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Band structures are intrinsically influenced by the mode interaction in waveguide array, which can support
many intriguing phenomena such as negative refraction, on-chip lensing, and quantum-analog dynamics like
Bloch oscillation and topological interface transportation. Multiple branches of band may emerge due to the
comprehensive mode interactions associated with high-order photonic modes supported in high refractive index
dielectric waveguide. Furthermore, the number of photonic modes confined in a high-index waveguide is
determined by both the width and working frequency. Hence, the mode interaction and resultant band structure
can be effectively tuned by the frequency. As such, a diversity of equifrequency contours could be generated
and modulated among a wide frequency range, which, however, remains largely unexplored. Here, we present
several frequency-determined beam dynamics in a composite ternary plasmonic-dielectric waveguide array,
including collimation effect, angle-dependent beam branching/multibranching, conicallike beam diffraction.
Based on the evolution of the band structure, photonic Zitterbewegung effect and Klein tunneling can also be
observed. In contrast to the coherent coupling between symmetric and antisymmetric modes that gives rise to
the photonic Zitterbewegung effect, we show that three-mode coherent coupling in the ternary system can yield
a superimposed extreme oscillation of the beam. This represents an extension of the general Zitterbewegung
effect in photonic system. Additionally, the Klein tunneling sandwiched in two types of artificial waveguide
arrays with different Dirac points is demonstrated, and approximately unimpeded penetration is exhibited.
The configurations discussed here can be readily implemented in on-chip systems for a variety of potential
applications including wave routing, selectively directional coupling, and multiplexing.
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I. INTRODUCTION

Optical waveguide array is an important system for pho-
tonic integration and an ideal platform for optical simulation
research [1–5]. Due to the discretized nature of the waveguide
array, this system can mimic the regular atom arrangement in
crystalline lattices. As such, they can simulate many quasi-
particle behavior in condensed matter physics, such as the
Zitterbewegung effect and the topological localization [2,6–
9]. On the other hand, waveguide arrays can be applied to flex-
ibly control light on chip, including both the dispersion and
propagation. Through the engineering of the interwaveguide
coupling characteristics, a lot of interesting wave dynamics
have been demonstrated, such as negative refraction [10–12],
deep-subwavelength focusing [13,14], and Bloch oscillation
[15].

Notably, planar waveguide arrays have been actively in-
vestigated in both the fundamental and experimental aspects
[16–20]. With an effective negative index [21–23], the waveg-
uide arrays can mimic the hyperbolic metamaterials, wherein
many of the metamaterials with unusual properties and func-
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tionalities can be realized, particularly the superdiffraction
limit imaging [10]. Additionally, a well-engineered negative
dispersion can be achieved by a curved all-dielectric waveg-
uide array [24]. Generally, the dispersion engineering can be
assisted by the mode-coupling model. Basically, a 2 × 2 effec-
tive Hamiltonian is used to describe the two-mode coupling
case. For example, surface-plasmon localized modes at both
sides of the metal layer are coupled together which lead to
negative dispersion. While for composite plasmonic-dielectric
waveguide arrays, photonic modes coupled together, respec-
tively, via metal and dielectric layers can be understood as
a generalized Su-Schrieffer-Heeger model [25]. Then Dirac
points (DPs) at the Brillouin zone (BZ) center [16–20] and
the conicallike beam diffractions were observed [25]. Addi-
tionally, by suitably tuning the coupling in the waveguide
arrays, transitions between different topological phases can
happen, and corresponding edge states may emerge [7,20].
It is noteworthy that the mode coupling plays an important
role in constructing the required dispersion and controlling
the propagation of light [26]. By virtue of degrees of geom-
etry and frequency, the conicallike diffraction, the induced
photonic Zitterbewegung effect [27,28], and Klein tunneling
[26,29] have been widely investigated [30]. However, multiple
mode coupling and resultant behaviors have not been carefully
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FIG. 1. (a) Schematic of the planar waveguide array with unit
cell period �=∑4

i=1 di. (b) The dispersion in the space (kx, ky, λ).
The geometries are d1 = 50 nm, d2 = 10 nm, d3 = 50 nm, d4 =
200 nm.

reported, particularly for both plasmonic and photonic modes.
Due to the existence of multiple high-order photonic modes,
the intrinsic interactions become quite complex, which may
give rise to a diversity of band dispersions and a variety
of light propagation patterns. Thus, it would be desirable to
investigate the beam dynamics which would greatly extend
the functionalities of light transportation in such waveguide
arrays.

In this paper, we investigate the beam dynamics in planar
plasmonic-dielectric waveguide arrays (consisting of three
components and four layers) among a wide frequency region.
Firstly, for relatively short wavelengths, the waveguide arrays
can support the higher-order photonic modes in the high-index
dielectric waveguide. As such, three or four branches of mode
dispersion are present, giving rise to the beam multibranching.
More importantly, we show that, for two adjacent dispersion
branches around the DP, the back-and-forth coherent coupling
between the symmetric and antisymmetric modes raises the
oscillation of the beam, which mimics the Zitterbewegung
effect. More interestingly, the beam oscillation could be faster
when an additional mode (granted by the carefully designed
ternary system) is involved in the coupling process. Addition-
ally, the Klein tunneling can be observed in a heterojunction
by sandwiching two types of waveguide arrays with shifted
DPs. Note that without loss of generality, we consider a mul-
tilayered plasmonic-dielectric superlattice structure to model
the beam dynamics, while we believe that for strongly coupled
waveguide arrays in a quasi-three-dimensional (3D) planar
configuration, similar results are expected.

II. FREQUENCY-DEPENDENT BEAM STEERING
DYNAMICS

Figure 1(a) shows the schematic of the considered waveg-
uide arrays. It consists of a silver layer sandwiched by two
silica layers. The sandwich structure is connected by a silicon
slab periodically. The layers are of thickness d1, d2, d3, and
d4, as shown in Fig. 1(a). The refractive indices of silica and
silicon are n1 = n3 = 1.44 and n4 = 3.48, respectively. The
permittivity of silver is described by the Drude model ε2 =
ε∞ − ω2

p/ω(ω + iγ ) with permittivity ε∞ = 3.7, the plasmon
frequency ωp = 1.38 × 1016 rad/s, and the damping factor
γ = 2.73 × 1013 rad/s [31,32]. For simplicity, the loss of
silver is ignored in the following calculations. However, we

note that the loss does not affect the results qualitatively but
quantitatively.

Figure 1(b) shows the transverse magnetic (TM) band
structure of the proposed waveguide arrays. The results are
obtained by the theoretical transfer matrix method (TMM)
[33,34] and the Bloch theorem (see details in Appendix A).
Here, we have set the geometrical parameters as d1 = 50 nm,
d2 = 10 nm, d3 = 50 nm, and d4 = 200 nm, and the super-
lattice structure period as � = 310 nm. Note that the silicon
layer with such a relatively large width d4 can support high-
order photonic modes in the considered wavelength region
(λ = 500–1500 nm). The multiple bands in Fig. 1(b) result
from the mutual interactions between the second-order, first-
order, and zero-order photonic modes in the silicon slab
and the symmetric (even) and antisymmetric (odd) surface
plasmon polariton (SPP) modes in the sandwich dielectric-
metal-dielectric part [35]. It is seen that the neighboring bands
touch and cross at Bloch wavevector kx = 0 (BZ center) or
kx = π/� (BZ edge).

To examine the band structure more specifically, firstly, we
focus on the case of wavelength λ = 500 nm. The equifre-
quency contours (EFCs) are shown in Fig. 2(a), which is
simply a z slice of Fig. 1(b). For simplicity, only positive
propagation constants ky are presented. It is seen that four
branches of the EFC for the waveguide arrays are presented.
In Fig. 2(a), we have labeled them consequently from 1 to 4,
by the sequence of decreasing ky. The Hz field distributions
of the eigenstates at the BZ center for each band are plotted in
the insets of Fig. 2(a), where the geometrical center of the unit
cell is selected as the center of the silver layer [see Fig. 1(a)].
From these eigenstate patterns, it is quite easy to identify the
coupling mechanisms. More specifically, the first band (band
1) and the second band (band 2) originate from the interaction
between the zero-order photonic mode and the odd and even
SPP mode, respectively. While the third band (band 3) is
ascribed to the interaction between the first-order photonic
mode and the odd SPP mode, and the fourth band (band 4) is
ascribed to the interaction between the second-order photonic
mode and the even SPP mode [35]. Overall, regarding the
eigenstate symmetry with respect to the x direction, the modes
belonging to bands 1 and 3 are of odd symmetry; and on the
contrary, the modes belonging to bands 2 and 4 are of even
symmetry.

To analyze the diffraction and deflection of a light beam
coming from free space (air), it is instructive to superimpose
the light dispersion in Fig. 2(a), wherein we have shown
an additional green semicircle which represents the EFC in
air. It should be emphasized that bands 1 and 2 in Fig. 2(a)
are approximately flat. For these flat bands, the propagation
of an incident beam with an arbitrary incident angle mostly
keeps propagating along the y axis in the structure. This is
determined by the conservation of the Bloch wave number kx

along the interface and the direction of group velocity [see the
small arrows in Fig. 2(a)]. Figure 2(b) shows the full wave
calculated results using the finite element method (FEM) for
light propagation with a normal incident (θ = 0◦) Gaussian
beam. It keeps approximately straight and diffractionless after
injecting into the structure since both bands 3 and 4 have
group velocity toward the +y direction near kx = 0. Slight
diffraction is visible which originates from bands 3 and 4.
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FIG. 2. Beam propagation analysis and dynamics simulation for λ = 500 nm. (a) Equifrequency contours (EFCs) in the waveguide arrays
and free space. Insets are |Hz| patterns of the corresponding eigenmode at kx = 0. (b) and (c) Gaussian beam excitation and diffraction pattern
in the structure. The horizontal dashed line marks the structure-air interface. (d) and (e) Spatial Fourier spectra Hz of the diffraction patterns
in (c) and (d). (b) and (d) are for normal incidence, while (c) and (e) are for incident angle θ = 30◦. Dash-dotted curves are the calculated EFC
by the semi-analytical transfer matrix method (TMM) approach.

However, as the incident angle is set to θ = 30◦, the incident
beam branches right at the incident port to an angle ϕ ≈ 39◦
[see Fig. 2(c)], in addition to the normal propagation. These
deflections have been marked by the vertical dotted line in
Fig. 2(a), which intersects with band 4 and predicts the diffrac-
tion direction guided by the red arrow.

To carefully analyze the compositions of the refracted
beams, we have calculated the Fourier transform of the Hz

distribution in Figs. 2(b) and 2(c). The corresponding spa-
tial Fourier spectra |Hz| are shown in Figs. 2(d) and 2(e),
respectively. Clearly, for normal incidence, only the modes
belonging to bands 2 and 4 are excited. This is in accord
with the expectation from the mode symmetry analysis: as
revealed in Fig. 1(a), in reference to the unit cell center (e.g.,
silver layer center), both the mode patterns and the Gaussian
beam field are of even symmetry in the x direction. Modes in
bands 1 and 3 are of odd symmetry and not excitable due to
symmetry mismatch. On the contrary, for oblique incidence,
one would expect that modes in all bands (1–4) are involved in
the excitation. However, it is seen in Fig. 2(e) that the Fourier
component is not obvious (almost invisible) in band 1. We
ascribe this to possible weak excitation due to the extremely
high ky (in this case ky ≈ 4k0), although the beam scattering
at the structure-air boundary could generate arbitrary high-k
diffraction components into both directions.

To investigate the frequency-dependent characteristics,
we further increase the wavelength. Particularly, at λ =
607.83 nm, which cuts through a DP at the BZ center, the
bands 1 and 2 cross each other at this degeneracy point. Due to
the linear intersection in the vicinity of the BZ center, a normal

incident Gaussian beam would produce the conicallike beam
diffraction that mimics a massless Dirac particle [36,37], as
shown in Fig. 3(a). Simultaneously, there remain some side
diffractions along with the main branches. Again, the origin
can be identified through the spatial Fourier spectrum shown

FIG. 3. Simulated beam dynamics for λ = 607.83 nm. (a) and (c)
|Hz| pattern and (b) and (d) the corresponding spatial Fourier spectra.
The incident angle for the upper and lower panels are 0◦ and 30◦,
respectively.
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FIG. 4. Simulated beam dynamic for λ = 634.9 nm. (a) |Hz|
pattern and (b) the corresponding spatial Fourier spectra Hz by the
normal incidence of Gaussian beam.

in Fig. 3(b). The EFC of the structures at λ = 607.83 nm is
also superimposed as dash-dotted (white) curves. Clearly, in
addition to modes near the linear intersection point between
bands 1 and 2, the modes belonging to band 4 are excited,
which are allowed by symmetry, yet modes in band 3 remain
unexcitable, as protected by symmetry.

Due to the distinct slopes of the dispersive bands, the
diffracted wave of an oblique incident beam can be efficiently
split into four branches. Figure 3(c) shows the beam prop-
agation with the specific incident angle θ = 30◦. Four main
branches are observed: two are on the left side of the y axis,
and the other two are on the right, representing negative and
positive refractions, respectively. The components and the
direction of these refractions can be obtained by the Fourier
transform in Fig. 3(d), which is consistent with the EFC
of the structure at λ = 607.83 nm. We have found that the
multibranching behaviors are not sensitive to the silver loss
but show different decaying rate for diffractive beams at the
large angle and the small angle. The details are referred to in
Appendix B.

Note that, as the wavelength increases, bands 3 and 4
continue to approach, and the gap is reduced, and they finally
merge into another DP at λ = 634.9 nm. Certainly, conicallike
beam diffraction is still observed upon the normal incidence
of the Gaussian beam, as shown in Fig. 4(a). Additionally, we
see a large portion of light propagating along the y axis. The

origin of the beam behaviors is clarified by the spatial Fourier
spectrum shown in Fig. 4(b). From the superimposed EFC
of the structures, we can conclude that the modes in bands
2, 3, and 4 are excited noticeably. However, in contrast to
Fig. 2(a), the x direction symmetry of the modes belonging
to the upmost band at the BZ center is changed to even. To
distinguish these bands, we label these bands based on the
symmetry of the eigenstates at BZ center. Then bands 1 and
2 are switched with respect to the results in Fig. 2. At the
same time, band 1 is approximately flat around the BZ center,
which gives rise to the central portion of the diffractive wave
in Fig. 4(a). On the other hand, the crossing cone angle is
larger than that in Fig. 3, which is responsible for the large
refraction angle for the two obvious side branches in Fig. 4(a).

Particularly, we note that band 4 in Fig. 4(b) is gradually
absent from the BZ edge. Indeed, it could be totally absent
across the entire BZ as the wavelength keeps increasing. For
instance, Fig. 5 shows the results for wavelength λ = 700 nm.
Figure 5(a) shows the propagation pattern of a normal incident
Gaussian beam. Figure 5(b) shows the EFC-superimposed
Fourier transform of the propagation pattern in Fig. 5(a). It
is seen that only modes in bands 2 and 4 are excited. Band 3
is totally not present in this working frequency.

III. PHOTONIC ZITTERBEWEGUNG EFFECT

From the propagation patterns and the associated spatial
Fourier spectra, we have clearly demonstrated the various
beam dynamics with respect to the frequency-dependent
evolution of the EFC. Additionally, the coherent coupling
between the excited eigenstates may lead to beam oscillation.
It has been revealed that an optical analog of the Zitterbewe-
gung effect resembles the trembling motion of Dirac electrons
caused by the interference between the positive and negative
energy states [2]. Note that the beam propagation in the mul-
tilayered systems shows oscillation patterns at the frequency
either below or above the DP, due to the back-and-forth co-
herent coupling between the symmetric and antisymmetric
modes [38]. To characterize the associated beam oscillation
in our ternary plasmonic-dielectric waveguide arrays, the
oscillation of the beam is described by the beam center defined

FIG. 5. Simulated beam dynamic for λ = 700 nm. (a) |Hz| pattern and (b) the corresponding spatial Fourier spectra Hz by the normal
incidence of Gaussian beam. (c) The trajectory of the beam center xc in the waveguide array. The red curves are the finite element method
(FEM) results, and the blue is the corresponding averages of the positions.
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FIG. 6. Like Fig. 5 but with an alternative wavelength λ = 1000 nm.

as [38,39]

xc(y) =
∫ +∞

−∞
|E(x)|2xdx

/ ∫ +∞

−∞
|E(x)|2dx. (1)

Generally, symmetric and antisymmetric modes at the BZ
edge or center in the vicinity of DPs contribute to the beam
propagation patterns of the Zitterbewegung effect, while for
the case of normal incidence, the antisymmetric mode cannot
be excited as discussed in the proceeding part. To excite the
antisymmetric mode at the BZ center, breaking the symmetry
protection between the source and the antisymmetric mode
is necessary. Laterally shifting the center of the Gaussian
beam away from the center of the unit cell and adding a
slight angle of the incident beam are two feasible schemes.
Here, we choose an incident angle θ = 0.5◦ for the demon-
stration. Figure 5(c) plots the obtained beam center xc(y) vs
the propagating distance y, as extracted from the wave dy-
namics simulation with the FEM [e.g., like Fig. 5(a)]. Clearly,
the trajectory (red curve) vibrates differently from those in
previously reported work [2,38]. To elucidate the origin, we
further analyze the components of the involved modes. Due
to the oblique incidence, the modes of bands 2 and 1 around
kx = 0 are excited with ky2 ≈ 3.083k0 and ky1 ≈ 2.941k0 in
Fig. 5(b). The back-and-forth coherent coupling between
these two modes can lead to the oscillation of the propa-
gating pattern with an approximate period η = 2π/�ky =
2π/(ky2 − ky1) ≈ 4933 nm. This coincides with the period
of the blue curve (the averages of the beam center posi-
tions) in Fig. 5(c). Simultaneously, the mode with ky4 ≈ 1.4k0

belonging to band 4 is excited ky3 = 1.4k0 and coherently
coupled with the mode in band 2. The corresponding period
of beam center measured by xc(y) is η = 2π/(ky2 − ky4) ≈
416 nm. This also coincides with the FEM simulation results,
as shown in the inset of Fig. 5(c). The coherent coupling
among modes in the three different bands can produce faster
vibration of the beam center. This serves as the extension of
the photonic Zitterbewegung effect to cases of more than two
bands.

The three-mode coupling case is reduced to the two-mode
coupling case with further increased wavelength. Here, we
select λ = 1000 nm as an example. Figure 6(a) shows the
propagation pattern like that in Fig. 5(a). In this case, the band
dispersion is superimposed in Fig. 6(b). Clearly, band 4 is

absent around the BZ center, and only two modes belonging to
bands 1 and 2 contribute to the oscillation of the beam center,
as shown in Fig. 6(c). Like Fig. 5, to excite the antisymmetric
mode of band 1, a small angle is introduced into the Gaussian
beam. In such a case, the eigenmodes at the BZ center with the
propagation constants ky2 ≈ 2.767k0 and ky1 ≈ 2.625k0 are
excited, and the induced Zitterbewegung effect has oscillation
period η = 2π/(ky2 − ky1) ≈ 7042 nm. This is also consistent
with the FEM result shown in Fig. 6(c).

Another scheme to excite the antisymmetric mode is shift-
ing the center of the incident beam away from the unit cell
center laterally. In this case, we further analyze the effect of
the damping factor in the Drude model on the beam prop-
agation and the Zitterbewegung effect. Figure 7(a) shows
the beam propagation pattern for the case of γ = 2.73 ×
1013 rad/s used in the Drude model. The attenuation is not
significant. Figure 7(b) clearly shows that the strength of the
beam oscillation is significantly suppressed for the left colored
curve, in contrast to the right curve for the exact case without
loss. Certainly, the absorption loss of silver would affect the
oscillation strength of the Zitterbewegung effect. However, the
decaying is quite slow, in similarity to the case of hybrid SPP
[40,41].

It is well known that the Zitterbewegung effect is expected
to be observed around DP. In our case, the DP at BZ center
locates at λ = 607.83 nm for bands 1 and 2. However, we

FIG. 7. Simulated beam dynamic for λ = 1000 nm. (a) |Hz| pat-
tern and (b) the trajectory of the beam center xc in the waveguide
arrays. Here, the loss of silver is considered, namely, we use γ =
2.73 × 1013 rad/s. Color of the beam center curve indicates total
power across the corresponding y plane.
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FIG. 8. (a) The band structure for the original waveguide ar-
ray S1 (red curves) and the modified waveguide array S2 (blue
curves). (b) The equifrequency contours (EFCs) at the wavelength
λ = 700 nm. (c) The transmission of the heterojunction S1-S2-S1 vs
the propagation constant ky. The gray regions in (b) and (c) indicate
the overlapped EFCs of S1 and S2. The black (orange) curve in (c)
is for the waveguide array S2 with periods 5 (10).

have demonstrated that the Zitterbewegung effect can happen
not only related to the coherent coupling between two modes
but may also be extended to the coherent coupling among
three modes. Particularly, the oscillation of the beam center
becomes more interesting than the prediction from the DP
crossing from a two-band model. Indeed, the Zitterbewegung
effect can be observed at the wavelength far away from the
DP, for instance, λ = 1250 nm, which is shown in Appendix
C. This is due to the mutual interactions among multiple
modes and the resultant small bandgap around the degeneracy
point exactly at λ = 607.83 nm. Additionally, the effects of
the beam width, the offset between the centers of the unit
cell and the Gaussian beam, and the loss of silver are care-
fully investigated and justify this observation (results can be
found in Appendix D). Once the antisymmetric modes are
excited, the Zitterbewegung effect can be observed easily in
our system. The beam waist mainly influences the oscillation
phase and has a negligible effect on the oscillation period. As
for the different offsets, the oscillation patterns show fixed
beam center profile. In addition to the losses of silver, the
effects of the disorder in the thickness have also been carefully
discussed in Appendix E.

IV. PHOTONIC KLEIN TUNNELING

The photonic analog of Klein tunneling has been unam-
biguously observed near DPs in waveguide arrays [26,29].
The unity transmission of the tunneling is usually observed
in the heterojunction composed of sandwiched artificial struc-
tures with shifted DPs [42]. We note that, in the band structure
of Fig. 1(b), the Dirac cones appear at the BZ center. As
aforementioned, the lowest-λ DP is derived from the higher-
order photonic modes in silicon waveguide. As such, the
spectral position of this DP can be tuned by varying the

FIG. 9. (a) The field distribution of magnetic component Hz with
ky = 1.54k0 in the heterojunction S1-S2-S1. (b) The intensity dis-
tribution of the field excited by the Gaussian source with a main
propagation constant ky = 1.54k0. (c) The wave propagation with
a Gaussian source incident into the interface between the air and
the S1-S2 connection with an incident angle. The white dashed line
indicates the interface between different waveguide arrays S1 and S2.

width of the silicon layer d4. We then choose modified
waveguide arrays with d1 = d3 = 35 nm, d2 = 10 nm, d4 =
280 nm, termed S2, and the original waveguide arrays stud-
ied in Fig. 1(b) (termed S1) to construct a heterojunction.
Figure 8(a) shows the results at the BZ center (kx = 0) for
the waveguide arrays S1 (red curves) and S2 (blue curves),
respectively. The degeneracy between the symmetric and
antisymmetric modes leads to band crossing, marking the
emergence of DPs. The frequency for the presence of Klein
tunneling falls between the dispersion curve intersections of
two waveguide arrays [26]. Note that, for the upper bands,
only one intersection is present, and this may contribute to the
low transmission in the combined heterojunction discussed
below.

Figure 8(b) shows the EFCs for wavelength λ = 700 nm
that is between the two DPs in Fig. 8(a). When passing
a potential barrier, the energy and momentum along the
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interface are conserved. As such, the component of the waves
ky is fixed when the light passes through the interface between
two different waveguide arrays. Therefore, one of the pre-
requisite conditions for the Klein tunneling is the overlapped
EFCs between S1 and S2, i.e., the gray region in Fig. 8(b),
sharing the same propagation constant ky. To further charac-
terize the tunneling efficiency, we calculate the transmission
of the combined heterojunction S1-S2-S1 with different bar-
rier width of S2. Note that the boundary condition is periodic
along the y axis. Figure 8(c) shows the obtained transmission
by TMM. Results of different width (5 and 10 periods) of the
potential barrier, i.e., waveguide array S2, are both shown.
Clearly, unity transmission for the lower gray zone can be
achieved for both cases.

Figure 9(a) shows the Hz field profile with the propa-
gation wavenumber ky = 1.54k0, locating at the lower zone
in Fig. 8(c). Clearly, the wave can totally tunnel into the
potential barrier (waveguide array S2 with 10 periods) and
further tunnel into the waveguide array S1. To demonstrate
the Klein tunneling more clearly, a Gaussian beam is launched
into the heterojunction from the left port with an approximate
propagation constant ky along the interface. Figure 9(b) shows
that a main portion of the power passes through the interface
between S1 and S2 and subsequently between S2 and S1.
Only a small portion of power is reflected, which mainly
comes from the wide distribution of the wave vectors resulting
from the finite-width Gaussian beam. Figure 9(c) shows the
situation that the Gaussian beam obliquely incidents from the
bottom of the waveguide arrays into waveguide array S1 (like
the case in Fig. 2). Due to the multiple EFC branches, two
dominant beams propagate toward the S1/S2 interface with
different angles and refract since both fall in the tunneling
zone (shaded region) shown in Fig. 8(b). The difference is that
the large diffraction angle beam (the lower one) can nearly
totally pass through the interface S1/S2, while only a portion
of the small diffraction angle beam (the upper one) can tunnel
into the waveguide array S2.

V. CONCLUSIONS

A few comments are in order before the conclusion. The
efforts in this paper mainly focus on the beam dynam-
ics modulated by the multiple mode interactions. Certainly,
the ternary system and the abundant mode coupling dy-
namics can be extended to quasi-3D planar configuration
and on-chip integrated systems. It is highly desirable to
break the periodic symmetry to turn the structure toward
the nonperiodic type. For example, one can expect opti-
cal Bloch oscillation by imposing linear gradient of the
propagation constants via geometrical variation [43–45].
Furthermore, by involving modulation in additional di-
mensions such as the gain-loss degree of freedom, it is
possible to explore parity-time symmetry-induced compli-
cated non-Hermitian optical dynamics [46–48]. The interplay
between the non-Hermiticity and topology degrees of free-
dom enables intriguing light propagation, including robust
optical coupling and the topological modes [8,49–51]. Ad-
ditionally, the imaginary-mass particles may be simulated
in our system by extension to non-Hermitian waveguide
arrays [52].

In summary, we have investigated the beam dynamics in
ternary plasmonic-dielectric waveguide arrays. Due to the
presence of the high-order photonic modes, interactions be-
tween the plasmonic and photonic modes give rise to the
intriguing evolution of the band dispersion. Near the degen-
eracy around the BZ center and edge, a variety of beam
propagation engineering can be achieved, including the angle-
dependent beam branching/multibranching, conicallike beam
diffraction. Furthermore, it is demonstrated that the Zitterbe-
wegung effect induced by the coherent coupling between two
modes around the DP is present for a wide wavelength range
because of two very flat touching bands. Particularly, a fast
vibration of the beam center acts as an extension of the typical
Zitterbewegung effect due to the coherent coupling among
extra modes that differs more in the propagation moment.
Additionally, the appropriate unity transmission of the Klein
tunneling can be observed. The strong frequency-dependent
beam dynamics can be utilized to control on-chip light propa-
gation control, including wave routing, selectively directional
coupling, and multiplexing/demultiplexing.
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APPENDIX A: DERIVATION OF THE DISPERSION
RELATION

The TMM is utilized to obtain the band structure of the
multilayered stacks, as shown in Fig. 1 of the main text. The
relation between the incident and scattering waves can be
characterized by a 2 × 2 matrix. Thus, the transfer matrix at
the interface from layer m to layer n is given by

Mmn = 1

2

[
1+υmn
υmn

−1+υmn
υmn

−1+υmn
υmn

1+υmn
υmn

]
, (A1)

where υmn = εmkn/εnkm, km =
√

k2
0εm − k2

y , with m =
1, 2, 3, 4.

The propagation matrix in layer m is described by

Mm =
[

exp ( jkmdm) 0
0 exp (− jkmdm)

]
, (A2)

where dm is the thickness of the layer m. Then the transfer
matrix of a unit cell is

M = M41M4M34M3M23M2M12M1. (A3)

According to the Bloch theorem, the dispersion relation
can be expressed as

cos (kx�) = 1
2 Tr(M), (A4)

with kx the Bloch wave vector, � the thickness of the lattice
supercell, and Tr(M) the trace of M in Eq. (A3). To get the
definite expression, we transfer Eq. (A3) into two parts; each
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of them consists of two layers:

M′
12 = M23M2M12M1 =

[
m11 m12

m21 m22

]
, (A5)

M′
34 = M41M4M34M3 =

[
m′

11 m′
12

m′
21 m′

22

]
. (A6)

Each element of these two matrices reads

m11 = e jκ1

2
[(υ31 + 1) cos κ2 + j(υ32 + υ21) sin κ2], (A7)

m12 = e− jκ1

2
[(−υ31 + 1) cos κ2 + j(υ32 − υ21) sin κ2],

(A8)

m21 = e jκ1

2
[(−υ31 + 1) cos κ2 + j(−υ32 + υ21) sin κ2],

(A9)

m22 = e− jκ1

2
[(υ31 + 1) cos κ2 − j(υ32 + υ21) sin κ2], (A10)

m′
11 = e jκ3

2
[(υ13 + 1) cos κ4 + j(υ43 + υ14) sin κ4], (A11)

m′
12 = e− jκ3

2
[(−υ13 + 1) cos κ4 + j(−υ43 + υ14) sin κ4],

(A12)

m′
21 = e jκ3

2
[(−υ13 + 1) cos κ4 + j(υ43 − υ14) sin κ4],

(A13)

m′
22 = e− jκ3

2
[(υ13+ 1) cos κ4 − j(υ43+ υ14) sin κ4], (A14)

where υmn = εmkn/εnkm and κm = kmdm. From Eqs. (A7)–
(A14), we can further simplify the expression if the first
and the third layers are identical, i.e., υ13 = 1. In this case,
Eq. (A4) reads

4 cos (kx�)

�
= 4 +

(
υ24 + 1

υ24
− υ21υ34 − 1

υ21υ34

)
tan κ2 tan κ4 cos (κ1 − κ3)

cos (κ1 + κ3)
− 2(υ14 + υ43) tan κ4 tan (κ1 + κ3)

− 2(υ21 + υ32) tan κ2 tan (κ1 + κ3) −
(

υ24 + 1

υ24
+ υ21υ34 + 1

υ21υ34

)
tan κ2 tan κ4. (A15)

APPENDIX B: LOSS EFFECT ON THE BEAM BRANCHING

In the main text, we have systematically investigated the
multibranching of the beam propagation without considering
the loss factor of silver. Considering the realistic case, the
loss can affect the propagation. Here, we select the situation
in Fig. 3(c) in the main text as an example to describe the
effect of the reflection in the presence of loss in the silver
layers. Figure 10 shows the corresponding beam propagation
upon the oblique incident of the Gaussian beam. Clearly,

FIG. 10. Simulated |Hz| pattern for λ = 607.83 nm in the pres-
ence of loss in the silver layer for incoming beam at incident angle
30◦. The four-branched diffractive beam experiences distinct attenu-
ation, depending on the corresponding mode pattern and its origin.

the multibranching behavior of the beam remains but with
different damping rates for different branches. The central
two branches originating from the upper two bands decay
quite faster than the outer branches, resulting from the lower
two bands. This is due to the different imaginary part of
the eigenstates excited by the oblique incident beam. The
free space k0 normalized propagation constants are, respec-
tively, ky/k0 = 3.50−0.0237i, 3.15−0.0016i, 2.1−0.0009i,
and 1.03−0.0012i for the excited modes in bands 1, 2, 3, and
4. Clearly, those in bands 3 and 4 have relatively small imag-
inary parts. In other words, the refracted beams originating
from the lower two bands can propagate with less attenuation
(see Fig. 10).

APPENDIX C: PHOTONIC ZITTERBEWEGUNG EFFECT
IN A WIDE WAVELENGTH RANGE

It is quite interesting that the system we proposed sup-
ports the Zitterbewegung effect for operating wavelength from
around λ = 700 to 1500 nm, enabled by the fact that the two
bands 1 and 2 in Fig. 1(b) are flat and nearly parallel. This
could be an ideal platform for experimental observation since
it is not sensitive to the working frequency. Figure 11 shows
the case for λ = 1250 nm.

APPENDIX D: EFFECTS OF BEAM CENTER OFFSET AND
BEAM WIDTH ON THE ZITTERBEWEGUNG EFFECT

As described in the main text, we have mentioned that there
are two different schemes for breaking the phase mismatching
between the Gaussian beam and the antisymmetric mode. The
details for the scheme by introducing a nonzero incident angle
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FIG. 11. Simulated beam dynamic for λ = 1250 nm. (a) |Hz| pattern and (b) the corresponding spatial Fourier spectra Hz by the normal
incidence of Gaussian beam. (c) The trajectory of the beam center xc in the waveguide array.

are described in the main text. Here, we focus on the other
scheme. Moving the center of the incident beam away from
the unit cell center can also lead to the excitation of the anti-
symmetric mode. Figure 12(a) shows the beam dynamics for
a specific offset distance �x = −50 nm between the centers
of the unit cell and the normal incident beam center. Clearly,
the propagation pattern is like Fig. 6(a). From the trajectory
of the beam center in Fig. 11(b), we can find that the beam
center exhibits similar oscillation for �x = −50, −100, and
−150 nm. All cases have the same oscillation period as that in
Fig. 6(c).

To investigate the effects of the offset distance �x and the
incident Gaussian beam width w0 on the photonic Zitterbewe-
gung effect, we have chosen three different offsets to examine
the propagation and oscillation. Figure 12(b) clearly shows the
offset �x does not affect the oscillation pattern for the fixed
incoming beam profile.

Notice that the Gaussian beam can be regarded as a su-
perposition of plane wave directed toward different angles
deviating from the beam axis. For a narrow beam waist, it
contains more of a high transverse moment component, while
for a wider beam waist, it approximately represents a plane
wave going along the beam axis. Therefore, the beam waist
would affect the diffraction and beam dynamics in the struc-

ture. Provided that the antisymmetric mode is excited and is
coherently coupled with the symmetric mode, the Zitterbe-
wegung effect is always observed. Figure 12(c) shows that
different beam width mainly influences the oscillation phase
and has a negligible effect on the oscillation period.

APPENDIX E: EFFECTS OF DISORDER

In addition to the losses, the relatively small technological
fabrication imperfections do not dramatically change the bulk
band structure and may give rise to additional defect states.
To demonstrate these, we further investigate the structure by
introducing some disorder. In the structure under the incident
beam coverage, a thickness shift δd = 0.05d1 is introduced
for the silica layer, i.e., the thicknesses of the silica layers
shown in the inset of Fig. 13 are set to, respectively, d2 + δd
and d1 − δd . Figure 13(a) shows the full wave simulated beam
branching dynamics. Clearly, the main refracted beams are
consistent with the periodic case [like Fig. 3(c)]. Simulta-
neously, there exists an additional branch which propagates
along the y direction. This is due to the defect states induced
by the disorder of the lattice. In terms of the photonic Zit-
terbewegung effect, the disorder plays a significant role in
the excitation of the Zitterbewegung effect. In Appendix D,

FIG. 12. Full wave simulated beam dynamic for λ = 1000 nm. (a) |Hz| pattern and (b) the trajectory of the beam center xc in the waveguide
array.
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FIG. 13. Simulated beam dynamics of the disorder in the thickness. (a) |Hz| pattern at λ = 607.83 nm and incident angle θ = 30◦. (b) |Hz|
pattern at λ = 1000 nm and (c) the obtained beam center xc in the waveguide array. Inset shows the applied disorder in the thickness of the
silica layer.

it has been illustrated that the offset between the incident
beam center and unit cell center can lead to the excitation of
the antisymmetric mode and the resultant beam oscillation.
Here, the introduction of structure disorder breaks the sym-

metry confinement; therefore, the coherent coupling of the
modes in the vicinity of the DPs is induced, and the resultant
beam oscillation can be observed as shown in Figs. 13(b)
and 13(c).
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