the 2D unit cell, obtained as
V0/w. By inspection of Eq. (A1), one can recognize that the
introduction of this arbitrary width does not affect the value
of the in-plane lattice constant if one shifts this dependency
on the value of the 3D bulk modulus B. For this reason one
can introduce a 2D bulk modulus, obtained as B2D = Bw,
whose value is also independent of the choice for the width.
For the “bulk calculations,” we fixed the value of the in-plane
lattice constant to the one of the single layer and modified the
out-of-plane lattice constant c. For this reason, the calculated
bulk modulus has the correct dimensions but it refers to the
out-of-plane direction only, hence we have assigned it the
symbol Bz.

APPENDIX B: EFFECT OF THE SPIN ORBIT COUPLING
ON THE IN-PLANE LATTICE CONSTANT

The inclusion of the SO coupling in the geometry opti-
mizations is not customarily done. In fact, SO calculations are
usually much more expensive than regular calculations, with
the time and memory consumption increasing by a factor of 5–
10 (or even worse) in general, depending on the system under
study. Nevertheless, the effect of the SO in the final geometry
could lead to non-negligible differences. In this section we
repeat the analysis of the lattice constant including the SO
coupling for the MoS2 single layer, characterized by the low-
est �SO, and the WSe2 single layer, which is the system with
the highest �SO for which an experimental value of the lattice
constant is available. We have found that (see Fig. 15) for the
LDA, the PBE, the PBE+correction, and the SCAN methods,
including the SO coupling in the approach lead to the same
(with a maximum difference smaller than 0.01 Å) values of
the in-plane lattice constants. On the other hand, for the DF,

DF2, rev-DF2, optPBE-vdW, and optB86b-vdW methods, the
inclusion of the SO coupling resulted in much higher values
of the lattice constant. For the dDsC and optB88-vdW none of
the SO geometry optimizations converged.

APPENDIX C: NUMERICAL RESULTS

In the following, we provide the numerical data calculated
in this work. The optB88-vdW calculations including the spin-
orbit coupling did not converge (dnc). In each table, we also
provide the corresponding experimental measurements for the
given quantity, when available. In producing the figures of the
main text, we reported the numerical average of the available
values, whenever multiple experimental values were found for
a given quantity.

1. Single layer

The relevant numerical quantities for the single layer sys-
tems are given in Tables I–VI.

2. Double layer

The relevant quantities for the double layer systems are
given in Tables VII–XII. In the double-layer calculations, the
in-plane lattice constant was fixed to the value obtained in
the single-layer optimization. This choice entails a maximum
0.01 Å difference from the optimized double-layer values (see
Appendix D).

3. Bulk

The relevant quantities for the bulk systems are given in Ta-
bles XIII–XVIII. In the bulk calculations, the in-plane lattice
constant was fixed to the value obtained in the single-layer op-
timization. This choice entails a maximum 0.01 Å difference
from the optimized bulk values (see Appendix D).

FIG. 15. In-plane lattice constant a for the single-layer MoS2 and WSe2 as calculated without (red diamonds) and with (green hollow
circles) the spin-orbit coupling within the different modeling methods used in this work. The horizontal lines mark the experimental value of
the in-plane lattice constant.
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TABLE I. Results for the single-layer MoS2 system. To obtain the 3D bulk modulus in GPa a width w = 6.2 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO(meV)

LDA 3.12 3.11 145 90.0 1.87 1.98 1.79 1.97 145
PBE 3.19 3.12 132 82.1 1.66 1.62 1.58 1.61 148
D2 3.19 3.12 133 82.8 1.66 1.61 1.58 1.60 148
D3 3.17 3.13 134 83.2 1.73 1.76 1.65 1.75 147
D3-BJ 3.16 3.13 137 85.1 1.76 1.82 1.68 1.81 146
TS 3.16 3.14 132 81.9 1.76 1.84 1.69 1.83 146
TS-iter 3.18 3.12 125 77.5 1.69 1.68 1.61 1.68 148
dDsC 3.18 3.12 135 83.4 1.69 1.67 1.61 1.66 148
DF 3.24 3.14 124 77.3 1.53 1.44 1.44 1.41 155
DF2 3.29 3.16 116 71.9 1.42 1.25 1.33 1.23 157
rev-DF2 3.17 3.13 137 84.8 1.73 1.78 1.64 1.75 149
optPBE 3.20 3.14 131 81.3 1.65 1.64 1.56 1.61 152
optB88 3.19 3.14 134 82.9 1.67 1.67 dnc dnc dnc
optB86b 3.16 3.14 138 85.3 1.77 1.85 1.68 1.83 148
SCAN 3.17 3.11 145 90.1 1.83 1.80 1.75 1.79 148
Experiments 3.160 [59] 3.172 [59] 171 [63] 1.90 [46] 146 [67]

1.83 [67]

TABLE II. Results for the single-layer MoSe2 system; to obtain the 3D bulk modulus in GPa a width w = 6.5 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 3.25 3.32 115 74.8 1.63 1.99 1.52 1.96 184
PBE 3.32 3.34 103 67.1 1.45 1.71 1.34 1.79 184
D2 3.32 3.33 111 72.2 1.45 1.69 1.34 1.66 184
D3 3.30 3.35 105 67.9 1.51 1.82 1.40 1.79 183
D3-BJ 3.29 3.35 108 70.3 1.53 1.87 1.43 1.84 183
TS 3.30 3.35 104 67.6 1.51 1.82 1.40 1.79 183
TS-iter 3.31 3.34 99 64.5 1.48 1.75 1.37 1.72 184
dDsC 3.31 3.34 105 68.4 1.48 1.75 1.37 1.72 184
DF 3.38 3.37 96 62.7 1.31 1.48 1.20 1.44 188
DF2 3.44 3.39 88 57.1 1.20 1.28 1.09 1.24 188
rev-DF2 3.30 3.35 107 69.9 1.51 1.83 1.39 1.78 185
optPBE 3.34 3.36 102 66.5 1.41 1.65 1.29 1.60 187
optB88 3.33 3.35 105 68.0 1.43 1.67 dnc dnc dnc
optB86b 3.30 3.35 108 70.4 1.51 1.82 1.39 1.90 185
SCAN 3.29 3.32 114 73.8 1.63 1.93 1.52 1.90 185
Experiments 3.299 [59] 3.338 [59] 1.59 [68] 160 [68]

1.76 [69] 230 [69]
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TABLE III. Results for the single-layer MoTe2 system; to obtain the 3D bulk modulus in GPa a width w = 7.0 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 3.47 3.60 83 58.2 1.24 1.82 1.10 1.77 217
PBE 3.55 3.62 73 51.3 1.09 1.55 0.96 1.49 215
D2 3.53 3.63 78 54.4 1.13 1.65 1.00 1.59 214
D3 3.53 3.63 74 52.0 1.13 1.64 1.00 1.58 214
D3-BJ 3.51 3.63 77 54.0 1.17 1.73 1.04 1.66 214
TS 3.53 3.62 71 49.8 1.13 1.64 1.00 1.57 214
TS-iter 3.53 3.62 70 49.0 1.13 1.63 1.00 1.57 214
dDsC 3.54 3.62 75 52.4 1.11 1.58 0.97 1.52 215
DF 3.63 3.64 68 47.5 0.95 1.27 0.81 1.21 215
DF2 3.71 3.66 61 42.8 0.84 1.03 0.71 0.98 210
rev-DF2 3.53 3.63 77 54.0 1.13 1.64 0.99 1.57 216
optPBE 3.58 3.63 73 51.0 1.03 1.44 0.89 1.38 216
optB88 3.57 3.62 75 52.5 1.05 1.45 dnc dnc dnc
optB86b 3.53 3.63 78 54.5 1.13 1.63 0.99 1.55 216
SCAN 3.50 3.60 79 55.3 1.29 1.93 1.14 1.85 221
Experiments 3.522 [59] 3.604 [59] 1.10 [70] 250 [70]

3.519 [60]

TABLE IV. Results for the single-layer WS2 system; to obtain the 3D bulk modulus in GPa a width w = 6.2 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 3.13 3.12 156 95.8 1.98 2.13 1.71 2.05 421
PBE 3.19 3.14 143 88.4 1.80 1.84 1.53 1.77 432
D2 3.19 3.13 125 77.5 1.79 1.81 1.53 1.74 433
D3 3.18 3.15 143 88.4 1.84 1.91 1.57 1.84 429
D3-BJ 3.16 3.15 148 91.6 1.92 2.06 1.65 1.98 423
TS 3.17 3.15 143 88.6 1.88 1.99 1.61 1.91 426
TS-iter 3.18 3.14 139 85.9 1.84 1.91 1.57 1.83 429
dDsC 3.18 3.14 148 91.5 1.84 1.89 1.57 1.82 430
DF 3.23 3.17 135 83.8 1.71 1.70 1.42 1.63 458
DF2 3.28 3.18 125 77.7 1.59 1.48 1.30 1.40 468
rev-DF2 3.17 3.15 147 91.2 1.89 2.00 1.60 1.91 436
optPBE 3.20 3.16 142 87.8 1.79 1.85 1.51 1.76 448
optB88 3.19 3.16 144 89.1 1.82 1.88 dnc dnc dnc
optB86b 3.17 3.15 148 91.8 1.89 2.00 1.60 1.91 436
SCAN 3.16 3.12 157 97.5 1.93 2.02 1.67 1.95 429
Experiments 3.16 [44] 3.15 [44] 177 [63] 1.98 [71] 420 [71]

3.1532 [61] 3.14 [61]
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TABLE V. Results for the single-layer WSe2 system; to obtain the 3D bulk modulus in GPa a width w = 6.6 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 3.25 3.34 127 78.7 1.75 2.20 1.45 2.04 455
PBE 3.32 3.36 115 71.3 1.55 1.88 1.26 1.75 467
D2 3.34 3.34 103 63.6 1.47 1.71 1.18 1.60 473
D3 3.30 3.37 118 72.8 1.63 2.01 1.33 1.87 461
D3-BJ 3.29 3.37 120 74.5 1.66 2.07 1.36 1.93 458
TS 3.30 3.37 116 71.9 1.62 2.01 1.32 1.87 461
TS-iter 3.31 3.36 110 68.2 1.59 1.93 1.29 1.80 464
dDsC 3.31 3.36 111 73.5 1.58 1.93 1.29 1.80 465
DF 3.38 3.38 108 66.8 1.40 1.63 1.09 1.50 495
DF2 3.44 3.40 97 60.4 1.28 1.41 0.97 1.29 502
rev-DF2 3.30 3.37 120 74.1 1.62 2.01 1.31 1.86 471
optPBE 3.34 3.38 114 70.7 1.51 1.81 1.19 1.68 484
optB88 3.33 3.37 116 72.1 1.53 1.83 dnc dnc dnc
optB86b 3.30 3.37 120 74.6 1.62 2.01 1.31 1.86 472
SCAN 3.29 3.33 127 78.8 1.66 2.04 1.37 1.92 467
Experiments 3.282 [61] 3.34 [61] 1.67 [71] 400 [71]

1.70 [69] 480 [69]

TABLE VI. Results for the single-layer WTe2 system; to obtain the 3D bulk modulus in GPa a width w = 7.1 Å was assumed. The direct
band gap �EDir is realized at the K point; the indirect band gap �EInd is realized between the K and � points; the fundamental gap of the
system is highlighted by bold-face characters.

Geometry Electronic properties Electronic properties spin orbit

XC a (Å) �X (Å) B (GPa) B2D (N/m) �EDir (eV) �EInd (eV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 3.47 3.61 83 59.0 1.26 1.92 0.93 1.65 473
PBE 3.56 3.63 74 52.4 1.13 1.71 0.81 1.48 481
D2 3.56 3.62 86 61.0 1.05 1.53 0.73 1.34 488
D3 3.52 3.65 75 53.6 1.17 1.78 0.84 1.54 478
D3-BJ 3.51 3.65 77 55.1 1.20 1.83 0.87 1.57 476
TS 3.53 3.64 72 51.0 1.13 1.71 0.81 1.48 481
TS-iter 3.54 3.63 71 50.3 1.10 1.65 0.78 1.43 483
dDsC 3.54 3.63 76 53.9 1.10 1.65 0.78 1.44 484
DF 3.63 3.64 69 48.8 0.92 1.30 0.59 1.13 515
DF2 3.71 3.66 61 43.5 0.80 1.04 0.47 0.89 519
rev-DF2 3.53 3.64 78 55.2 1.13 1.71 0.80 1.47 492
optPBE 3.58 3.64 74 52.2 1.02 1.49 0.69 1.30 505
optB88 3.57 3.64 76 53.7 1.03 1.51 dnc dnc dnc
optB86b 3.53 3.64 78 55.7 1.13 1.70 0.80 1.47 492
SCAN 3.50 3.60 80.0 56.7 1.25 1.96 0.92 1.72 483
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TABLE VII. Results for the double-layer MoS2 system. The direct band gap �EDir is realized at the K point; when it is not specified, the
indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters. The
interlayer interaction I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.05 3.11 2.94 1.83 1.21 (T-�) 111 1.79 1.20 182
PBE 7.15 3.12 4.03 1.65 1.47 15 1.58 1.47 149
D2 6.20 3.11 3.09 1.62 1.15 72 1.57 1.15 166
D3 6.20 3.13 3.07 1.69 1.28 76 1.64 1.27 165
D3-BJ 6.07 3.13 2.94 1.72 1.22 (T-�) 97 1.67 1.21 175
TS 6.11 3.13 2.98 1.72 1.17 89 1.68 1.16 171
TS-iter 6.12 3.12 3.00 1.65 1.16 84 1.61 1.16 169
dDsC 6.27 3.12 3.15 1.66 1.25 66 1.61 1.24 162
DF 6.56 3.15 3.42 1.52 1.16 37 1.44 1.16 158
DF2 6.44 3.16 3.28 1.41 0.94 44 1.33 0.94 165
rev-DF2 6.20 3.14 3.06 1.70 1.28 (T-�) 81 1.64 1.30 166
optPBE 6.35 3.14 3.20 1.62 1.25 58 1.55 1.26 160
optB88 6.23 3.14 3.09 1.64 1.23 72 dnc dnc dnc
optB86b 6.20 3.14 3.06 1.73 1.31 (T-�) 82 1.67 1.34 165
SCAN 6.20 3.11 3.09 1.79 1.32 77 1.74 1.32 167
Experiments 1.88 [46] 1.59 [46] 155 [46]

1.85 [67]

TABLE VIII. Results for the double-layer MoSe2 system. The direct band gap �EDir is realized at the K point; when it is not specified,
the indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters.
The interlayer interaction, I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.38 3.32 3.06 1.58 1.13 (T-�) 127 1.51 1.12 (T-�) 222
PBE 7.14 3.34 3.80 1.44 1.47 (T-K) 35 1.34 1.39 (T-K) 187
D2 6.54 3.34 3.20 1.41 1.20 (T-�) 88 1.34 1.20 (T-�) 203
D3 6.54 3.35 3.20 1.47 1.22 (T-�) 92 1.40 1.22 (T-�) 204

D3-BJ 6.39 3.35 3.04 1.49 1.12 (T-�) 118 1.42 1.11 (T-�) 216
TS 6.41 3.34 3.07 1.46 1.12 (T-�) 110 1.39 1.12 (T-�) 213

TS-iter 6.41 3.34 3.07 1.43 1.11 (T-�) 108 1.36 1.10 (T-�) 212
dDsC 6.60 3.34 3.26 1.44 1.26 (T-�) 82 1.37 1.25 (T-�) 201
DF 6.94 3.37 3.57 1.30 1.21 43 1.20 1.19 192
DF2 6.85 3.40 3.45 1.18 0.99 49 1.09 0.97 192

rev-DF2 6.52 3.35 3.16 1.47 1.18 (T-�) 100 1.39 1.22 (T-�) 205
optPBE 6.69 3.36 3.33 1.39 1.26 69 1.29 1.25 196
optB88 6.60 3.36 3.24 1.39 1.21 (T-�) 81 dnc dnc dnc

optB86b 6.55 3.35 3.19 1.47 1.21 (T-�) 95 1.39 1.25 (T-�) 207
SCAN 6.60 3.32 3.27 1.59 1.43 (T-�) 85 1.52 1.43 204
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TABLE IX. Results for the double-layer MoTe2 system. The direct band gap �EDir is realized at the K point; when it is not specified, the
indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters. The
interlayer interaction I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.89 3.60 3.29 1.18 1.00 (T-�) 154 1.10 1.00 (T-�) 262
PBE 7.47 3.62 3.85 1.06 1.14 (T-�) 62 0.96 1.06 (T-�) 222
D2 7.00 3.63 3.37 1.09 1.03 (T-�) 124 1.00 1.00 (T-�) 245
D3 7.00 3.62 3.38 1.08 1.03 (T-�) 122 1.00 1.01 244
D3-BJ 6.87 3.63 3.24 1.12 0.92 (T-�) 154 1.04 0.92 (T-�) 259
TS 7.00 3.62 3.38 1.08 1.03 120 0.96 1.00 243
TS-iter 7.00 3.62 3.38 1.08 1.03 121 0.96 1.00 244
dDsC 7.03 3.62 3.41 1.06 1.02 115 0.96 0.99 241
DF 7.51 3.64 3.87 0.93 0.99 48 0.81 0.97 219
DF2 7.50 3.66 3.84 0.82 0.76 45 0.71 0.74 214
rev-DF2 7.01 3.63 3.37 1.08 1.02 (T-�) 125 0.99 1.01 (T-�) 240
optPBE 7.25 3.63 3.62 1.00 1.04 78 0.90 1.02 225
optB88 7.12 3.63 3.49 1.01 0.97 95 dnc dnc dnc
optB86b 7.01 3.63 3.37 1.08 1.03 (T-�) 123 0.99 1.02 (T-�) 240
SCAN 7.13 3.60 3.52 1.25 1.19 (T-�) 113 1.15 1.12 (T-�) 245

TABLE X. Results for the double-layer WS2 system. The direct band gap �EDir is realized at the K point; when it is not specified, the
indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters. The
interlayer interaction I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.10 3.12 2.97 1.94 1.35 (T-�) 125 1.71 1.29 (T-�) 437
PBE 6.97 3.14 3.83 1.79 1.64 27 1.53 1.57 433
D2 6.11 3.13 2.98 1.75 1.30 105 1.52 1.24 444
D3 6.23 3.14 3.09 1.80 1.44 (T-�) 90 1.57 1.37 437
D3-BJ 6.10 3.15 2.96 1.87 1.37 (T-�) 116 1.65 1.31 (T-�) 437
TS 6.20 3.15 3.05 1.84 1.43 (T-�) 97 1.61 1.36 (T-�) 436
TS-iter 6.20 3.14 3.06 1.80 1.42 (T-�) 95 1.57 1.35 (T-�) 438
dDsC 6.32 3.14 3.18 1.80 1.49 78 1.56 1.42 436
DF 6.62 3.17 3.45 1.69 1.43 45 1.42 1.38 459
DF2 6.45 3.18 3.27 1.57 1.17 56 1.30 1.12 472
rev-DF2 6.20 3.15 3.06 1.85 1.40 (T-�) 103 1.60 1.38 (T-�) 444
optPBE 6.37 3.16 3.21 1.77 1.47 71 1.51 1.42 451
optB88 6.25 3.16 3.09 1.79 1.42 (T-�) 88 dnc dnc dnc
optB86b 6.20 3.15 3.05 1.85 1.42 (T-�) 101 1.61 1.39 445
SCAN 6.24 3.12 3.12 1.89 1.57 91 1.67 1.51 440
Experiments 1.94 [71] 420 [71]
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TABLE XI. Results for the double-layer WSe2 system. The direct band gap �EDir is realized at the K point; when it is not specified, the
indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters. The
interlayer interaction I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.41 3.34 3.06 1.69 1.28 (T-�) 153 1.45 1.19 (T-K) 476
PBE 7.22 3.36 3.85 1.54 1.52 (T-K) 41 1.26 1.25 (T-K) 468
D2 6.42 3.33 3.09 1.42 1.21 123 1.18 1.11 487
D3 6.55 3.37 3.18 1.57 1.37 (T-�) 116 1.32 1.19 (T-K) 473
D3-BJ 6.42 3.37 3.05 1.60 1.28 (T-�) 144 1.36 1.17 (T-K) 477
TS 6.60 3.37 3.23 1.58 1.40 (T-�) 108 1.32 1.19 (T-K) 472
TS-iter 6.53 3.36 3.17 1.54 1.35 (T-�) 116 1.29 1.20 (T-K) 476
dDsC 6.60 3.36 3.25 1.54 1.39 (T-�) 104 1.29 1.21 (T-K) 474
DF 6.98 3.38 3.60 1.38 1.37 52 1.09 1.21 (T-K) 497
DF2 6.88 3.41 3.47 1.27 1.13 60 0.96 1.04 509
rev-DF2 6.55 3.37 3.17 1.56 1.33 (T-�) 122 1.31 1.18 (T-K) 481
optPBE 6.73 3.38 3.35 1.47 1.42 (T-�) 84 1.20 1.20 (T-K) 488
optB88 6.60 3.37 3.23 1.49 1.34 (T-�) 102 dnc dnc dnc
optB86b 6.60 3.37 3.22 1.58 1.38 (T-�) 111 1.31 1.19 (T-K) 480
SCAN 6.60 3.33 3.27 1.62 1.59 (T-�) 105 1.33 1.36 (T-K) 514
Experiments 1.61 [71] 400 [71]

TABLE XII. Results for the double-layer WTe2 system. The direct band gap �EDir is realized at the K point; when it is not specified, the
indirect band gap �EInd is realized between the K and � points. The fundamental gap of the system is highlighted by bold-face characters. The
interlayer interaction I − I is the band splitting of the HVB at the K point without the SO interaction.

Geometry Electronic properties Electronic properties spin orbit

XC �M (Å) �X (Å) �L (Å) �EDir (eV) �EInd (eV) I − I (meV) �EDir (eV) �EInd (eV) �SO (meV)

LDA 6.93 3.62 3.30 1.19 1.11 (T-K) 184 0.93 0.94 (T-K) 500
PBE 7.49 3.63 3.86 1.02 1.19 (T-K) 75 0.74 0.96 (T-K) 492
D2 6.92 3.62 3.31 0.98 0.93 159 0.73 0.79 508
D3 7.00 3.65 3.35 1.11 1.09 (T-K) 160 0.84 0.91 (T-K) 498
D3-BJ 6.87 3.65 3.22 1.12 1.06 (T-K) 195 0.87 0.90 (T-K) 506
TS 7.09 3.64 3.45 1.08 1.12 (T-K) 137 0.81 0.93 (T-K) 496
TS-iter 7.00 3.63 3.37 1.04 1.08 150 0.78 0.93 501
dDsC 7.04 3.63 3.41 1.05 1.12 (T-K) 148 0.79 0.93 (T-K) 500
DF 7.49 3.64 3.84 0.90 1.03 64 0.59 0.90 517
DF2 7.44 3.66 3.77 0.78 0.77 62 0.47 0.65 521
rev-DF2 7.04 3.65 3.39 1.08 1.09 (T-K) 152 0.80 0.91 507
optPBE 7.25 3.64 3.61 0.98 1.11 100 0.69 0.93 510
optB88 7.14 3.64 3.50 0.99 1.06 117 dnc dnc dnc
optB86b 7.03 3.65 3.38 1.08 1.10 (T-K) 152 0.80 0.92 (T-K) 506
SCAN 7.14 3.61 3.53 1.19 1.24 (T-K) 138 0.92 1.05 (T-K) 500
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TABLE XIII. Results for the bulk MoS2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as Max[HVB]-
Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz(GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 12.12 3.11 2.95 54 1.78 0.76 1.75 0.76
PBE 14.78 3.12 4.27 1.8 1.65 1.42 1.58 1.41
D2 12.44 3.11 3.11 48 1.59 0.93 1.56 0.93
D3 12.34 3.12 3.05 48 1.65 0.90 1.62 0.90
D3-BJ 12.10 3.12 2.93 61 1.67 0.80 1.64 0.79
TS 12.06 3.12 2.91 51 1.67 0.78 1.64 0.77
TS-iter 12.06 3.11 2.92 44 1.60 0.77 1.57 0.77
dDsC 12.74 3.12 3.25 34 1.64 1.06 1.60 1.05
DF 13.14 3.15 3.42 28 1.50 1.00 1.44 1.01
DF2 12.88 3.16 3.28 41 1.39 0.78 1.33 0.79
rev-DF2 12.36 3.13 3.05 49 1.66 0.87 1.62 0.94
optPBE 12.76 3.14 3.24 38 1.60 1.04 1.55 1.09
optB88 12.50 3.14 3.11 48 1.61 0.93 dnc dnc
optB86b 12.40 3.14 3.06 48 1.70 0.92 1.66 0.98
SCAN 12.50 3.11 3.14 46 1.76 1.08 1.72 1.09
Experiments 12.294 [59] 3.172 [59] 2.975 [59] 1.74 [43] 1.23 [43]

1.910 [44] 1.23 [43]
1.88 [45]

TABLE XIV. Results for the bulk MoSe2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as
Max[HVB]-Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz (GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 12.78 3.32 3.07 50 1.52 0.76 1.48 0.75
PBE 15.26 3.34 4.29 1.9 1.44 1.43 1.34 1.34
D2 13.04 3.33 3.19 65 1.37 0.87 1.31 0.86
D3 13.02 3.34 3.17 45 1.42 0.87 1.37 0.86
D3-BJ 12.74 3.34 3.03 62 1.43 0.76 1.38 0.75
TS 12.78 3.34 3.05 39 1.40 0.78 1.35 0.77
TS-iter 12.70 3.33 3.02 44 1.37 0.74 1.32 0.73
dDsC 13.42 3.34 3.37 27 1.41 1.01 1.35 1.00
DF 13.90 3.37 3.58 26 1.28 1.08 1.19 1.07
DF2 13.70 3.39 3.46 35 1.16 0.87 1.08 0.86
rev-DF2 13.06 3.36 3.17 49 1.43 0.85 1.36 0.91
optPBE 13.46 3.36 3.37 36 1.35 0.99 1.28 1.04
optB88 13.20 3.36 3.24 46 1.36 0.89 dnc dnc
optB86b 13.08 3.36 3.18 48 1.43 0.87 1.37 0.93
SCAN 13.20 3.33 3.27 45 1.56 1.08 1.50 1.08
Experiments 12.938 [59] 3.338 [59] 3.131 [59] 1.38 [43] 1.09 [43]

1.598 [44]
1.57 [45]
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TABLE XV. Results for the bulk MoTe2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as
Max[HVB]-Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz (GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 13.80 3.60 3.30 53 1.12 0.66 1.03 0.65
PBE 15.34 3.62 4.05 4.1 1.05 0.97 0.95 0.90
D2 13.98 3.63 3.36 83 1.03 0.70 0.96 0.69
D3 14.04 3.62 3.40 38 1.03 0.73 0.96 0.71
D3-BJ 13.68 3.63 3.21 66 1.04 0.59 0.97 0.58
TS 14.00 3.61 3.39 31 1.02 0.72 0.96 0.70
TS-iter 13.88 3.61 3.33 30 1.02 0.67 0.95 0.65
dDsC 14.36 3.62 3.56 32 1.02 0.84 0.95 0.79
DF 15.04 3.64 3.88 22 0.91 0.90 0.81 0.81
DF2 14.92 3.66 3.80 30 0.80 0.67 0.71 0.65
rev-DF2 14.10 3.65 3.40 46 1.04 0.73 0.96 0.77
optPBE 14.52 3.64 3.62 32 0.97 0.85 0.88 0.85
optB88 14.26 3.63 3.50 42 0.97 0.77 dnc dnc
optB86b 14.10 3.63 3.42 46 1.04 0.74 0.96 0.77
SCAN 14.30 3.61 3.54 40 1.20 0.89 1.12 0.85
Experiments 13.968 [59] 3.604 [59] 3.380 [59] 1.120 [44] 0.88 [47]

13.964 [60] 1.10 [45]
1.02 [47]

TABLE XVI. Results for the bulk WS2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as Max[HVB]-
Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz (GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 12.18 3.13 2.96 52 1.88 0.86 1.68 0.82
PBE 14.82 3.14 4.27 1.7 1.79 1.62 1.53 1.53
D2 12.16 3.12 2.96 65 1.69 0.91 1.50 0.87
D3 12.44 3.14 3.08 50 1.75 1.03 1.55 0.98
D3-BJ 12.16 3.15 2.93 65 1.81 0.91 1.62 0.87
TS 12.26 3.14 2.99 40 1.78 0.95 1.58 0.91
TS-iter 12.18 3.14 2.95 51 1.74 0.92 1.54 0.88
dDsC 12.80 3.14 3.26 33 1.77 1.16 1.55 1.11
DF 13.20 3.17 3.43 30 1.67 1.25 1.42 1.21
DF2 12.96 3.18 3.30 41 1.54 1.01 1.30 0.98
rev-DF2 12.44 3.16 3.06 50 1.81 0.99 1.59 1.02
optPBE 12.82 3.16 3.25 38 1.74 1.15 1.51 1.16
optB88 12.56 3.16 3.12 46 1.75 1.04 dnc dnc
optB86b 12.48 3.16 3.08 49 1.81 1.02 1.59 1.04
SCAN 12.56 3.12 3.16 44 1.86 1.21 1.66 1.18
Experiments 12.323 [61] 3.14 [61] 3.02 [61] 1.79 [43] 1.35 [43]
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TABLE XVII. Results for the bulk WSe2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as
Max[HVB]-Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz (GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 12.86 3.34 3.09 53 1.63 0.89 1.39 0.82
PBE 15.36 3.36 4.32 1.5 1.54 1.47 1.26 1.21
D2 12.78 3.33 3.06 72 1.35 0.89 1.14 0.83
D3 13.02 3.36 3.15 50 1.51 0.97 1.29 0.91
D3-BJ 12.80 3.37 3.03 65 1.53 0.89 1.30 0.82
TS 12.98 3.36 3.13 36 1.51 0.96 1.28 0.89
TS-iter 12.86 3.36 3.07 48 1.46 0.91 1.26 0.85
dDsC 12.50 3.36 2.89 33 1.51 1.14 1.27 1.06
DF 13.94 3.38 3.59 26 1.36 1.21 1.09 1.09
DF2 13.74 3.41 3.46 37 1.23 1.01 0.96 0.92
rev-DF2 13.12 3.38 3.18 47 1.53 0.97 1.29 0.97
optPBE 13.52 3.38 3.38 36 1.44 1.11 1.19 1.07
optB88 13.26 3.38 3.25 45 1.45 1.02 dnc dnc
optB86b 13.14 3.38 3.19 46 1.53 0.99 1.29 0.99
SCAN 13.24 3.33 3.29 44 1.58 1.22 1.36 1.17
Experiments 12.96 [61] 3.34 [61] 3.14 [61] 1.39 [43] 1.20 [43]

1.694 [44]
1.71 [45]

TABLE XVIII. Results for the bulk WTe2. �EDir is the minimum vertical distance between HVB and LCB; �EFund is obtained as
Max[HVB]-Min[LCB].

Geometry Electronic properties Electronic properties spin orbit

XC c (Å) �X (Å) �L (Å) Bz (GPa) �EDir (eV) �EFund (eV) �EDir (eV) �EFund (eV)

LDA 13.86 3.62 3.31 52 1.12 0.76 0.83 0.61
PBE 15.44 3.63 4.09 3.8 1.01 1.01 0.73 0.73
D2 13.82 3.62 3.29 83 0.93 0.75 0.70 0.64
D3 14.04 3.64 3.38 41 1.04 0.79 0.78 0.63
D3-BJ 13.74 3.65 3.22 69 1.04 0.73 0.76 0.59
TS 14.16 3.63 3.45 33 1.01 0.83 0.76 0.66
TS-iter 13.98 3.62 3.37 29 0.97 0.82 0.73 0.65
dDsC 14.42 3.64 3.57 33 1.01 0.87 0.76 0.68
DF 15.06 3.65 3.88 22 0.87 0.87 0.59 0.59
DF2 14.92 3.66 3.80 31 0.75 0.69 0.47 0.47
rev-DF2 14.14 3.65 3.42 48 1.02 0.80 0.76 0.66
optPBE 14.56 3.65 3.63 32 0.94 0.91 0.68 0.68
optB88 14.30 3.64 3.51 43 0.94 0.87 dnc dnc
optB86b 14.14 3.65 3.42 47 1.02 0.81 0.76 0.66
SCAN 14.30 3.61 3.54 42 1.14 0.93 0.89 0.77
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FIG. 16. In-plane lattice constant a for MoS2 and WSe2 in the single-layer (red diamonds), double-layer (blue squares), and bulk (green
circles) systems, as obtained with the different modeling methods used in this work. The horizontal lines mark the experimental value of the
in-plane lattice constant of single-layer systems.

APPENDIX D: IN-PLANE LATTICE CONSTANT OF THE
SINGLE-LAYER, DOUBLE-LAYER, AND BULK SYSTEMS

It is not obvious that the value of the in-plane lattice con-
stant does not depend on the number of layers, even in the
case of weakly interacting layered materials. In our analysis
we have set the in-plane lattice constant of the double layer
and the bulk materials to be equal to the one of the single layer
for two main reasons: (1) to see the effect of changing one
parameter at a time (the interlayer distance in the double-layer
and the out-of-plane lattice constant in the bulk material); (2)
to mimic what it is “customarily” done in creating an interface
between 2D materials (in general one calculates the in-plane
lattice constants of both materials and then constructs an inter-

face with a matched lattice constant, which should minimize
the differences between the lattice constant of the constituent
materials, while also taking into account the stiffness of each
material). To understand the effects of our particular choice, in
Fig. 16 we report a comparison of the optimal in-plane lattice
constants for the single-layer, double-layer, and the bulk MoS2

and WSe2, resulting from the different methods employed
in our work. The optimal values of the in-plane lattice con-
stants for single-layer, double-layer, and bulk (within a single
method) differ by a maximum value of 0.01 Å, hence adopting
the value of the in-plane lattice constant of the single-layer in
the double-layer or bulk calculations entails a 0.01 Å “maxi-
mum error.”

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[2] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys,
A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi,
and N. Marzari, Nat. Nanotechnol. 13, 246 (2018).

[3] M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, Phys. Rev.
Lett. 118, 106101 (2017).

[4] S. Yang, P. Zhang, A. S. Nia, and X. Feng, Adv. Mater. 32,
1907857 (2020).

[5] A. K. Geim and I. V. Grigorieva, Nature (London) 499, 419
(2013).

[6] R. M. Martin, Electronic Structure: Basic Theory and Practical
Methods (Cambrige University Press, Cambridge, 2004).

[7] J. Klimeš, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83,
195131 (2011).

[8] G. Román-Pérez and J. M. Soler, Phys. Rev. Lett. 103, 096102
(2009).

[9] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth,
and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401
(2004).

[10] K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C.
Langreth, Phys. Rev. B 82, 081101(R) (2010).

[11] I. Hamada, Phys. Rev. B 89, 121103(R) (2014).
[12] H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Phys. Rev. X 6,

041005 (2016).
[13] S. Grimme, J. Comput. Chem. 27, 1787 (2006).

[14] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys.
132, 154104 (2010).

[15] S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32,
1456 (2011).

[16] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005
(2009).

[17] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys.
Rev. Lett. 108, 236402 (2012).
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