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SU(4) spin waves in the ν = ±1 quantum Hall ferromagnet in graphene
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We study generalized spin waves in graphene under a strong magnetic field when the Landau-level filling
factor is ν = ±1. In this case, the ground state is a particular SU(4) quantum Hall ferromagnet, in which not
only the physical spin is fully polarized but also the pseudospin associated with the valley degree of freedom.
The nature of the ground state and the spin-valley polarization depend on explicit symmetry-breaking terms
that are also reflected in the generalized spin-wave spectrum. In addition to pure spin waves, one encounters
valley-pseudospin waves as well as more exotic entanglement waves that have a mixed spin-valley character.
Most saliently, the SU(4) symmetry-breaking terms not only yield gaps in the spectra, but also under certain
circumstances, namely, in the case of residual ground-state symmetries, render the originally quadratic (in the
wave vector) spin-wave dispersion linear.
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I. INTRODUCTION

Graphene, a one-atom-thick layer of carbon atoms ar-
ranged in a honeycomb lattice, is the prototype of a large class
of two-dimensional (2D) materials such as transition metal
dichalchogenoids [1], van der Waals heterostructures [2], or
twisted bilayers [3] and multilayers [4] that present striking
properties such as topological, correlated, or superconducting
phases. It is the paradigm of Dirac fermions in condensed
matter since its dispersion is described by the Dirac-Weyl
equation in two dimensions [5,6]. These fermions come in two
flavors with different chiralities, represented here by the valley
index, which acts as an effective “pseudospin.”

Upon the application of a magnetic field B perpendicular
to the graphene plane, the relativistic character of the Dirac
fermions is at the origin of an anomalous quantum Hall effect.
While the effect is still a consequence of the quantization of
the electrons’ energy into highly degenerate Landau levels
(LLs), the latter inherit from the B = 0 system a twofold
valley degeneracy, in addition to the spin degeneracy, such
that the low-energy Hamiltonian is invariant under SU(4)
spin-valley transformations. This SU(4) symmetry is further-
more respected to leading order by the Coulomb interaction
between the electrons, which constitutes the dominant energy
scale in partially filled LLs due to the flatness of the latter.
If only some spin-valley branches of a specific LL are filled,
all the electrons inside this LL choose to spontaneously break
the SU(4) symmetry and to be polarized in a certain spin and
pseudospin state. This marks the onset of SU(4) quantum Hall
ferromagnetism [7–10].

The physics inside a LL is thus dominated by the Coulomb
interaction EC = e2/εlB = 625

√
B[T ]K/ε, where ε is the di-

electric constant of the environment the graphene sheet is
embedded into, and lB = √

h̄/eB is the magnetic length. How-
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ever, at much smaller energies, explicit symmetry-breaking
terms become relevant, such as the Zeeman term, short-range
electron-electron interactions, electron-phonon interactions,
or coupling to the substrate [11–15]. These symmetry-
breaking terms, which happen to be all on the same order
of magnitude, determine thus the spin-valley polarization of
the ground state. At half-filling of the n = 0 LL (ν = 0)
several phases have been proposed such as a ferromagnetic
(F), charge density wave (CDW), Kekulé distortion (KD), and
canted antiferromagnetic (CAF) phase as a function of the
symmetry-breaking terms [15–18]. Notice that there is exper-
imental evidence for three of these phases [19–21], indicating
that the nature of the SU(4) ferromagnetic ground state may be
sample and/or substrate dependent. At quarter filling ν = ±1,
the signs are related by particle-hole symmetry; the phase
diagram has been obtained by Lian et al. [22] using the same
symmetry-breaking terms as Kharitonov [15], and one obtains
similar phases as in the ν = 0 case.

Spin waves are the lowest energy excitations in a fer-
romagnet. They have been observed in a wide variety of
materials [23–29] and are promising platforms for spintron-
ics [30,31]. In a 2D electron gas (2DEG) in GaAs/AlGaAs
heterostructures at filling ν = 1, the first example of a quan-
tum Hall ferromagnet, the ground state consists of all spins
pointing in the direction of the magnetic field, and the spin
waves correspond simply to the precession of the spins around
their ground-state position. Generalized spin waves have also
been extensively studied and observed in bilayer 2DEGs
where the layer index plays the role of the pseudospin. When
the distance d is on the order of the magnetic length lB,
quantum Hall ferromagnetism of the layer pseudospin is ob-
served and manifests itself in the form of a global phase
coherence between electrons in the two layers [32,33]. At
ν = 1 (quarter filling of the n = 0 LL), the ground state is
an interlayer coherent state where each electron is in a su-
perposition of the two layers, and the physical spin is fully
polarized. This ground state can be viewed as a conden-
sate of electron-hole pairs which then possesses a gapless,
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linearly dispersing superfluid mode [34–37]. This mode was
observed experimentally [38] using tunneling spectroscopy.
Put differently, this superfluid mode is associated with a U(1)
symmetry of the ground state that corresponds to the phase
of the electron-hole superposition. At ν = 2 (half-filling of
the n = 0 LL), one is confronted with a frustrated situation:
a complete spin polarization excludes a full pseudospin polar-
ization, and vice versa. Depending on the relative strength of
the Zeeman and interlayer tunneling term, the ground state can
thus be a spin ferromagnet, a spin singlet, or an intermediate
phase with CAF order [39,40]. The dispersion of the modes
at ν = 2 are presented in Ref. [41]. The peculiarity of the
CAF phase is that it possesses a U(1) symmetry associated
with the invariance under spin rotation around the z axis.
Such a symmetry implies also a gapless linearly dispersing
mode which was observed experimentally by inelastic light
scattering [42] and nuclear magnetic resonance [43,44].

In graphene, due to the SU(4) spin-valley symmetry, one
can have valley pseudospin waves in addition to spin waves,
and what we call “entanglement” waves of mixed spin-valley
character. Recent experiments [45–48] have managed to elec-
trically emit and detect spin waves [49] using local gates.
This is a highly promising result in the prospective of probing
and controlling the spin degree of freedom in quantum-Hall
systems. So far, the observed threshold for the emission of a
spin wave is equal to the size of the Zeeman gap, a strong in-
dication of the emission a pure spin wave. However, Ref. [50]
has suggested a setup susceptible to generate valley waves at
the edge located at the interface between two regions with
filling factors (ν1, ν2) = (+1,−1). The full dispersion rela-
tion of spin waves in graphene at ν = 0 has been studied in
Refs. [51] and [52], while the low-energy dispersion and gaps
of the KD and CAF state spin waves was obtained using a
nonlinear sigma model in Ref. [53], which showed the pres-
ence of gapless linearly dispersing modes in these two phases.
Reference [50] has studied the transmission of spin waves at
a junction between regions with different filling factors.

Motivated by these recent experiments considering inter-
faces between regions at ν = 1, 0, and −1, we present in
this paper a classification of the dispersion relations and the
associated gaps in the graphene quantum Hall ferromagnet at
ν = 1(−1) when one sub-LL is empty (filled). We consider
the spin waves in the four phases introduced in Ref. [22]
with the addition of a “valley Zeeman” term. However, since
this term does not modify substantially the phases but rather
the location of their phase transitions, we consider only the
dispersion in the phases of Ref. [22]. At ν = −1, there are
three Goldstone modes corresponding to flipping one electron
from the filled sub-LL to each one of the three empty sub-LLs.
In the simple phases such as KD or CDW, the three modes
correspond to a pure spin wave, a pseudospin wave, and
an entanglement wave. We derive a nonlinear sigma model
valid at long wave lengths generalized to the CP3 coset space
corresponding to the space of broken symmetries. In the ab-
sence of explicit symmetry-breaking terms at low energies, all
the dispersions are gapless and quadratic in the wave vector,
corresponding thus to true Goldstone modes. In the presence
of the symmetry-breaking terms, some modes acquire a gap,
while others remain gapless but acquire a linear dispersion
relation until a certain momentum at which they recover their

quadratic dispersion at higher momentum. We find that this
behavior originates from a residual symmetry of the ground
state. We also find that at several high-symmetry points in
the phase diagram, some originally gapped modes become
gapless.

The paper is organized as follows. In Sec. II we present
the phase diagram originally introduced in Ref. [22] using a
different labeling for the phases and also discuss the intro-
duction of a valley Zeeman term. In Sec. III we present our
nonlinear sigma model using a Lagrangian formalism, while
in Sec. IV we present our results for the dispersion relation in
the different regions of the phase diagram. In the conclusion
section, we present a summary of the various spin waves one
encounters in each phase, in view of their dispersion, i.e.,
whether they are quadratic and gapped or linear and gapless.

II. QHFM GROUND STATE

In a single-particle picture, flat Landau levels (LLs) are
formed in graphene under a magnetic field with energies
Eλn = λh̄ωc

√
n where λ = ± is the band index, n is the LL

index, ωc = √
2v/lB is the cyclotron energy, and v is the

Fermi velocity of graphene. For a sufficiently strong magnetic
field, the low-energy physics of a quantum Hall ferromagnet
in the n = 0 LL is dominated by the Coulomb interaction

V̂C = 1

2A
∑
q �=0

v(q)ρ̄(q)ρ̄(−q) (1)

in terms of the Coulomb potential multiplied by the lowest
Landau level (LLL) form factor,

v(q) = 2πe2

ε|q| |F0(q)|2, (2)

where A is the area of the sample and F0(q) is the form
factor of the LLL (see, e.g., Ref. [9]). Furthermore, ρ̄(q)
represents the density operator in momentum space projected
into the LLL. This Hamiltonian is approximately SU(4) in-
variant under spin-valley rotations. The exchange terms favor
a completely antisymmetric orbital wave function to mini-
mize the Coulomb repulsion, which then favors a completely
symmetric spin-valley spinor. At filling ν = −1, there is thus
one electron per orbital site, and the uniform ground state is
described by the Slater determinant

|ψ0〉 =
∏

m

(∑
μ

Fμc†
m,μ

)
|0〉, (3)

where μ = {σ, ξ} runs over the spin (σ ∈ {↑,↓}) and valley
(ξ ∈ {K, K ′}) indices, m is the Landau site index that can
be chosen to be in any gauge, and F is a normalized four-
component spinor which describes the QHFM ground state.

A. Parametrization of the spinor

The Coulomb Hamiltonian is SU(4) symmetric, while the
broken symmetry ground state is invariant under SU(3)⊗U(1)
rotations corresponding to rotations between the three empty
sub-LLs and the relative phase between the empty and filled
sub-LLs. The coset space is thus CP3 = U(4)/U(3) ⊗ U(1),
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which has six real dimensions [54]. A general spinor describ-
ing the broken symmetry ground state is thus parametrized by
six angles. In order to describe the spinor F , we express it as
a Schmidt decomposition in the basis {|K ↑〉, |K ↓〉, |K ′ ↑〉,
|K ′ ↓〉} as [22,55]

|F 〉 = cos
α

2
|n〉|s〉 + eiβ sin

α

2
| − n〉| − s〉, (4)

where |n〉|s〉 = |n〉 ⊗ |s〉 is the tensor product of the spinors

|n〉 =
(

cos θP
2

sin θP
2 eiϕP

)
, (5)

|s〉 =
(

cos θS
2

sin θS
2 eiϕS

)
, (6)

acting in valley and spin spaces, respectively. We have

σ · s| ± s〉 = ±| ± s〉 and τ · n| ± n〉 = ±| ± n〉, where

s, n =

⎛
⎜⎝

sin θS,P cos ϕS,P

sin θS,P sin ϕS,P

cos θS,P

⎞
⎟⎠ (7)

are the unit vectors on the spin and pseudospin Bloch spheres,
respectively, with θS, θP ∈ [0, π ] and ϕS, ϕP ∈ [0, 2π ]. The
angles α ∈ [0, π ] and β1 ∈ [0, 2π ] are the angles of the “en-
tanglement” Bloch sphere of the particle [55]. The spinors
| − s〉 and | − n〉 are obtained from |s〉 and |n〉 by the re-
placement θ → π − θ and ϕ → ϕ + π such that we have
〈s| − s〉 = 〈n| − n〉 = 0.

When θP = 0(π ), the vector n lies at the north (south)
pole of the pseudospin Bloch sphere corresponding to a po-
larization in valley K (K ′). Analogously, for θS = 0(π ), the
vector s lies at the north (south) pole of the spin Bloch sphere
corresponding to spin up (down) polarization. Finally, this
parametrization includes the possibility of “entanglement” be-
tween the spin and the pseudospin. In fact, this decomposition
of the spinors does not correspond to real entanglement be-
tween two particles because here it is the spin and pseudospin
of the same particle which is “entangled,” and the Schmidt
decomposition can be viewed as a decomposition of SU(4)
spinors in the basis of SU(2)⊗SU(2) spinors. Because of this
reminiscence and the relevance of the spin and pseudospin
magnetizations in experimental measurements, we will refer
loosely to the angle α as the entanglement angle for simplicity.

B. Symmetry-breaking terms

Inspired by earlier works [14,15,22,56] that focus on
short-range electron-electron [11] and electron-phonon [15]
interactions at the lattice scale, we consider the local
anisotropic Hamiltonian

HA = 1

2

∫
d2r

{
U⊥

[
P2

x (r) + P2
y (r)

] + UzP
2
z (r)

}
−

∫
d2r{�ZSz(r) + �PPz(r)}, (8)

where

P(r) = �†(r)(σ0 ⊗ τ)�(r), (9)

S(r) = �†(r)(σ ⊗ τ0)�(r) (10)

are the local spin and pseudospin densities, respectively, in
terms of the vectors σ and τ of Pauli matrices acting in spin
and pseudospin spaces, respectively, while σ0 and τ0 are the
identity matrices. In the following, we neglect the identity and
consider σ ≡ σ ⊗ τ0 and τ ≡ σ0 ⊗ τ. The potentials U⊥ and
Uz correspond to local interactions that act when two electrons
are at the same position, and they act only in valley space thus
favoring in-plane or out-of-plane pseudospin polarizations.
The relative values of �Z , �P, Uz, and U⊥ determine thus the
spin or pseudospin polarization of the ground state.

The first term in Eq. (8) represents the electrons’ inter-
action with “frozen” in-plane phonons [14] and is estimated
to be of the order of U⊥ ∼ 2.0B[(T )]K . This term cre-
ates a Kekulé-like distortion. The term Uz originates from
short-range Hubbard-type interactions [11] and intervalley
scattering which originate from the SU(4) symmetry breaking
in the Coulomb interaction [57]. Out-of-plane phonons also
contribute to Uz which is estimated to be of the order of
∼0.5B[(T )]K . The Zeeman coupling �Z = gμBB is of the
order of ∼1.2B[(T )]K . Finally, �P corresponds to a stag-
gered potential on the A and B sublattice which generates
a mass term in the Dirac equation and can be generated by
the interaction with a substrate, e.g., hexagonal boron-nitride
(hBN) [58,59]. Due to the locking of the sublattice and valley
indices in the n = 0 LL, this term is analogous to a Zeeman
term acting in pseudospin space; we therefore dub it a “valley
Zeeman” term. This term favors a polarization in one valley
and thus on one sublattice. The energies U⊥ and Uz are pro-
portional to the perpendicular magnetic field [20] while �z

is proportional to the total magnetic field. Moreover, �P is
an intrinsic effect and thus independent of the magnetic field.
Notice that these energy scales are all on the same order of
magnitude and are likely to be strongly sample dependent. We
thus consider them, here, as tunable parameters that determine
the phase diagram of the QHFM ground states as well as that
of the collective excitations formed on top of these states.

Applying the Hartree-Fock approximation, the energy of
the anisotropic energy EA = 〈F |HA|F 〉 can be expressed
as [22]

EA[F ] = Nφ

2

[
u⊥

(
M2

Px
+ M2

Py

) + uzM
2
Pz

]
−Nφ[�ZMSz + �PMPZ ], (11)

where Nφ = A/(2π l2
B) is the number of flux quanta threading

the area A of the sample and

MP = 〈F |τ|F 〉 = n cos α, (12)

MS = 〈F |σ|F 〉 = s cos α (13)

are the spin and pseudospin magnetization, respectively. In the
case of electronic short-range interactions (e.g., of Hubbard
type) beyond the SU(4)-symmetric part of the Coulomb inter-
action, the parameters u⊥,z can be written as

u⊥,z = VH
⊥,z − VF

⊥,z (14)
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in terms of the Hartree and Fock potentials

VH
⊥,z = U⊥,z(q = 0)

2π l2
B

, (15)

VF
⊥,z = 1

Nφ

∑
q

U⊥,z(q)

2π l2
B

|F0(q)|2, (16)

respectively, where we have introduced a q-dependence in
the potentials potentials U⊥,z for illustrative purposes. In fact,
for a δ(r) interaction as considered here, we can see the
Hartree and Fock potentials cancel each other [22] because∑

q |F0(q)|2 = Nφ . However, this cancellation arises only as
an artifact in the framework of a simplistic description of
short-range interactions in terms of a Dirac δ interaction. In
the remainder of the paper, we thus consider a slightly nonlo-
cal interaction and the energies u⊥ and uz as free parameters.

As a function of the angles, we obtain the expression

EA[F ] = Nφ

[
1
2 cos2 α(u⊥ sin2 θP + uz cos2 θP )

− �P cos α cos θS − �Z cos α cos θS
]
. (17)

The phase diagram is obtained by minimizing Eq. (17). We
first consider the phase diagram without the valley Zeeman
term �P in Sec. II C, while we show its effect in Sec. II D.

C. Phase diagram without valley Zeeman term

The phase diagram of the QHFM at ν = ±1 without the
valley Zeeman term was calculated by Lian et al. [22]. Here
we briefly review the different phases in order to discuss
the spin waves associated with each ground state. There is
a Z2 redundancy in the parametrization of the spinors (see
Appendix of Ref. [22]) such that without loss of generality we
can assume α ∈ [0, π/2]. Using this fact we can see that the
anisotropic energy is minimized for cos θS = 1 everywhere.

Minimizing Eq. (17), we find the four phases shown in
Fig. 1, which can be separated in two types: for u⊥ > uz,
an easy-axis pseudospin polarization is favored, which is the
case of the charge density wave (CDW) and antiferrimagnetic
(AFI) phases, while for uz > u⊥, an easy-plane polarization
is favored, namely, the Kekulé distortion (KD) and canted
antiferromagnetic (CAF) phase. In addition to that, the phases
can present entanglement (α �= 0) or not (α = {0, π}). The
CDW and KD phases are not entangled and they have max-
imal spin and pseudospin magnetizations; they are thereby
ferromagnetic phases. The AFI and CAF phases are entan-
gled, such that their spin and pseudospin magnetizations are
reduced. These phases are realized in the regions of posi-
tive u⊥ and uz because entanglement allows one to reduce
the pseudospin magnetization thus making a compromise be-
tween the spin and pseudospin magnetizations. In the limit of
vanishing Zeeman term (compared to u⊥ and uz), these two
phases are maximally entangled and become both antiferro-
magnetic. We mention that, as opposed to the ν = 0 case,
at ν = ±1, the spin and pseudospin can be maximal at the
same time. Thus the CDW and KD phases are pseudospin po-
larized and spin ferromagnetic, whereas at ν = 0, the phases
can be either spin polarized and pseudospin unpolarized (F),
pseudospin polarized and spin unpolarized (KD and CDW),
or entangled (CAF). Notice that in Ref. [22], these phases

CDW

KD
AFI

CAF
(a)

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

u / Z
u z

/
Z

FIG. 1. (a) Phase diagram of the QHFM ground state composed
of four phases: charge density wave (CDW), Kekulé distortion
(KD), antiferrimagnetic (AFI), and canted antiferromagnetic (CAF).
(b)–(e) Spin magnetization on the A and B sublattices of the different
phases: (b) CDW, (c) KD, (d) AFI, and (e) CAF.

were named after their valley pseudospin magnetization: the
CDW (AFI) phases are associated with an unentangled (entan-
gled) easy-axis pseudospin order, while the KD (CAF) comes
along with an unentangled (entangled) easy-plane pseudospin
magnetization.

In order to characterize the different phases, we focus on
experimentally measurable quantities such as the spin magne-
tization and electronic density on the A and B sublattices

ρA,B = 1
2 〈F |(τ0 ± τz )|F 〉, (18)

MSA,B = 1
2 〈F |σ(τ0 ± τz )|F 〉, (19)

respectively.
The spinor of the CDW phase is

|F 〉 = |nz〉|sz〉, (20)
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where nz = (1, 0)T and sz = (1, 0)T correspond to a spin and
pseudospin both polarized at the north of their respective
Bloch spheres, such that the electrons have spin up and are po-
larized in valley K or K ′ corresponding thus to a ferromagnetic
phase restricted to a single sublattice. The sublattice polariza-
tion is given by ρA = 1 and ρB = 0 or ρA = 0 and ρB = 1 and
there is thus a spontaneous Z2 sublattice symmetry breaking.
The spin magnetizations on sublattices A and B are MSA = sz

and MSB = 0.
The spinor of the KD phase is given by

|F 〉 = |n⊥〉|sz〉, (21)

where |n⊥〉 = 1√
2
(1, eiϕ )T points to a position at the equator

of the pseudospin Bloch sphere and corresponds thus to a
superposition of the two valleys. The angle ϕ corresponds
to the orientation of the pseudospin magnetization in the xy
plane. There is thus a residual U(1) symmetry corresponding
to the angle ϕ. Both sublattices are equally populated such that
ρA = ρB = 1/2 and MSA = MSB = 1

2 sz.
The spinor of the AFI phase has the expression

|F 〉 = cos
α1

2
|nz〉|sz〉 + eiβ sin

α1

2
| − nz〉| − sz〉 (22)

with

cos α1 = �Z

uz
. (23)

This phase corresponds thus to an entangled phase which in
turn reduces the amplitude of the spin magnetization in order
to minimize the anisotropic energy. The spin magnetization on
the A and B sublattices is MSA = 1

2 (1 + cos α1)sz and MSB =
1
2 (−1 + cos α1)sz such that the spin magnetization on each
sublattice points along the z direction, but there is an imbal-
ance between the spin magnetization in sublattices A and B.
For uz = �Z (α1 = 0), namely, at the CDW-AFI transition, we
recover the CDW phase, while for uz � �Z (α1 → π/2), we
have a maximally entangled phase with MSA = −MSB = 1

2 sz

which is antiferromagnetic, as we would expect in the limit of
a vanishing Zeeman effect.

The spinor of the CAF phase has the expression

|F 〉 = cos
α2

2
|n⊥〉|sz〉 + eiβ sin

α2

2
| − n⊥〉| − sz〉 (24)

with

cos α2 = �Z

u⊥
. (25)

This phase has its pseudospin polarized in the xy plane of
the Bloch sphere and presents entanglement analogously to
the AFI phase. Both sublattices are populated equally ρA =
ρB = 1/2. The spin magnetization on the A and B sublat-
tices forms a canted antiferromagnetic pattern with MSA,B =
(± sin α2 cos(β − ϕ),± sin α2 sin(β − ϕ), cos α2) such that
the z component of the magnetization is identical on both
sublattices, but there is a canting of the spin in the xy plane
with opposite orientation on the sublattices. At the transition
with the KD phase (�Z = u⊥ → α2 = 0), we recover a fer-
romagnetic phase with equal weight on the K and K′ valleys,
while in the fully entangled limit (u⊥ � �z → α2 = π/2),
we obtain an antiferromagnetic phase with spins pointing in
the xy plane.

CDW

CKD
AFI

CAF'

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

u / Z

u z
/
Z

FIG. 2. Phase diagram of the QHFM ground state with the valley
Zeeman term �P such that �P = �Z . The KD and CAF phases are
modified compared to the case without the valley Zeeman term and
are turned to a canted KD phase (CDW) and a different CAF phase
(CAF′).

D. Phase diagram with valley Zeeman

Experimentally, graphene is generally placed on top of
a substrate. In the case of hBN, a potential difference is
generated between the A and B sites of graphene and
yields a valley-dependent potential due to the valley-sublattice
equivalence in the LLL of graphene. Such a term favors a
polarization on one sublattice and thus in one valley, anal-
ogously to a Zeeman term in valley space. The evolution
of the phase diagram in the presence of the valley Zeeman
term is shown in Fig. 2. The phases CDW and AFI are not
modified by the valley Zeeman term because their pseudospin
is already polarized in one valley. However, the presence of
the valley Zeeman breaks the Z2 symmetry between the two
valleys by favoring one valley corresponding to the sublattice
with smallest on-site potential. However, the KD and CAF
phases are modified such that their pseudospin polarization
is now canted towards the north pole of the Bloch sphere (or
the south pole if the staggered potential is reversed). The KD
phase becomes a canted KD phase with spinor

|F 〉 = |n〉|sz〉 (26)

with

cos θP = �P

(uz − u⊥)
. (27)

There is thus a continuous phase transition between the CDW
and CKD phase transition located at uz − u⊥ = �P, where the
pseudospin is progressively canted relative to the z direction.
For uz − u⊥ � �P, we recover the KD phase. The CDW
occupies thus a larger portion of the phase diagram compared
to the �P = 0 case (see Fig. 1).
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The transition between the CDW and AFI phase is also
modified because the cost to entangle the easy-axis phase im-
plies a nonzero weight on the valley K ′. Thereby, the transition
occurs at uz = (�P + �Z ), and the entanglement angle in the
AFI phase α1 is now given by

cos α1 = �Z + �P

uz
. (28)

Finally, the CAF phase is also modified into a different
CAF phase such that the spinor reads

|F 〉 = cos
α2

2
|n〉|sz〉 + eiβ sin

α2

2
| − n〉| − sz〉, (29)

where

cos α2 = �Z

u⊥
and cos θP = �Z

�P

u⊥
(uz − u⊥)

. (30)

Once again, the AFI phase is favored in a larger part of the
phase diagram, and the transition between the AFI and CAF
phases is located at uz = u⊥(�P/�Z + 1). The four phase
transitions meet at the point (u⊥, uz ) = (�Z ,�Z + �P ).

III. NONLINEAR SIGMA MODEL

In order to find the dispersion relations of the Goldstone
modes, we derive an effective Lagrangian which describes
the low-energy (long-wavelength) excitations of the ground
state. In the SU(4) invariant limit (in the absence of symmetry-
breaking terms), this Lagrangian consists of a nonlinear sigma
model describing the fields associated with the broken sym-
metries. The collective modes of this Lagrangian are the
different Goldstone modes. In the presence of the symmetry-
breaking terms, some Goldstone modes acquire a mass gap.

A. Broken symmetries and their generators

At filling factor ν = ±1, the spontaneous symmetry-
breaking mechanism corresponds to filling one sub-LL out
of the four with any SU(4) spin-valley orientation (in
the absence of symmetry-breaking term). Explicitly, this
symmetry-breaking mechanism corresponds to

SU(4) → SU(3) ⊗ U(1), (31)

where SU(4) is the original symmetry of the Hamiltonian
which in composed of 15 generators and SU(3)⊗U(1) is the
residual symmetry the ground state which is invariant under
transformations that mixes the three empty sublevels corre-
sponding to eight generators times the relative U(1) phase
between the empty and the occupied sub-LLs. According to
Refs. [60] and [54], there are thus 15 − 8 − 1 = 6 generators
associated with the broken symmetries. For simplicity, we
label these generators “broken generators.” The corresponding
coset space of the nonlinear sigma model is the complex
projective space CP3 = U(4)/[U(3) ⊗ U(1)], which has six
dimensions [54].

In order to find an explicit expression for the broken gen-
erators, we consider for simplicity the CDW ground state
|F 〉 = |nz〉|sz〉 = |K ↑〉 to be the filled sub-LL in the basis
A = {|F 〉, |C1〉, |C2〉, |C3〉} = {|K ↑〉, |K ↓〉, |K ′ ↑〉, |K ′ ↓〉}
as shown in Fig. 3. The spinors |Ci〉 define the empty sub-LLs

|

|

|

|

FIG. 3. Four sub-LLs of the n = 0 LL and the three associated
spin wave modes corresponding to the mixing of the filled sub-LL
described by the spinor |F 〉 with each of the three empty sub-LLs
described by the spinors |Ci〉.

of the basis A. In this basis, we are able to define the six
broken generators

�1
x = 1

2σxP+nz ,

�2
x = 1

2τxP+sz ,

�3
x = 1

4 (σxτx − σyτy),

�1
y = 1

2σyP+nz ,

�2
y = 1

2τyP+sz ,

�3
y = 1

4 (σxτy + σyτx ),

(32)

where P+sz = 1
2 (1 + σz ) and P+nz = 1

2 (1 + τz ) are the projec-
tors over the spin up and valley K , respectively. Here, the
matrices σ and τ are the usual Pauli matrices acting in the
spin and pseudospin spaces, respectively. Explicitly, the �x

operators are

�1
x =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �2

x =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠,

�3
x =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎠. (33)

The matrices �1
x,y mix |F 〉 and |C1〉, the matrices �2

x,y mix |F 〉
and |C2〉, while the matrices �3

x,y mix |F 〉 and |C3〉. We have
thus three sets of canonically conjugate matrices such that for
each mode a [

�a
μ, �a

ν

] = iεμνλ�
a
λ, (34)

{
�a

μ, �a
ν

} = i

2
δμν, (35)

where μ, ν, λ ∈ {x, y, z}, a ∈ {1, 2, 3}, εμνλ is the three-
dimensional Levi-Civita tensor, δμν is the identity matrix, and
we have introduced the additional matrices

�1
z = 1

2σzP+nz , �2
z = 1

2τzP+sz , �3
z = 1

4 (σz + τz ), (36)

to complete the algebra. To study the spin waves for another
phase, we simply rotate the spinors and the generators by a
SU(4) unitary transformation U :

|F̃ 〉 = U |F 〉, (37a)

|C̃i〉 = U |Ci〉, (37b)

�̃a
μ = U�a

μU †. (37c)

195413-6



SU(4) SPIN WAVES IN THE ν = ±1 QUANTUM … PHYSICAL REVIEW B 103, 195413 (2021)

An important object that characterizes the spin waves in
a (anti-)ferromagnet is the matrix of the commutators of the
broken generators over the ground state

Mab
μν = 〈F |[�a

μ, �b
ν

]|F 〉, (38)

with μ, ν ∈ {x, y}. We find that it is independent of the basis
and defines the number and dispersion of the Goldstone modes
associated with the number of broken symmetry [61–63] (in
the absence of explicit symmetry-breaking terms). We find
that this matrix has the expression for any phase

〈F |[�a
μ, �b

ν

]|F 〉 = i

2
εμνδab, (39)

where εμν is the 2D Levi-Civita tensor for μ, ν ∈ {x, y}. Ac-
cording to the general theory of Refs. [62] and [63], the
number of quadratic spin waves is equal to Rank[M]/2 = 3
while no linearly dispersing modes are found, which is in
agreement with Refs. [60] and [54], where the number of
Goldstone modes is shown to be half the number of the
broken symmetries because half of the fields are conjugate
to the other half. We thus expect three quadratically dis-
persing modes in the absence of symmetry-breaking terms.
However, we show below that in some cases, the Goldstone
modes become linear at small wave vectors due to spin-valley
anisotropic terms that explicitly break the residual symmetry
to yet lower ones.

B. Lagrangian

The effective low-energy Lagrangian is obtained analo-
gously to Ref. [33] by constructing a coherent state

|ψ[π ]〉 = ei
∑

ri
O(ri,t )|ψ0〉, (40)

where |ψ0〉 is the second quantized QHFM ground state (3)
and

O(ri, t ) = πa
μ(ri, t )�a

μ(ri ), (41)

where πa
μ(ri, t ) with μ ∈ {x, y} and a ∈ {1, 2, 3} are six real

fields associated with the broken generators �a
μ(ri ) acting at

the Landau site ri and we have assumed summation over
repeated indices. Notice that the Landau site is, strictly speak-
ing, a one-dimensional quantum number that indicates a
position of the center of the quantum orbit around a line (in the
Landau gauge) or on a circle (in the symmetric gauge). Here,
however, we consider the Landau site as maximally localized
that can be viewed as a coherent-state superposition around
the position ri, occupying an area 2π l2

B [64]. This description
in terms of localized states allows one to treat the fields πa

μ,
which correspond to generalized local spin-valley rotations,
within a gradient expansion in the 2D plane.

The total Lagrangian L is the sum of the kinetic term LK ,
the Coulomb term LC , and the symmetry-breaking LSB terms:

L = LK − LC − LSB, (42)

LK = 〈ψ[π ]|i∂t |ψ[π ]〉, (43)

LC = 〈ψ[π ]|HC |ψ[π ]〉, (44)

LSB = 〈ψ[π ]|HA|ψ[π ]〉 − 〈ψ0|HA|ψ0〉. (45)

In order to derive the effective nonlinear sigma model at low
energy, we follow closely Refs. [60], [54], and [15].

1. Kinetic term

In the continuum limit, the kinetic term can be expressed
as

LK = ρ0

∫
d2rZ†(r, t )i∂t Z (r, t ), (46)

in terms of the spinor field

Z (r, t ) = eiO(r,t )|F 〉, (47)

where |F 〉 is the ground-state spinor corresponding to Eq. (3).
Expanding O(r, t ) up to second order in the π fields, with the
help of Eq. (39), we obtain

LK = ρ0

2

∫
d2rεμνπ

a
μ∂tπ

a
ν (48)

= ρ0

2

∫
d2rAa[π] · ∂tπ

a, (49)

where ρ0 = (2π l2
B)−1 is the electron density, and Aa[π] =

(−πa
y , πa

x , 0) is the Berry connection associated with the
mode a.

2. Gradient term

To lowest order in the spatial derivatives, the energy asso-
ciated with the Coulomb Hamiltonian gives rises to a gradient
term [15,54,60]

LC = ρs

∫
d2rTr[∇P∇P] (50)

= 2ρs

∫
d2r∂ jZ

†(1 − ZZ†)∂ jZ, (51)

where

P(r, t ) = ZZ† (52)

is the (space-time dependent) order parameter of the ferro-
magnet and

ρs = 1

16
√

2π

e2

εlB
(53)

is the spin stiffness. This gradient term corresponds to the
cost in exchange energy associated with the misalignment of
neighboring spins.

The matrix P is a projector [15] that obeys P2 = P, P† = P
and Tr[P] = 1. Up to second order in the π -fields, the gradient
term is given by

LC = ρs

2

∫
d2r

(∇πa
μ

)2
, (54)

where we have used the property that 〈F |�a
μ�b

ν |F 〉 =
1
4δab(δμν + iεμν ). We recover thus the usual nonlinear sigma
model term extended to the six fields in the CP3 space.

3. Anisotropic terms

Finally, the symmetry-breaking terms correspond to the
anisotropic energy EA[Z] of the slowly varying field Z minus
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the anisotropic energy of the ground state such that we con-
sider only the excess energy corresponding to the spin wave

LA = EA[Z] − EA[F ], (55)

where EA[F ] is given by Eq. and

EA[Z] = ρ0

∫
d2r

{∑
i

uiM
2
Pi

[Z] − �Z MSz [Z]

}
, (56)

with i ∈ {x, y, z}, ux = uy = u⊥, and

MP[Z] = 〈Z|τ|Z〉, (57)

MS[Z] = 〈Z|σ|Z〉 (58)

are the spin and pseudospin magnetizations analogous to (13)
generalized to the field Z . We can express the anisotropic
Lagrangian in a more compact way

LA = ρ0

∫
d2r

∑
i

uiti − �Zsz, (59)

with

ti = 〈Z|τi|Z〉2 − 〈F |τi|F 〉2, (60)

sz = 〈Z|σz|Z〉 − 〈F |σz|F 〉. (61)

We now expand the pseudospin magnetization up to second
order in the π -fields

〈Z|τi|Z〉 = 〈F |e−iOτie
iO|F 〉

≈ 〈F |τi|F 〉 − iπa
μ〈F |[�a

μ, τi
]|F 〉

− 1
2πa

μ〈F |[�a
μ,

[
�b

ν, τi
]]|F 〉πb

ν , (62)

and we have a similar expression for the spin magnetization.
Upon squaring, the pseudospin anisotropy has a linear and a
quadratic term in the π -fields

ti = R0a
μ πa

μ + πa
μRab

i,μνπ
b
ν , (63)

with

R0a
iμ = − 2i〈F |τi|F 〉〈F |[�a

μ, τi
]|F 〉, (64)

Rab
i,μν = − 〈F |[�a

μ, τi
]|F 〉〈F |[�b

ν, τi
]|F 〉

− 〈F |τi|F 〉〈F |[�a
μ,

[
�b

ν, τi
]]|F 〉. (65)

The Zeeman term is linear in the spin magnetization such that
we have

sz = R0a
Zμπa

μ + πa
μRab

Z,μνπ
b
ν , (66)

where

R0a
Zμ = −i〈F |[�a

μ, σz
]|F 〉, (67)

Rab
Z,μν = − 1

2 〈F |[�a
μ,

[
�b

ν, σz
]]|F 〉 (68)

For every state |F 〉, the linear terms cancel each other,∑
i

uiR
0a
iμ − �ZR0a

Zμ = 0, (69)

for all μ and a. The anisotropic Lagrangian can thus be written
as

LA =
∫

d2rπTRπ, (70)

where π = (πa
μ) is the six-component vector made of the π -

fields and

Rab
μν =

∑
i

uiR
ab
iμν − �ZRab

Zμν (71)

is a 6 × 6 matrix in the basis {μ, a} that we call the anisotropy
matrix.

We now consider the effective action S = ∫
dtL and

Fourier transform the kinetic and gradient Lagrangians (48)
and (54) in space and time

S =
∫

dω d2kπT (k, ω)Mπ(−k,−ω), (72)

with

Mab
μν =

(ρ0

2
iωεμν − ρs

2
k2δμν

)
δab − ρ0Rab

μν. (73)

The dispersion relations of the collective mode are obtained
by minimizing the action, δS/δπ (k, ω) = 0, which gives the
equation

M(k, ω)π(k, ω) = 0. (74)

Because the matrix M(k, ω) is Hermitian, the frequencies
always come in pairs ±ω(k). However, we consider only
the three positive eigenfrequencies ωα (k), which correspond
to the physically relevant modes, and discard the negative-
energy solutions. The corresponding fields π are obtained by
finding the null space of M. The resulting spinor is thus given
by

|Zα〉 = (
1 + iπa

μ,α�a
μ − 1

2πa
μ,απb

ν,α�a
μ�b

ν

)|F 〉, (75)

where πa
μα is the eigenstate corresponding to the frequency

ωα . When the matrix is block-diagonal Mab
μν ∝ δab, the dif-

ferent modes are decoupled, and the eigenstate labels are
identical to the mode label α = a. This is the case for the
CDW and KD phases.

C. Change of ground state

The general analysis of the previous sections has been per-
formed by considering the ground-state spinor |F 〉 = |nz〉|sz〉.
To consider a different ground state, we perform the unitary
rotation given by Eqs. (37). The spinor Z is thus transformed
as

Z̃ = UZ = eiπ̃a
μ�̃a

μ |F̃ 〉, (76)

where we have introduced the fields π̃a
μ, which correspond

now to the modes a associated with the broken generators �̃a
μ.

However, for simplicity, we will keep the notation πa
μ in every

basis and assume that the π -fields correspond to the modes in
the corresponding basis.

The kinetic and gradient terms are independent of
the basis because the SU(4) transformation matrix U is
global, LK [Z̃] = LK [Z] and LC[Z̃] = LC[Z]. However, the
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symmetry-breaking terms are basis dependent. The spin and
pseudospin magnetization read

〈Z̃|τ|Z̃〉 = 〈Z|P|Z〉, (77)

〈Z̃|σz|Z̃〉 = 〈Z|Sz|Z〉, (78)

such that instead of computing the commutators in Eq. (62)
using the transformed matrices �̃a

μ, we simply replace the
matrices τ and σz by

P = U †τU, (79)

Sz = U †σzU, (80)

such that the pseudospin magnetization reads

〈Z̃|τi|Z̃〉 = 〈F |Pi|F 〉 − iπa
μ〈F |[�a

μ, Pi
]|F 〉

− 1
2πa

μ〈F |[�a
μ,

[
�b

ν, Pi
]]|F 〉πb

ν , (81)

where |F 〉 = |nz〉|sz〉 and the matrices �a
μ are given by

Eqs. (32). We have a similar expression for the spin magneti-
zation in the transformed basis. Thus instead of computing
the transformed matrices and spinors in the new basis, we
simply express the matrices τ and σz in the basis Ã. Thus the
anisotropic Lagrangian reads

LA[Z̃] =
∫

d2rπR̃π, (82)

where

R̃ab
μν =

∑
i

uiR̃
ab
iμν − �Z R̃ab

Zμν, (83)

and the matrices R̃ab
iμν and R̃ab

Zμν are obtained from Eqs. (65)
and (68) by the replacements τi → Pi and σz → Sz.

IV. DISPERSION RELATIONS

Using the formalism developed in the previous section,
we now diagonalize the matrix (73) to find the dispersion
relations of the three different modes and their associated
gaps. We consider only the four phases of Sec. II C without the
valley Zeeman term since they are not substantially modified
upon its introduction.

A. Charge density wave phase

In the charge density wave, the ground-state spinor and
the empty sub-LL |Ca〉 defining the three mode a have the
expression

|F 〉 = |nz〉|sz〉 = (1, 0, 0, 0)T , (84a)

|C1〉 = |nz〉| − sz〉 = (0, 1, 0, 0)T , (84b)

|C2〉 = | − nz〉|sz〉 = (0, 0, 1, 0)T , (84c)

|C3〉 = | − nz〉| − sz〉 = (0, 0, 0, 1)T (84d)

in the basis {|K ↑〉, |K ↓〉, |K ′ ↑〉, |K ′ ↓〉}. We have chosen
here a ground state polarized in valley K , but one can also
choose a polarization in valley K ′ by the replacement nz →
−nz. The mode a = 1, which mixes |F 〉 and |C1〉, corresponds
to a pure spin wave such that the pseudospin remains unaf-
fected. The mode a = 2 mixes |F 〉 and |C2〉 and corresponds

Spin

Pseudo−Spin

Entanglement

0.00 0.05 0.10 0.15 0.20 0.25 klB

2

4

6

8

10
/ Z

FIG. 4. Dispersion relation of the three modes in the CDW phase
for uz = −�Z and u⊥ = 2�Z . The three modes are gapped and
quadratically dispersing.

to a pseudospin wave where the spin remains unaffected. The
mode a = 3 corresponds to an entanglement wave in which
both the spin and pseudospin are inverted such that the spinor
Z is in a superposition of |nz〉|sz〉 and | − nz〉| − sz〉.

The anisotropy matrix R is block diagonal Rab
μν ∝ δab such

that the three modes are decoupled. We find the dispersion
relations ωa(k) corresponding to the three modes a = 1, 2, 3:

ω1(k) = 2πρs(klB)2 + �Z , (85)

ω2(k) = 2πρs(klB)2 + u⊥ − uz, (86)

ω3(k) = 2πρs(klB)2 + �Z − uz. (87)

As shown in Fig. 4, the three modes have a quadratic disper-
sion and a mass term proportional to the anisotropic energy
terms. The CDW region is defined by u⊥ > uz and uz < �Z

such that the three modes have a positive gap in the region.
The three eigenmodes have the same expression for each
mode such that the spinor with wave vector k corresponding
to mode a reads

Zka(r, t ) =
(

1 − π2
0

8

)
|F 〉 + i

π0

2
ei(k·r−ωat )|Ca〉, (88)

where π0 � 1 is the magnitude of the wave which is a scalar.
As shown in Fig. 5, the spin wave corresponds thus to a
small weight on the spinor |Ca〉 with the phase oscillating at
frequency ωa and wave vector k.

The first mode corresponds to a pure spin wave, its gap is
unaffected by the anisotropic term and depends only on the
Zeeman term. Because the pseudospin remains unaffected by
the spin wave and is polarized in one valley, the spins live only
on one sublattice (we choose sublattice A here for illustration)
and the spin magnetization is

MSA =

⎛
⎜⎝

π0 cos(k · r − ω1t )

π0 sin(k · r − ω1t )

1 − 1
2π2

0

⎞
⎟⎠, MSB = 0. (89)

The spin wave consist thus of the spins of sublattice A precess-
ing around the axis z at frequency ω1 as shown in Fig. 6(a).

The second mode corresponds to a pseudospin wave for
which the gap depends only on the pseudospin anisotropic
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(a) (b) (c)

FIG. 5. Bloch spheres corresponding to each modes in the CDW
phase. (a) Spin Bloch sphere of the pure spin mode 1. (b) Pseudospin
Bloch sphere of the pseudospin mode 2. (c) Entanglement Bloch
sphere corresponding to the entanglement mode 3. The black arrow
indicates the ground-state polarization, while the red arrow corre-
sponds to the magnetization at a point in space in the presence of a
spin wave. The red arrow rotates periodically around the ground-state
polarization according to Eq. (88).

terms and not on the Zeeman term. In the CDW region, we
have chosen for simplicity a polarization in the valley K (a
similar treatment can be done if the polarization is in valley
K ′), and thus the pseudospin points towards the north pole
of the Bloch sphere. Because the pseudospin magnetization
points along the z direction, the anisotropic energy of the
ground state depends only on uz. The presence of a pseudospin
wave introduces a pseudospin magnetization in the xy plane
of the Bloch sphere, such that the out-of-plane anisotropic en-
ergy uz is reduced, while there is a cost in in-plane anisotropic

(a)

(b) (c)

FIG. 6. Three modes of the CDW phase. (a) “Snapshot” of the
pure spin wave mode a = 1 seen from the top with wave vector k
along the axis y. We observe the precession of the spins around the z
axis of the spins in the A sublattice. (b) Sublattice polarization of
the pseudospin wave mode a = 2. We observe a small electronic
density on sublattice B. The dynamic part of the field is encoded
in the relative phase of the superposition between valleys K and K ′.
The spin magnetization is proportional to the sublattice density and
points along sz. (c) Spin magnetization on the A and B sublattices of
the entanglement mode a = 3; there is a small spin magnetization on
the B sublattice with opposite direction as on sublattice A.

energy u⊥, hence the gap is proportional to (u⊥ − uz ). The
pseudospin magnetization is given by

MP =

⎛
⎜⎝

π0 cos(k · r − ω2t )

π0 sin(k · r − ω2t )

1 − 1
2π2

0

⎞
⎟⎠. (90)

This expression for the pseudospin is analogous to the spin
magnetization (89) of the pure spin wave. It is now the
pseudospin that precesses around the z axis, such that it
corresponds to a superposition of the valley K and K ′ with
a relative phase oscillating at frequency ω2. However, the
electronic density imbalance of the sublattice, which corre-
sponds to the z component of the pseudospin magnetization
(MPz = ρA − ρB), remains uniform

ρA = 1 − π2
0

4
, ρB = π2

0

4
(91)

as shown in Fig. 6(b). We observe thus a small electronic
density on the sublattice B. Because the spinors |F 〉 and |C2〉
both have spins pointing along the z direction, the spin mag-
netization on sublattices A and B is simply proportional to
the electronic density, MSA = ρAsz and MSB = ρBsz. The total
spin magnetization is thus MS = sz.

The spinors of the third mode cannot be expressed as a
tensor product of a spin and a valley spinor. Thereby, this
mode is an entanglement mode which mixes the sub-LLs
|K ↑〉 and |K ′ ↓〉. It corresponds to the electron being mainly
polarized on sublatice A with spin up with a small polarization
on sublatice B with spin down with the relative phase oscil-
lating at frequency ω3. Analogously to the pseudospin wave,
the pseudospin magnetization along the z direction is reduced
(MPz = 1 − π2

0 /2) such that there is a gain in anisotropic
energy uz. However, there is a cost in Zeeman energy, and the
gap is proportional to �Z − uz. The sublattice polarizarion is
identical to the pseudospin wave, but the spin magnetization
is

MSA =
(

1 − π2
0

4

)
sz, MSB = −π2

0

4
sz (92)

such that the total spin is reduced similarly to the spin wave.
Figures 7(a) and 7(b) show the size of the gaps �a of the

pseudospin and entanglement modes in units of �Z . We can
see that the size of the gap decrease as we get closer to the
boundaries and eventually vanish at the boundaries.

The gap of the pseudospin wave vanishes at the boundary
with the KD phase defined by u⊥ = uz. At this line, as one can
see from Eq. (8), the SU(2) pseudospin symmetry is restored,
and there is thus no preferred orientation of the pseudospin.
There is no cost in anisotropic energy for the creation of a
pseudospin wave. The pseudospin wave becomes thus a true
Goldstone mode where the spontaneously broken symmetry
is the SU(2) pseudospin rotation symmetry.

The gap of the entanglement wave vanishes at the bound-
ary uz = �Z with the antiferrimagnetic phase, which is an
entangled phase. This comes from the fact that the spin and
pseudospin magnetizations along z of the wave are identical,
MSz = MPz = (1 − π2

0 /2), because we have a small imbalance
over the state |K ′ ↓〉 with opposite spin and pseudospin
that of |K ↑〉. In addition, there is no spin and pseudospin
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FIG. 7. Size of the gap of (a) the pseudospin and (b) the en-
tanglement waves as a function of u⊥ and uz in the CDW region.
We observe that the pseudospin gap �2 vanishes at the boundary
with the KD phase, and the entanglement gap �3 vanishes at the
boundary with the AFI entangled phase. (c) “Phase diagram” of the
spin mode with the lowest gap. We can see that the pseudospin and
entanglement modes have the lowest energy near the phase bound-
aries, whereas the spin mode dominates elsewhere.

magnetization in the xy plane, MSx,Px = MSy,Py = 0. Thus, at
the transition line uz = �Z , up to second order in π0, the
anisotropic energy term

EA[Z] = uz

2
M2

PZ
− �ZMSz = uz

2
− �Z = EA[F ], (93)

which is independent of the amplitude π0. Thereby, for small
amplitudes, the spin and pseudospin magnetizations cancel
each other at the transition line. This symmetry between the
spin and pseudospin magnetization will be explored further in
Sec. IV C.

B. Kekulé distortion phase

In the KD phase, we apply the unitary transformation

UKD = ei π
4 n·τ, (94)

with n = (sin ϕ,− cos ϕ, 0) to the spinors (84) of the CDW
phase such that we have the spinors in the KD phase

|F̃ 〉 = |n⊥〉|sz〉 = 1√
2

(1, 0, eiϕ, 0)T , (95a)

|C̃1〉 = |n⊥〉| − sz〉 = 1√
2

(0, 1, 0, eiϕ )T , (95b)

|C̃2〉 = | − n⊥〉|sz〉 = 1√
2

(−e−iϕ, 0, 1, 0)T , (95c)

(a) (b) (c)

FIG. 8. Bloch spheres corresponding to each modes in the KD
phase in the same way as Fig. 5. (a) Spin Bloch sphere of the spin
mode 1. (b) Pseudospin Bloch sphere of the pseudospin mode 2. The
ground state has a U(1) symmetry for rotations around the z axis.
(c) Entanglement Bloch sphere corresponding to the entanglement
mode 3. For the spin and entanglement modes, the red arrow ro-
tates periodically around the ground-state polarization according to
Eq. (88). At low energy, the pseudospin mode is restricted to the
equator of the pseudospin Bloch sphere, which costs no anisotropic
energy, while at higher energy, it acquires an element along the z
direction.

|C̃3〉 = | − n⊥〉| − sz〉 = 1√
2

(0,−e−iϕ, 0, 1)T , (95d)

where we have a U(1) pseudospin symmetry in the xy plane
of the Bloch sphere. Similarly to the analysis for the CDW
phase, the mode 1 is a pure spin wave where the pseudospin is
unaffected, the mode 2 is a pseudospin wave, while the mode
3 is an entanglement mode (see Fig. 8).

The anisotropy matrix R is again block diagonal Rab
μν ∝

δab such that the three modes are decoupled. We find the
dispersion relations ωa(k) corresponding to the three modes
a = 1, 2, 3,

ω1(k) = 2πρs(klB)2 + �Z , (96)

ω2(k) = |k|lB
√

2πρs

√
2πρs(klB)2 + uz − u⊥, (97)

ω3(k) = 2πρs(klB)2 + �Z − u⊥. (98)

Spin

Pseudo−Spin

Entanglement

0.00 0.05 0.10 0.15 0.20 0.25 klB

2

4

6

8

10
/ Z

FIG. 9. Dispersion relation of the three modes in the KD phase
for uz = 2�Z and u⊥ = −2�Z . We observe that the pseudospin
mode is gapless, linear at low momentum |k| � k0 and becomes
quadratic at higher momentum. The two other modes are gapped and
quadratic.
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The dispersion of the three modes is shown in Fig. 9. Anal-
ogously to the CDW case, the mode 1 corresponds to a spin
mode, the mode 2 to a pseudospin mode, and the mode 3 to
an entanglement mode.

The spin and entanglement modes are quite similar to
the modes observed for the CDW phase; they are quadratic
gapped modes with a gap proportional to the Zeeman coupling
for the spin wave and a gap equal to �Z − u⊥ for the entangle-
ment wave, which corresponds to flipping both the spin and
the pseudospin. This gap is always positive since in the KD
phase, we have u⊥ < �Z . The space-time-dependent spinor
corresponding to these two mode has the same expression
as (88) with the basis spinors given by Eqs. (95). The pure spin
wave has the spins of each sublattice oscillating at frequency
ω1 with equal weight on both sublattices

MSA = MSB = 1

2

⎛
⎜⎝

π0 cos(k · r − ω1t )

π0 sin(k · r − ω1t )

1 − 1
2π2

0

⎞
⎟⎠. (99)

Finally, the second mode looks different; it has a gapless
linear dispersion at low-momentum k2 � uz − u⊥ while we
recover a quadratic dispersion relation at high momentum.
The transition between these two regimes occurs at a momen-
tum of k0 = √

uz − u⊥. Similarly to the pseudospin mode in
the CDW phase (86), the energy uz − u⊥ corresponds to the
energy necessary to bring one pseudospin out of the plane,
namely, there is a cost in out-of-plane anisotropic energy uz

but a gain in in-plane anisotropic energy u⊥. This energy is
always positive in the KD region since uz > u⊥. Thereby,
at low momentum, there is not enough energy to bring one
pseudospin out of the plane. The model corresponds thus
to an XY model where the pseudospin is restricted to the
equator of the Bloch sphere and this mode is analogous to the
linearly dispersing superfluid mode in helium and in bilayer
2DEGs [33,35,36]. Its gaplessness originates from the U(1)
symmetry of the ground state: there is no cost in anisotropic
energy for rotating a pseudospin in the xy plane. When the
energy is larger than uz − u⊥, there is now enough energy to
bring the pseudospin out of the plane, and we recover the usual
quadratic dispersion relation associated with the fact that the
two generators are now canonically conjugate.

C. Antiferrimagnetic phase

The unitary matrix that transforms the CDW spinors (84)
into the entangled spinors of the AFI phase is given by

UAFI = ei α1
2 σxm·τ, (100)

where m = (sin β,− cos β, 0) and α is given by Eq. (23). The
basis spinors of the AFI phase are

|F̃ 〉 = cos
α1

2
|nz〉|sz〉 + eiβ sin

α1

2
| − nz〉| − sz〉, (101a)

|C̃1〉 = cos
α1

2
|nz〉| − sz〉 + eiβ sin

α1

2
| − nz〉|sz〉, (101b)

|C̃2〉 = − sin
α1

2
e−iβ |nz〉| − sz〉 + cos

α1

2
| − nz〉|sz〉, (101c)

|C̃3〉 = − sin
α1

2
e−iβ |nz〉|sz〉 + cos

α1

2
| − nz〉| − sz〉. (101d)

mode =1

mode =2

Entanglement

0.05 0.10 0.15 0.20 klB

2
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FIG. 10. Dispersion relation of the three modes in the AFI phase
for uz = 2�Z and u⊥ = 6�Z . The modes a = 1 and a = 2 are
coupled and form the α = 1 and α = 2, which are quadratically
dispersing, while the entanglement mode is linear and gapless.

We can see in Fig. 10 that the modes 1 and 2 involve
the four basis spinors |nz〉|sz〉, | − nz〉| − sz〉, | − nz〉|sz〉, and
|nz〉| − sz〉, and one cannot factor the spinors in order to have
a definite spin or pseudospin mode. We find that these two
modes are coupled, and their dispersions are given by

ω1,2 = ±
(u⊥

2
− uz

)
cos α1

+
√

2πρs(klB)2[2πρs(klB)2 + 2u⊥] + u2
⊥
4

cos2 α1,

(102)

which are both positive due to the gap term inside the square
root. The gaps �α of the modes α = 1 and α = 2 are

�1 = uz cos α1 = �Z , (103)

�2 = (u⊥ − uz ) cos α1. (104)

For α = 0, namely, at the boundary with the CDW phase, the
spinors (101) simplify to the CDW spinors, and we recover the
pseudospin mode with gap u⊥ − uz and the spin mode with
gap �Z = uz.

The dispersion for the entanglement mode a = 3 is given
by

ω3(k) =
√

2πρs|k|lB
√

2πρs(klB)2 + uz(1 − cos2 α1).
(105)

We can see that for cos α1 = 1 (�Z = 2uz), namely, at the
transition with the CDW phase, we obtain a gapless quadratic
dispersion. When �Z < 2uz, we have a linear dispersion at
low momentum which transforms into a quadratic disper-
sion around momentum k0 =

√
2uz(1 − cos2 α1). This mode

is analogous to the pseudospin mode in the KD phase. The
linearity at low-momentum originates from the U(1) symme-
try of the ground state associated with the parameter β in
Eqs. (101a) and (102). The spinors |F̃ 〉 and |C3〉 are both in a
superposition of the states |nz〉|sz〉 and | − nz〉| − sz〉 as shown
in Fig. 11. It costs thus no anisotropic energy to move the
ground state (black arrow in Fig. 11) around the parallel of
the Bloch sphere at which lie both the black and red arrows.
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(a) (b)

FIG. 11. Entanglement Bloch spheres corresponding to the en-
tanglement mode in (a) the AFI phase and (b) the CAF phase. The
spinor |F 〉 indicated by the black arrow corresponds to the ground
state, while the spinor |C3〉 is located at opposite direction of the
Bloch sphere. The ground states possess a U(1) symmetry associated
with the angle β corresponding to the latitude indicated by the circle
at the tip of the black and red arrows. At low energy, the entanglement
wave corresponds to a small deviation at equilatitude indicated by the
red arrow.

At higher momentum, there is enough energy to bring the en-
tanglement mode out of this latitude and restore the symmetry
between the xy direction and the z direction.

D. Canted antiferromagnetic phase

The unitary matrix that transforms the CDW spinors (84)
into the entangled spinors of the canted antiferromagnetic
phase is the product of the matrices (94) and (100) of the KD
and AFI phase

UCAF = ei π
4 n·τei α2

2 σxm·τ, (106)

where n = (sin ϕ,− cos ϕ, 0), m = (sin β,− cos β, 0), and
α2 is given by Eq. (25).

The basis spinors of the AFI phase are

|F̃ 〉 = cos
α2

2
|n⊥〉|sz〉 + eiβ sin

α2

2
| − n⊥〉| − sz〉, (107a)

|C̃1〉 = cos
α2

2
|n⊥〉| − sz〉 + eiβ sin

α2

2
| − n⊥〉|sz〉, (107b)

|C̃2〉 = − sin
α2

2
e−iβ |n⊥〉| − sz〉 + cos

α2

2
| − n⊥〉|sz〉,

(107c)

|C̃3〉 = − sin
α2

2
e−iβ |n⊥〉|sz〉 + cos

α2

2
| − n⊥〉| − sz〉.

(107d)

The modes a = 1 and a = 2 are also coupled, and we don’t
present their explicit expression here since it is too lengthy.
We find the corresponding gaps

�1 = �Z , (108)

�2 = 0, (109)

such that one mode is gapless with a linear dispersion rela-
tion at low energy as can be seen in Fig. 12 and one mode
has a pure Zeeman gap. We can see that the modes α = 1
and α = 2 originate from an anticrossing around momentum
|k|lB ≈ 0.03 between a linear mode and a gapped quadratic

mode =1

mode =2

Entanglement

0.02 0.04 0.06 0.08 0.10 0.12 0.14 klB

1

2

3

4

5

6

7
/ Z

FIG. 12. Dispersion relation of the three modes in the CAF re-
gion for uz = 12�Z and u⊥ = 2�Z . We observe two gapless modes:
the entanglement mode and the mode α = 2, which originates from
the gapless mode of the KD region.

mode, which are the descendants of the spin and the gapless
pseudospin modes of the KD phase. The mode 1 becomes
quadratic at higher energy.

CDW

1=k2+ 1

2=k2+ 2

3=k2+ 3

KD

1=k2+ 1

2 k

3=k2+ 3

AFI

1=k2+ 1

2=k2+ 2

3 k

CAF

1=k2+ 2

2 k

3 k

−4 −2 0 2 4 6
−4

−2

0

2

4

6

u / Z

u z
/
Z

FIG. 13. Summary of the low-energy dispersion relation in the
four phases. The indices 1, 2, and 3 refer to the spin, pseudospin,
and entanglement modes, respectively, except in the CAF and AFI
regions, where the spin and pseudospin modes are coupled. In the
schematic expression of the dispersion relations, we have set ρs/ρ0 =
2πρsl2

B ≡ 1. In the CDW region, the three modes are gapped. In the
KD region, there are two gapped modes and one gapless linear mode,
the pseudospin mode. In the AFI region, the entanglement mode
is gapless, while the two other modes are gapped. Finally, in the
CAF region, there are two gapless modes, the entanglement and the
coupled mode α = 2, the descendant of the pseudospin mode.
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Once again, the mode 3 is decoupled from the others and
corresponds thus to an entanglement mode with dispersion

ω3(k) =
√

2πρs|k|lB
√

2πρs(klB)2 + u⊥(1 − cos2 α2).
(110)

This mode is the analog of the entanglement mode in the AFI
phase except that we are in the basis {|n⊥〉|sz〉, | − n⊥〉| − sz〉}
as shown in Fig. 11. The gaplessness and linearity originates
also from the U(1) symmetry associated with the angle β in
Eqs. (107a) and (108).

V. CONCLUSION

To conclude, we have presented the dispersions of the
different types of spin waves, namely, pure spin, valley, and
entanglement waves, in graphene at filling factor ν = ±1.
We have considered the four different possible ground states
presented by Lian et al. [22] based on the anisotropic terms
u⊥ and uz originally introduced by Kharitonov [15]. We have
introduced a nonlinear sigma model based on a Lagrangian
formalism which describes the long wavelength space-time
dependent spin-valley rotations. The presence of small ex-
plicit symmetry-breaking terms generally opens a gap in
the dispersion relation of the different types of spin waves.
However, we have found that in each phase, except in the
CDW region, there remain one or two gapless modes with
a linear dispersion relation at low momentum. The fact that

these modes remain gapless originates from a residual sym-
metry of the ground state, which is present even when the
symmetry-breaking terms are introduced. These modes re-
cover a quadratic dispersion relation at higher energies when
the symmetry between the different directions of oscillation
is restored. The summary of our findings for the presence
or absence of a gap for the three modes in each region is
presented in Fig. 13.

Our study, along with the expression for the gaps at ν = 0
for the KD and CAF phase presented in Ref. [53] opens the
way to an analysis of the scattering of spin waves at inter-
faces between regions with different filling factor taking into
account the different types of spin wave (spin, pseudospin, or
entanglement). Depending on the steepness of the scattering
region, we expect a different scattering process and emit the
possibility that one wave type in the ν = ±1 region might be
changed in the scattering process, or be in a superposition of
different types, since the type of spin waves are different at
ν = 0. The scattering mechanism should also depend on the
phase the region at ν = 0 is in.
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