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Optical band engineering via vertical stacking of honeycomb plasmonic lattices

D. Becerril, G. Pirruccio, and Cecilia Noguez *

Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico

(Received 11 January 2021; revised 18 April 2021; accepted 19 April 2021; published 11 May 2021)

Inspired by recent advances in atomic homo and heterostructures, we consider the vertical stacking of
plasmonic lattices as a new degree of freedom to create a coupled system showing a modified optical response
concerning the monolayer. The precise design of the stacking and the geometrical parameters of two honeycomb
plasmonic lattices tailors the interaction among their metallic nanoparticles. Based on the similarity of the lattice
symmetry, analogies can be drawn with stacked atomic crystals, such as graphene. We use the multipolar spectral
representation to study the plasmonic vertical stack’s optical response in the near-field regime, emphasizing
symmetry properties. The strong coupling of certain optical bands shows up as anticrossings in the dispersion
diagram, resulting in the polarization exchange of the interacting bands. By leveraging these effects, we engineer
the near-field intensity distribution. Additionally, lifting band degeneracy at specific points of the Brillouin zone
is obtained with the consequent opening of minigaps. These effects are understood by quantifying the multipolar
coupling among nanospheres belonging to the same and different sublattices, as well as the interlayer and
intralayer nanoparticle interactions. Differences with the atomic case are also analyzed and explained in terms of
the stack’s interaction matrix. Finally, we predict the absorption spectrum projected on the two orthogonal linear
polarizations.
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I. INTRODUCTION

Among the possible lattice symmetries, the honeycomb
one has gathered enormous attention after the successful syn-
thesis of graphene, which signaled the birth of genuinely
two-dimensional (2D) physics in atomic systems. Many of
the fascinating graphene properties relate to its bipartite, non-
Bravais crystalline structure, the most outstanding example
being the Dirac cones with their linear dispersion. Remarkable
is also the breaking of the valley degeneracy at the K points
of the Brillouin zone. It is currently being exploited to tune
the optoelectronic properties of new materials and sparked the
investigation of a variety of valley-sensitive phenomena.

Recently, the relative orientation of 2D atomic vertically
staked lattices has been proposed as a new geometrical degree
of freedom to engineer their electronic band structure. The
relative orientation, or twist angle, of stacked graphene and
dichalcogenides layers has been shown to influence their elec-
tronic, optical, chemical, and mechanical properties. Bilayers
of 2D layered materials exhibit a wide variety of novel phys-
ical properties, manifested as profound modifications of the
electronic structure [1], interlayer coupling [2,3], optical [4],
and insulating properties [5]. Special twist angles, termed as
magic angles, are responsible for the emergence of spectacular
effects such as superconduction [6], topological phases [7],
and spin waves [8].

After reckoning the properties of the honeycomb lattice,
many different analogies have been realized, aiming at repli-
cating the physics of graphene and 2D materials at different
scales. Artificial graphene systems differ from the atomic case
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because of the type of interaction within the lattice. One of the
closest optical analogies of 2D materials are 2D plasmonic
lattices made of resonant metallic nanoparticles (NPs), which
couple together via an external electromagnetic field, whereby
the electronic bands are replaced by optical bands, and collec-
tive plasmon modes [9].

The electromagnetic interaction in plasmonic lattices
can be divided into two distinct regimes: the diffractive
regime and the near-field regime. In the diffractive regime,
the interparticle distance is on the order of the incident
wavelength, and thus diffraction can favor the radiative
coupling between the localized surface-plasmon resonances
associated with each isolated nanoparticle [10]. Under this
special condition, the 2D plasmonic lattice displays an optical
band structure the Bloch modes of which are termed as surface
lattice resonances [11–13]. These modes show a collective
behavior on the long-range scale, involving several unit cells.
They have been recently studied also in non-Bravais [14–16]
and vertically stacked plasmonic lattices [17]. Diffractive
lattices present striking spectral far-field properties, among
which Fano-like resonances, electromagnetically induced
transparency windows, and ultrasharp linewidth are just a few
examples [18–21].

In analogy with graphene, nontrivial phenomena occur
mainly at the K points of the first Brillouin zone of the honey-
comb plasmonic lattice in the near-field regime [22]. This type
of lattice can present a more involved response than a Bravais
since its base can be used to engineer its optical properties
[23]. Using a dipole approximation, it has been shown that
Dirac cones, similar to the π bands of electrons in graphene,
exist at the K points of honeycomb plasmonic lattices.
Additionally, Dirac cones have already been demonstrated to
host intriguing effects related to parity-time symmetry, and
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non-hermitian physics [24]. The presence of exceptional
points in the dispersion diagram of 2D lattices with balanced
gain and loss provides the honeycomb lattice with a nontrivial
topological optical band structure [25]. Conversely, in the
near-field regime the interparticle distance is comparable
to the particle diameter. Near-field coupling is typically
short range and involves the interaction only among nearest
neighbors.

In this paper, we use the multipolar spectral representa-
tion (MSR) to study a honeycomb monolayer of plasmonic
nanoparticles in the near field coupling regime, first, and then
a vertically stacked bilayer. By focusing on the A-A and A-B
stacking, we stress similarities and differences between the
atomic crystal and the optical lattice hamiltonians. Near-field
multipolar interaction between nanoparticles is found to be
a direct electromagnetic analogy of the covalent interactions
between atomic orbitals. It is well known that in a two-
dimensional plasmonic honeycomb monolayer described by
point dipoles, the in-plane (IP) modes couple together while
they remain decoupled from the out-of-plane (OP) ones [26].
We find that in the coupled bilayer, the subwavelength dis-
tance between the individual layers results in interlayer band
interactions sufficiently strong to cause level repulsion at the
crossing of orthogonally polarized bands and the opening of
minigaps at the K point of the first Brillouin zone. These prop-
erties are revealed in both the calculated absorption spectrum
and spatial near-field distribution.

II. THEORETICAL MODEL AND METHOD

We consider a 2D honeycomb lattice composed of non-
magnetic polarizable nanospheres of radii a the response of
which to an external potential is described by a frequency-
dependent local dielectric function ε(ω), and which are within
a host matrix with dielectric constant εh. The nanospheres
are sufficiently close to each other, so they near-field couple
through Coulomb interactions between the induced charges
on each particle. The local field felt by each particle, which
results from summing up the contributions from all the
nanospheres and the external field, gives rise to a multipolar
charge distribution on each sphere. By virtue of the lattice
translational invariance, the associated induced multipole mo-
ments are written as Bloch functions, which imply a fixed
phase relation between the spheres.

To describe the response of the system to external exci-
tations, we use the MSR [27,28], which allows a systematic
analysis of the system eigenmodes and its dependence on
multipolar interactions [29]. This method relies on the mul-
tipolar expansion of the electrostatic potential to obtain a set
of equations for the induced multipolar charge distribution on
each of the particles in the system. A more detailed overview
is given in the Appendix A. Using a ket notation [25,30,31] for
the induced multipolar moments |X 〉 and the external potential
|F (�k)〉 acting on each particle of the system, we obtain a set
of equations

[−u(ω)I + H(�k)] |X 〉 = |F (�k)〉 , (1)

where u(ω) = 1/[1 − ε(ω)/εh] is known as the complex spec-
tral variable, I is the unitary operator, and H is a hermitian
operator, which describes the interaction between multipolar
charge distributions and depends only on the geometrical pa-

rameters of the system. Since we are working with spherical
scatters, it is convenient to expand in a basis of spherical
harmonics |φμ〉 centered at each particle, analogous to the
expansion of the crystal wave function as a linear combination
of localized atomic orbitals [32].

On this basis, the components of kets in Eq. (1) are given
as

〈φμ|X 〉 = Qμ√
la2l+1

i

, (2)

〈φμ|F (�k)〉 = −
√

la2l+1
i

4π
V ext

μ e j �Ri ·�k, (3)

where μ is shorthand for the set of indices (l, m, i). Term Qμ

is the lmth spherical multipole on the ith particle in the unit
cell, V ext

μ is the lmth term of the expansion of the external
potential at i, j is the imaginary unit, and Ri is the coordinate
of particle i in the unit cell.

Solutions to Eq. (2) can be found by constructing the Green
function, G = −∑

s
|s〉〈s|

u(ω)−ns
[33], where |s〉 are the system

eigenvectors obtained by solving the eigenvalue equation

H |s〉 = ns |s〉 . (4)

where H has components given by Eq. (B9), shown in the
Appendix B. We point out that H can be split into two ma-
trices, one related to the response of the isolated nanosphere
and the other to a periodic matrix that describes the inter-
action potential within the lattice. This equation is akin to
the Schrödinger equation found in solid-state physics for the
crystal hamiltonians and its solution describes the formation
of optical bands in plasmonic lattices in the near-field regime.

Once solved using the spherical harmonic basis |φμ〉, the
eigenstate component reads 〈φμ|s〉 = Uφμs, where Uμs is a
unitary matrix as defined in the Appendix C. The product
of two eigenstates is simply 〈s|s′〉 = ∑

μ U ∗
sμUμs′ = δss′ con-

sistent with the orthogonality of eigenstates. This eigenvalue
equation clarifies the analogy between the atomic and optical
lattices, whereby the hamiltonian and electronic bands are
replaced by the H matrix and optical bands, respectively. The
electron interactions within the atomic lattice are here re-
placed by the Coulomb interaction between charge densities.

Using a complete orthonormal basis, the Green matrix has
components

〈φμ| G |φμ′ 〉 = −
∑

s

〈φμ|s〉〈s|φμ′

〉 u(ω) − ns

= −
∑

s

Cμ′
μ (s)

u(ω) − ns
, (5)

where ns are the eigenvalues of matrix H associated with the
modes, s, of the system. Cμ′

μ (s) are components of matrix
C(s), which describe the coupling strength of the external
fields through the sth mode of the system (see the Appendix
C). Note that the eigenvalues, or equivalently the modes of
the system, are independent of the external potential and only
depend on the geometrical parameters of the system [see
Eq. (4)]. In other words, the band structure of the plasmonic
lattice is fixed by the symmetry of the lattice, while the spec-
tral range where the bands are found is material dependent.
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The denominator of the Green matrix defines resonance
conditions given as

Re[u(ω)] = ns(�k), Im[u(ω)] � 1. (6)

To find the resonant energy, ns(�k), of a given mode, it is
necessary to define a dielectric function, for example, when
using a Drude dielectric function of the form

ε(ω) = 1 − ω2
p

ω(ω + jτ−1 + jτ (a)−1)
,

with τ−1 and τ (a)−1 being the usual scattering rate and the
one corrected for the small nanoparticle dimension, respec-
tively. Thus the frequency, ωs(�k), of the sth eigenmode is
given by [34]

ωs(�k) = − j� +
√

ω2
pns(�k)As(�k) − �2 (7)

where As(�k) = [ns(�k)(1 − εh) + εh]−1 and � = 1
2 (τ−1 +

τ (a)−1) [34]. Equation (7) defines the dispersion relation for
the modes of a lattice of spherical NPs described by a Drude
dielectric function.

To calculate the induced multipolar moments on each par-
ticle, we use the Green function:

|X 〉 = G |F 〉 . (8)

Once the induced moments are obtained, physical properties
such as the the absorption cross section Cabs(ω) can be cal-
culated. For example, Cabs(ω) is proportional to the dipole
moments, �p = (px, py, pz ), of the system, so using Eq. (8) and
the relations

Ql=1,m=0 =
√

3

4π
pz,

Ql=1,m±1 = −
√

3

8π
(px ∓ j py)

(9)

we can calculate the absorption cross section for a given
external field:

Cabs = 4π

(
2π

√
εh

λ

) Np∑
i

Im[ �Eext · �pi] (10)

where λ is the vacuum wavelength of the external field. Notice
that dipoles in Eqs. (9) and (10) are calculated using Eq. (8).
Therefore all multipolar interactions contribute to the induced
dipole moments, which are described through the Green ma-
trix. In principle, all the matrices in the previous equations are
infinite-dimensional.

To correctly solve the equations, we introduce the pa-
rameter lmax, which defines the maximum multipole moment
considered and therefore determines the dimension of ma-
trices H, G, etc. In general, for a given set of geometrical
parameters, such as separation distance, particle radius, and
lattice symmetry, an appropriate lmax must be chosen to en-
sure convergence of the physical properties. For lmax = 1 we
recover the dipole approximation, which is expected to be
good for large particle separations [25,35]. For lmax = 2 the
quadrupole approximation is obtained in which dipole-dipole,
dipole-quadrupole, and quadrupole-quadrupole moment inter-
actions are taken into account [29].

It will also be useful to calculate other physical properties,
such as the polarization of a given mode. For example, it is

convenient to introduce a quantity that measures the IP and
OP character of a given mode. To accomplish this, we can
project a given mode onto the part of the basis with IP and OP
dipolar symmetry. In the case of a spherical harmonic basis
this corresponds to projecting onto basis functions with index
l = 1, m = 0 (out-of-plane) and l = 1, m ± 1 (in-plane). In
the bracket notation, we define the IP and OP polarization of
a mode as

PIP = 〈s|

⎛
⎜⎜⎜⎜⎜⎝

∑
l = 1
m ± 1

|φμ〉 〈φμ|

⎞
⎟⎟⎟⎟⎟⎠ |s〉 =

∑
l = 1
m ± 1

Cμ
μ (s),

POP = 〈s|

⎛
⎜⎜⎜⎜⎜⎝

∑
l = 1
m = 0

|φμ〉 〈φμ|

⎞
⎟⎟⎟⎟⎟⎠ |s〉 =

∑
l = 1
m = 0

Cμ
μ (s).

(11)

Using Eq. (5), it can be verified that this quantity is equivalent
to taking the sum of coupling weights of a given mode to
an IP (OP) external field. It has been shown that coupling
strengths of the form Cμ

μ (s) take only positive values and
that the trace of coupling matrix C(s) satisfies

∑
μ Cμ

μ (s) = 1,
so that the polarization of a mode defined by Eq. (11) takes
values between 0 and 1 [27]. This model can be extended to
an arbitrary number of vertically stacked plasmonic lattices
by constructing the interaction matrix H with blocks corre-
sponding to the inter- and intralayer particle interaction and
the dimensionality of which is determined by lmax, as shown
in the Appendix E.

III. RESULTS AND DISCUSSION

A. Monolayer

We begin by applying our method to the case of a honey-
comb monolayer of Ag nanospheres with radius a = 10 nm,
described by a Drude dielectric function, and hosted within
a homogeneous medium of dielectric constant

√
εh = 1.46,

which describes the substrate used in experimental systems
[14]. The separation distance between particle centers in a
layer is d = 3a, so that we can safely restrict our calculations
to the dipole approximation (lmax = 1) [29]. This system has
been extensively studied due to its analogy with 2D electronic
systems [26].

For a strictly 2D configuration adequately described by the
dipole approximation, the interaction between orthogonally
oriented multipolar moments is prohibited, as shown in the
Appendix B. Because of this, IP and OP modes can be solved
independently, which corresponds to solving indices m = ±1
and m = 0 separately. The dispersion relation ns(�k) for OP
modes is particularly simple and can be written as

nOP(�k) = n0,1 ± ∣∣Hm′=0,i′=2
m=0,i=1 (�k)

∣∣ = n0,1 ± 2a3

√
3

1

d3
|F (�k)|,

(12)
where Hm=0,1

m=0,1(�k) is the OP part of the interaction matrix
between particles P1 and P2 as shown in the schematic of
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FIG. 1. (a) Schematic of the monolayer with two particles in each
unit cell. Nearest-neighbor vectors, �di, and translation vectors, �t1 and
�t2, are shown. (b) A-A and (c) A-B vertical stacking with interlayer
distance L. The unit cell now has four particles, two per layer denoted
as P1, P2 and P′

1, P′
2.

Fig. 1; n0,1 = 1/3 is the eigenvalue of an isolated dipole,
and F (�k) = ∑3

i e j�k· �di where �di = dd̂i is one of three nearest-
neighbor vectors as shown in the schematic of Fig. 1.

Notice how Eq. (12) only depends on components of the
interaction matrix with m = m′ = 0. This equation is analo-
gous to the dispersion relation obtained using a tight-binding
model for the electronic bands in graphene, where the term
|Hm′=0,i′=2

m=0,i=1 (�k)| is analogous to the hopping integrals between
nearest-neighbor orbitals [32]. Equation (12) illustrates how
the system’s eigenvalues deviate from that of an isolated
sphere n0,1 due to the contributions from dipole-dipole inter-
action described by Hm′=0,i′=2

m=0,i=1 (�k) and F (�k). From Eq. (12)
we can also see that the bandwidth decreases as 1/d3 as
nearest-neighbor separation increases. An equivalent though
slightly more complicated relation may be obtained for the IP
eigenvalues written in terms of H1

1 , H−1
−1 , H1

−1, and H−1
1 .

The complete band structure for the honeycomb monolayer
is calculated by solving Eq. (4) along the high-symmetry
trajectories and using Eq. (7) as is shown in Fig. 2(a). In
accordance with past work [35], there is a Dirac-like cone
at the K point. Using Eq. (12) it can be seen that, similar to
the case of graphene, the dispersion relation for OP modes
is linear in k near the K point. Note that at the K point, the
interacting term in Eq. (12) goes to zero, and the eigenvalue
at the K point is degenerate and equal to that of the isolated

particle. In contrast to the case of graphene, the IP modes also
form a Dirac cone near the K point. This difference is due to
the fact that IP modes in graphene are formed by hybridized
s-p orbitals, while NPs interact only via dipole fields with an
equal symmetry to those of p orbitals.

To illustrate which modes are IP or OP, Figs. 2(b) and
2(c) show the mode polarization along the high-symmetry
trajectory �-K-M calculated using Eq. (11). In agreement
with previous work, as well as with the condition prohibiting
IP and OP interaction, it can be seen that modes are either
completely IP or OP. As pointed out in the previous section,
the polarization of each band can also be interpreted as the
sum of the coupling weights of the mode to an external field
with IP or OP polarization. Due to the prohibition of interac-
tion between moments with orthogonal orientation (m 
= m′),
IP (OP) modes will couple only to external fields with IP (OP)
symmetry.

Next, we study the role of multipolar interactions in the
honeycomb monolayer. For this case we consider a system
of Ag NPs in a host with a larger dielectric constant to
lower band energy

√
εh = 1.9 with separation between nearest

neighbors of d = 2.5a so that convergence of the system’s
eigenmodes is achieved by taking lmax = 2. At this level,
dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole
interactions are taken into account. The complete band struc-
ture for this system is shown in Fig. 3(a). Due to the smaller
separation distance, larger interactions between particles mod-
ify the Dirac cone, lifting the degeneracy at the apex as well
as shifting bands so that the apex is no longer found within the
band gap, as was the case for lmax = 1.

Furthermore, a larger number of bands are obtained with
respect to the dipole case due to the fact that each multipole
moment contributes one band per particle in the unit cell.
See the dimension of H in the Appendix D. Bands at lower
energies, approximately between 2.7 and 3.3 eV, resemble
those obtained within the dipole approximation. Given the
dielectric parameters of the particles described by a Drude
dielectric function, at this energy range, it is expected that
lower-energy bands have a larger dipole character while those
at higher energies have a larger quadrupole contribution. In
order to quantify this we notice that due to the orthogonality
of the eigenstates |s〉, any given eigenvalue can be written as
ns = 〈s|H|s〉 = ns〈s|s〉.

By separating the different contributions to the interaction
matrix H we can write

ns = 〈H〉s = 〈Hdip〉s + 〈Hquad〉s, (13)

FIG. 2. (a) Dispersion relation along the �-K-M path of the reciprocal space for the honeycomb monolayer with the light line shown in
gray, using Eq. (7). (b) In-plane PIP(s), and (c) out-of-plane POP(s) polarization calculated using Eq. (11) at each mode s.

195412-4



OPTICAL BAND ENGINEERING VIA VERTICAL … PHYSICAL REVIEW B 103, 195412 (2021)

FIG. 3. (a) Dispersion relation at the quadrupole level (lmax = 2) along the �-K-M path of a honeycomb monolayer of a = 10 nm Ag
nanospheres, using Eq. (7). (b) In-plane PIP(s) and (c) out-of-plane polarization POP(s) component of each state calculated using Eq. (11).
(d) Dipole-quadrupole contribution, 〈H(quad) − H(dip)〉s/ns, at each state: larger positive values (purple) correspond to larger quadrupole
contribution for a given mode, |s(�k)〉, while larger negative values (green) correspond to larger dipole contribution.

where we have separated H into the different multipolar con-
tributions. Matrix Hdip describes dipole-dipole interactions,
while Hquad describes dipole-quadrupole and quadrupole-
quadrupole ones (see the Appendix D). It means that by
taking only Hdip, we recover the dipole approximation. By
defining 〈Hquad〉 − Hdip

s/nS , we can quantify the dipolar and
quadrupolar contribution to each mode, |s〉, along with its
eigenvalue ns, where values close to 1 (−1) mean that the
mode is predominantly quadrupolar (dipolar). A value of zero
describes a mode that receives an equal contribution from
dipolar and quadrupolar interactions.

Notice that to calculate the quantities 〈Hdip〉s and 〈Hquad〉s

we must first solve for eigenvectors |s〉 of the complete matrix
H; we then use the eigenvectors to calculate the contributions
coming from each type of multipolar interaction. These values
are calculated for each band along the �-K-M path and shown
in Fig. 3(b). We first corroborate that bands at lower energy are
predominately dipolar while those at the highest energies are
predominately quadrupolar. Starting from energies at approxi-
mately 3.3 eV, bands begin to have a quadrupolar contribution.
Surprisingly a large dipolar contribution is found for states at
around 3.6 eV near the � point. We can see that in general
bands are neither purely dipolar nor quadrupolar, but the same
band can continuously change from being dipolar to being
quadrupolar. Due to the bands’ energy range, we also stress
that these results do not take into account interband transi-
tions found in real materials. However, this does not pose a
limitation since the optical band structure can be redshifted
in energy while maintaining its multipolar character, which is
only due to the lattice geometry.

When multipolar interactions are considered, the restric-
tion prohibiting interaction between modes with different
polarization is lifted (see the Appendix B). Bands are no
longer expected to be either fully IP or OP. Calculation of

each band polarization is also shown in Figs. 3(c) and 3(d).
Notice that some bands which are found in the complete band
structure in Fig. 3(a) do not appear in the plots of the polariza-
tion Figs. 3(b) and 3(c). Since not all modes have a projection
onto the dipolar IP or OP base and will therefore have a polar-
ization equal to zero on this basis, in other words, some bands
do not couple directly to the dipolar part of the external field
but instead require a quadrupolar external field to be directly
excited [29]. We can see that bands are neither fully IP or OP;
rather, in general, a band has IP and OP regions. Mixing of
polarization appears predominately at higher energies, which
is consistent with the fact that polarization mixing is due
to quadrupole interaction. Notice that there are crossings of
quadrupolar bands at the K point at energies above 3.3 eV that
have polarization different from zero. Despite having a large
quadrupolar contribution, they do not require a quadrupolar
external field to be excited.

To corroborate the above, we show the absorption spectrum
in Fig. 4 for OP external illumination. Two things must first
be said about the excitation of the modes. First, notice that
the majority of modes within the Brillouin zone lie outside
the light cone and therefore can only be probed experimen-
tally by artificially increasing the momentum parallel to the
surface [25]. This is typically accomplished using a coupling
prism in the attenuated total reflection geometry [36] or via
near-field probing [37] or excitation [38]. Therefore, modes
outside the light cone must be considered as evanescent fields.
Secondly, it must clarified that due to the transversality con-
dition, it is not possible to excite the system with an OP
polarized electromagnetic wave precisely at the � point, i.e.,
at normal incidence.

In general, extinction lines follow the bands with large OP
polarization; however, not all bands are excited with the same
intensity. It is because absorption depends not only on the
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FIG. 4. Side view of the near electric-field intensity enhancement at (a) K1 and (b) K2 taken along the y axis as shown in Fig. 1, and
(c) absorption spectrum for out-of-plane illumination.

coupling to the external excitation but also on the dielectric
properties of the NPs. As a general rule, at smaller values of
the imaginary part of the spectral function, there are larger
Cabs, as can be seen from Eqs. (5) and (8). It can be seen that
the lower-energy OP bands in the �-K region do not appear
since dipoles line up parallel to each other and the incident
field but perpendicular to the array. The fields they generate,
which act upon the neighboring particle, are opposite to the
incident field. Therefore they tend to cancel out the neighbor-
ing dipole. This effect is small in the K-M and M-� region
because ky 
= 0. Therefore, dipoles are subject to slightly dif-
ferent external field conditions, and they do not completely
cancel each other out. To see the difference between modes
with strong dipolar and quadrupolar contribution, we calculate
the near field at points K2 and K1, as shown in Fig. 4. We
notice that the modes at K2 are almost entirely dipolar, while
those at K1 are predominately quadrupolar. At K2, the near
field has an evident dipolar symmetry, while at K1 four lobes
can be seen to form near the particles’ surface, following the
quadrupolar symmetry.

B. Vertically stacked honeycomb lattices

We next consider the case of a bilayer of honeycomb NPs
composed of two vertically stacked monolayers. In contrast
to stacked graphene, which has an established separation
distance between layers, we are free to vary the separation
distance, thus modulating the interaction between layers. To
emulate the weak interaction felt between graphene layers,
we consider a separation between plasmonic layers to be at
least L � 3a, so that interlayer interaction is fully dipolar and
weaker than intralayer interactions. The dispersion relation
for a bilayer with A-A and A-B stacking separated by L = 6a,
in the dipole approximation lmax = 1, is shown in Fig. 5. As
expected, there is double the number of bands concerning
the lmax = 1 monolayer, which is because the unit cell now
has twice as many particles. It can be seen that the bilayer
band structure resembles the monolayer one and that for both
systems the Dirac cone at the K point is preserved. Some inter-
esting differences between the bilayer and monolayer systems
are identified. Different from the monolayer, band interaction
is now allowed at the crossing points. There are intriguing
points at which bands cross each other without interacting, as
for the monolayer, and others where bands interact and repel
each other. The clearest repulsion points for both types of
stacking have been labeled with A and B in Fig. 5. In point

A, a clear local gap forms, while in B, the splitting is less
visible. Another interesting effect due to vertical stacking is
band repulsion at the K point, which causes some of the bands
to no longer touch at the apex of the cones. This effect is more
noticeable for the A-B than the A-A stacking. Finally, we note
that other than the slightly larger interaction at the K point, the
band structure and optical properties between AA and AB type
bilayers are similar and, for simplicity, we will work with the
AA system.

Similar to what was done for the monolayer, we can in-
vestigate the IP and OP polarization components along the
selected high-symmetry path. It is shown for the AA stacking
in Fig. 6. Throughout the path, eight bands are predomi-
nantly IP while four are predominately OP. As opposed to
the monolayer at the dipole level (lmax = 1), where each band

FIG. 5. Dispersion relation for the (a) A-A and (b) A-B vertically
stacked honeycomb plasmonic lattices with separation distance equal
to L = 6a.
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FIG. 6. (a) In-plane and (b) out-of-plane polarization of the
modes of the A-A stacked bilayer calculated using Eq. (11).

is consistently IP or OP, some bands exhibit an evolution of
their polarization state along the high-symmetry path. As a
general rule, polarization varies continuously as the Bloch
wave vector sweeps the first Brillouin zone. The vertical
anisotropy introduced by the stacking allows interaction be-
tween the IP and OP modes belonging to each monolayer,
similarly to what is found in phononic crystals [39]. It is visi-
ble both for anticrossing bands and even for the isolated band
labeled as C. For the important case of repelling bands, Fig. 6
shows that the strongly coupled pair of bands (see point A in
Fig. 5) is composed of a mostly IP polarized band and a mostly
OP polarized band and that, away from the anticrossing point,
they exchange their polarization state. Figure 10 illustrates in
more detail how the polarization is transferred between the
two repelling bands at point A.

To further investigate the properties of the band structure
of the vertical stack and the role of inter- and intralayer inter-
actions we write the system eigenvalues as

ns = 〈H(vs)〉s = n1,0 + 〈H(inter)〉s + 〈H(intra)〉s (14)

where H(vs) is the interaction matrix of the vertically stacked
system and n1,0 is a diagonal matrix with components of
the isolated dipole eigenvalue n1,0 = 1/3, where we separate
the interaction between particles belonging to the same layer,
H(intra), from the one between particles of different layers,
H(inter). The interlayer interaction can be written as H(inter) =
H(inter)

1 + H(inter)
2 , where H(inter)

1 describes interactions between
pairs of particles having charge distributions with either IP-IP
or OP-OP symmetry and H(inter)

2 describes interaction between
charge distributions with IP-OP symmetry (see the Appendix
E). Therefore the quantity 〈H(inter)

1 〉s is a measure of the con-
tribution of IP-IP/OP-OP interlayer interaction to mode |s〉.

FIG. 7. Decomposition of the interaction matrix with relation
to ns along high-symmetry trajectories given by 〈H(inter)

i 〉s/ns with
i = 1, 2. Contribution from (a) IP-OP H (inter)

2 and (b) IP-IP/OP-OP
interlayer interactions H (inter)

1 .

Likewise, 〈H(inter)
2 〉s measures the contribution from IP-OP in-

terlayer interaction. These values are calculated for each band
along the �-K-M path in Fig. 7. Interestingly, interactions can
change sign for different energy values at a given k point. This
is particularly noticeable for IP-OP interlayer interaction in
the vicinity of IP-OP anticrossings where band repulsion takes
place (see regions A and B in Fig. 5). Although this type of
interlayer interaction is in general small, in fact contributing
only 1% to ns, it is enough to cause band repulsion. This can
be explained by noticing that at the crossing points the in-
tralayer interaction, which in general contributes around 10%
to ns, goes almost to zero (see Fig. 8 in Appendix E). It can be
concluded that band repulsion and the formation of minigaps
at the K point are results of IP-OP interlayer interaction due
to the anisotropy caused by vertical stacking.

FIG. 8. Percentage of ns contributed from intralayer interactions
along high-symmetry points, 〈H(intra)〉s/ns, complementary to Fig. 7.
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FIG. 9. Near-field intensity spectrum in log10 scale for (a) in-
plane and (b) out-of-plane excitation of a vertical AA stacking of
honeycomb lattices at the dipole level.

We next investigate the properties of the absorption spec-
trum and the near electric field of the eigenmodes of the
vertical stack.

In Fig. 9, it can be seen that the absorption spectrum
follows the band structure of the system, similar to the mono-
layer. Remarkably, only some of the bands appear as bright
in the absorption spectrum. Like the monolayer case, this
optical band selection is a consequence of the selection rules
dictated by the matrix A symmetry (see the Appendix B). We
stress that, due to the IP-OP coupling between layers, it is
possible to excite OP modes with IP illumination and vice
versa (compare with Fig. 6). The band repulsion takes place in
points A and B, as they are visible in the absorption spectrum,
while the width of the bands hides the minigaps. We checked
that by fictitiously exchanging IP-OP interlayer interaction,
H(inter)

2 = 0, the excitation of modes with different symmetry
to that of the exciting field is not allowed (not shown here). It
is similar to the case of two independent monolayers. Recall
that losses are considered in the Drude model (scattering
rates) and thus included in the real and imaginary values of

the spectral variable of Eq. (6). Thus, bands obtained from
Eq. (7) also include losses. The influence of losses is visible
in the near-field spectra. When the scattering rates increase,
band linewidth increases, and the maximum of the near-field
intensity diminishes. From the theoretical point of view, bands
are precisely determined and their minibands and dispersion
are always visibles. Experimentally, bands can spread out over
a large frequency range of, hiding band deviations and other
fine features unless compared to a theoretical model.

Finally, to visualize the polarization switch, we plot the
near electric field within the vertical stack in the vicinity
of a band repulsion and the K point. In Fig. 10, we show
a closeup of the region near band repulsion labeled A (see
Fig. 5), as well as the near-field enhancement due to IP ex-
ternal excitation at two different points along with the band.
In A1 (A2), the band has large OP (IP) polarization. It can
be seen that the near-field enhancement is nearly one order
of magnitude larger when the exciting field and the band
have matching polarizations. However, due to the interlayer
coupling, enhancement is not negligible at points with large
OP coupling such as A1. Furthermore, a clear rotation in the
dipole orientation associated with each particle is observed
while following the band. At point A1, the polarization is
more OP oriented despite being excited by an IP field. On the
other hand, at point A2, the near field is more IP following the
type of excitation.

IV. CONCLUSIONS

The honeycomb lattice is the simplest and most attrac-
tive bipartite, non-Bravais lattice, the properties of which are
investigated across several scales. Ordered resonant nanopar-
ticle arrays constitute a suitable platform for investigating
similarities and differences between the electronic band struc-
ture of the atomic scale and the optical band structure
of nanoscale honeycomb lattices. Here, we have studied
the modification of the optical band structure, optical ab-
sorption, and spatial near-field distribution of a honeycomb
plasmonic lattice introduced by stacking two such lattices
at subwavelength distances. We used the multipolar spectral
representation method to clarify similarities and differences
between the optical and atomic potential within a tight-
binding type of model. In the band structure of a plasmonic
monolayer, we highlight Dirac cones formation at the K point
due to in-plane modes, besides the expected ones related
to the out-of-plane modes, akin to the out-of-plane p bands
in graphene. This remarkable difference with what is found

FIG. 10. [(a),(b)] Horizontal and [(c),(d)] vertical cuts of near-field enhancement with an in-plane excitation calculated at points labeled as
A1 and A2 in panel (e) near the zone where band repulsion occurs.
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in graphene stems from the limitation of the analogy be-
tween atomic orbitals and multipole moments of the single
plasmonic nanosphere. The fact that particles interact predom-
inately through their dipole moment, which has a symmetry
similar to p-orbitals, does not allow for the sp2 hybridization
typical of the in-plane carbon bonds.

The MSR method permits the precise description of the
interlayer and intralayer coupling among in-plane and out-of-
plane polarized modes in the stacked system. We have shown
that the material anisotropy introduced by the layers with
vertical stacking introduces the coupling of all polarization
components. One of the main results we found is local gaps re-
sulting from bands’ avoided crossing with opposite symmetry
and belonging to different layers. The strong mode coupling
manifests itself as in-plane–out-of-plane polarization mixing,
causing the near-field intensity spatial redistribution. By lever-
aging the in-plane field component, the enhancement and
localization of the electromagnetic field within the vertical
stack can be increased, which may be useful in the context
of open cavities and strong light-matter interaction.
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APPENDIX A: MULTIPOLAR SPECTRAL
REPRESENTATION

The periodic lattice can be spanned by translation of a unit
cell through vectors �t1 and �t2, such that the coordinates of each
particle in the lattice are

�RM,N,i = M�t1 + N�t2 + �bi (A1)

where M, N label the cell in which the particle is found and �bi

gives the location of the ith particle in the unit cell. Therefore
each particle in the lattice is defined by the set of indices
(M, N, i) with i = 1, . . . , NB, where NB is the number of par-
ticles per unit cell. For example, in the case of a honeycomb
monolayer NB = 2. If the NPs are sufficiently close to each
other their near fields couple due to Coulomb interactions
between the induced charges on each particle, which are de-
scribed with a multipolar expansion. To completely identify
the multipole induced on a given particle we use the set of
indices (l, m, M, N, i), where lm is the multipole order used

to describe the induced charge and (M, N, i) identify the par-
ticle in the lattice. To simplify notation, throughout this paper
all variables with multipolar dependence are represented as
vectors, where each component of the vector is identified by
the set (l, m, M, N, i) which is also represented by μ. Using
this notation, the multipolar moments Qμ induced on a sphere
in the presence of a frequency-dependent potential can be
expressed as

Qμ = −αμV μ
tot

= −αμ[Vext + Vind]μ,
(A2)

where αμ(ω) are the frequency-dependent multipolarizabil-
ities. The total potential Vtot is divided into V μ

ext and V μ

ind,
the external and induced potential felt by the nanospheres,
respectively.

Due to the periodicity of the lattice, we seek Bloch-like
solutions of Eq. (A2) for the induced multipole moments of
each particle:

Qlm,MNi = Qlm,i00exp[− j�k · �RMNi], (A3)

where �k is the wave vector of the external potential. Multipolar
moments Qlm,MNi in cell M, N can be seen as replicas of
moments Qlm,00i phase shifted by a term exp[−i�k · �RMNi]. By
using Eq. (A3) in Eq. (A2) and applying periodic conditions
we can solve for the multipolar moments within only one unit
cell:

Qlm,i = −αlm,i

⎡
⎢⎢⎢⎢⎢⎣V ext

lm,i +

nearest
neighbors∑

i′

∑
l ′m′

Al ′m′i′
lmi Ql ′m′,i′e

j�k· �dii′

⎤
⎥⎥⎥⎥⎥⎦

(A4)
where dii′ = ( �R00i − �RM ′N ′i′ ) with adequate M, N indices.

For the case of an array of nanospheres it is useful to use
spherical coordinates and expand the potentials and compo-
nents of the interaction matrices in spherical harmonics [31].
In this basis the multipolarizability is given as [27]

αμ(ω) = 2l + 1

4π

n0l

n0l − u(ω)
a2l+1

MNi , (A5)

where n0l = l/(2l + 1). Notice that n0l represents the eigen-
values of the isolated multipole of order l , and does not
depend on m due to the symmetry of the particle.

APPENDIX B: INTERACTION MATRIX IN THE NEAREST-NEIGHBOR APPROXIMATION

The μth term of the potential felt by particle i due to the induced moments on particle i′ is

V μ

ind =
∑
μ′

Aμ′
μ Qμ′, (B1)

where elements of the coupling matrix A are written as

Al ′m′ j
lmi = (−1)l ′+m′

[
Y (θi j, φi j )m−m′

l+l ′
]∗

Rl+l ′+1
i j

[
(4π )3

(2l + 1)(2l ′ + 1)(2l + 2l ′ + 1)

(l + l ′ + m − m′)!(l + l ′ − m + m′)!
(l ′ + m′)!(l + m)!(l ′ − m′)!(l − m)!

]1/2

(B2)
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FIG. 11. Schematic of out-of-plane (m 
= 0) and in-plane (m = 0) modes of a monolayer in the dipole approximation lmax = 1. Modes
have no interaction between orthogonally oriented moments.

where Ri j = | �Rj − �Ri| is the vector that joins the centers of particles i and j and i 
= j, and Y m−m′
l+l ′ (θi j, φi j ) are spherical harmonics

evaluated at angles θi j, φi j, corresponding to Ri j . Therefore, the elements Aμ′
μ describe the potential generated by the lmth

multipole at the location described by indices M, N, i and felt by the l ′m′ multipole moment on a particle located at M ′, N ′, i′.
It is important to note that for a system of particles on a plane the spherical harmonic in Eq. (B2) satisfies

Y m−m′
l+l ′ (π/2, φi j ) = (l + l ′ + m − m′) mod 2

2
(−1)

l+l′+m−m′
2 e j(m−m′ )φi j

×
√

(2l + 2l ′ + 1)(l + l ′ + m − m′ − 1)!(l + l ′ − m + m′ − 1)!

π (l + l ′ + m − m′)!!(l + l ′ − m + m′)!!
.

(B3)

Therefore in the dipole approximation, interaction between moments with different IP (m = ±1) and OP (m = 0) symmetry is
forbidden as illustrated in the schematic of Fig. 11. We then assume an external potential of the form

V ext
lm,MNi = V ext

lm,iexp[ j(ωt − �k′ · �RMNi )]. (B4)

Using Eqs. (A3) and (B4) in Eq. (A2) we obtain a relation for the multipolar moments:

Qlm,MNi = −αlm,i[Vext + Vind]lm,MNi,

Qlm,ie
− j�k· �RMNi = −αlm,i

[
V ext

lm,ie
− j�k′ · �RMNi +

∑
M ′N ′i′

∑
l ′m′

Al ′m′n′
lmn Ql ′m′,M ′N ′i′e

−i�k· �RM′N ′ i′

]
,

(B5)

Qlm,i = −αlm,i

[
V ext

lm,i +
∑

M ′N ′i′

∑
l ′m′

Al ′m′i′
lmi Ql ′m′,i′e

j�k·( �R00i− �RM′N ′ i′ )

]
. (B6)

Notice that the sum over indices (M ′N ′i′) describes interaction with all particles of the lattices. The tight-binding approxi-
mation limits this sum to include only the nearest neighbors. Furthermore, due to periodic conditions, which intuitively can be
understood as the assumption of equivalence between particles in different cells, we only have to calculate the induced multipole
moments in one unit cell, say M = 0, N = 0, so Eq. (B5) can be reduced to

Qlm,i = −αlm,i

⎡
⎢⎢⎢⎢⎢⎣V ext

lm,i +

nearest
neighbors∑

M ′N ′i′

∑
l ′m′

Al ′m′n′
lmn Ql ′m′,M ′N ′i′e

j�k·( �R00i− �RM′N ′ i′ )

⎤
⎥⎥⎥⎥⎥⎦. (B7)

This equation can then be brought to a matrix form equivalent to Eq. (1):

[u(ω)I + H]�x = �F , (B8)

with matrix elements of H:

Hl ′m′i′
lmi (�k) = nl

0δ
l ′m′
lm + (−1)l ′

√
ll ′a2l+1a2l ′+1

4π

nn∑
i′

Al ′m′i′
lmi e j�k· �Rii′ . (B9)

APPENDIX C: COUPLING WEIGHTS

To solve Eq. (A3) we first need to diagonalize matrix H.
We find the unitary matrix U that satisfies

U†HU = n (C1)

where U is a matrix the columns of which are the system’s
eigenvectors, U† is the transpose and complex conjugate of

U, and n is a diagonal matrix the elements of which are the
eigenvalues of H. Solutions to Eq. (A3) can be found with the
Green matrix formed by the elements

Gμ′
μ (�k, ω) = −

∑
s

U s
μ(�k)

[
U μ′

s (�k)
]†

u(ω) − ns
. (C2)
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The coupling strength is defined as the term Cμ′
μ (s) =

U s
μ(�k)[U μ′

s (�k)]
†
. Interpretation of the coupling strength can be

made more clear for example when calculating the induced
multipole moments due to an external field as in Eq. (8). We
see that coupling strength Cμ′

μ (s) describes the contribution to
moment μ from an external field V ext

μ′ through mode s.

APPENDIX D: MONOLAYER INTERACTION MATRIX
lmax = 2

The matrix elements of H for a monolayer in the
quadrupole approximation are given by Eq. (2). Recall that
this matrix includes dipolar-dipolar, dipolar-quadrupolar, and
quadrupolar-quadrupolar interactions. The total matrix will
have dimensions of (2 × 8) × (2 × 8) since there are two
particles in each cell and since lmax = 2 there are eight multi-
pole moments that must be described with their corresponding
interactions among them. The matrix will have the following
form:

H =
(

n0 0
0 n0

)
+

(
0 H (P1P2)

H (P2P1) 0

)
(D1)

where n0 is a 8 × 8 diagonal matrix the first three components
of which are the eigenvalues of an isolated dipole and the last
five are those of an isolated quadrupole. H (P1P2) is a 8 × 8
submatrix that describes interaction between particles P1 and
type P2 as shown in the schematic of Fig. 1. We can further
divide H (P1P2) by the type of interactions in the following
manner:

H(P1P2) =
(

Hdip
dip Hquad

dip

Hdip
quad Hquad

quad

)
(D2)

where Hdip
dip is a 3 × 3, Hquad

dip is a 3 × 5, and Hquad
quad is a

5 × 5 matrix describing dipole-dipole, dipole-quadrupole, and
quadrupole-quadrupole interactions, respectively, between
particles 1 and 2.

APPENDIX E: VERTICAL STACK INTERACTION MATRIX
lmax = 1

The matrix elements of H are given in Eq. (2). The element
Hμ′

μ = Hl ′m′,M ′N ′i′
lm,MNi describes the interaction between the lmth

FIG. 12. Schematic of different types of interlayer interaction
(a) H (inter)

2 showing the case of OP-IP and (b) H (inter)
1 showing a case

of IP-IP.

multipole of particle MNi with the l ′m′th multipole of particle
M ′N ′i′. In this sense, the interaction matrix of a honeycomb
monolayer system can be divided in the following manner:

H(mono) =
(

n0 0
0 n0

)
+

(
0 H (P1P2)

H (P2P1) 0

)

= n0 + H(intra),

(E1)

where H (P1P2) is a submatrix that describes interaction be-
tween particles P1 and type P2, as shown in the schematic
of Fig. 1, and n0 is a diagonal submatrix the components of
which are the eigenvalues of an isolated dipole.

For two vertically stacked layers the interaction matrix can
be divided as

H(vs) =
( n0 H (inter) (P1P2 ) H (intra) (P1P′

1 ) H (intra) (P1P′
2 )

H (inter) (P2P1 ) n0 H (intra) (P2P′
1 ) H (intra) (P2P′

2 )
H (intra) (P′

1P1 ) H (intra) (P′
1P2 ) n0 H (inter) (P′

1P2 )
H (intra) (P′

2P1 ) H (intra) (P′
2P2 ) H (inter) (P′

2P1 ) n0

)

= n0 + H(intra) + H(inter)

(E2)

where, for example, H (intra)(P1P2) is a matrix describing in-
teraction between particles P1 and P2 in the same layer, and
H (inter)(P1P′

2) describes interaction between particles of differ-
ent layers. Matrix H(inter) can further be separated into IP-IP
and OP-OP interactions as in H(inter)

1 and IP-OP interactions as
in H(inter)

2 of Eq. (14). Specifically, H(inter)
1 chooses all interac-

tions with indices (m = ±1, m′ = ±1) and (m = 0, m′ = 0).
On the other hand H(inter)

2 includes all interactions of the form
(m = 0, m′ ± 1). A schematic of these types of interactions is
shown in Fig. 12. Finally, as a complement to section the de-
composition of the interactions in the vertically stacked layers,
we present the intralayer interaction along the high-symmetry
points.
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[22] R. Guo, M. Nečada, T. K. Hakala, A. I. Väkeväinen, and P.

Törmä, Phys. Rev. Lett. 122, 013901 (2019).
[23] R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J.

Hone, and C. R. Dean, Science 361, 690 (2018).
[24] M.-A. Miri and A. Alù, Science 363, eaar7709 (2019).
[25] R. Kolkowski and A. F. Koenderink, Proc. IEEE 108, 795

(2020).

[26] G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani,
Phys. Rev. Lett. 110, 106801 (2013).

[27] R. Rojas and F. Claro, Phys. Rev. B 34, 3730 (1986).
[28] C. Noguez and R. G. Barrera, Phys. Rev. B 57, 302

(1998).
[29] D. Becerril, H. Batiz, G. Pirruccio, and C. Noguez, ACS

Photonics 5, 1404 (2018).
[30] K. Li, M. I. Stockman, and D. J. Bergman, Phys. Rev. Lett. 91,

227402 (2003).
[31] J. M. Gérardy and M. Ausloos, Phys. Rev. B 22, 4950 (1980).
[32] G. Grosso and G. Parravicini, Solid State Physics (Elsevier,

Amsterdam, 2000).
[33] C. Noguez and C. E. Román-Velázquez, Phys. Rev. B 70,

195412 (2004).
[34] C. Noguez, J. Phys. Chem. C 111, 3806 (2007).
[35] L. Wang, R.-Y. Zhang, M. Xiao, D. Han, C. T. Chan, and W.

Wen, New J. Phys. 18, 103029 (2016).
[36] X. M. Bendana, G. Lozano, G. Pirruccio, J. G. Rivas, and

F. J. G. de Abajo, Opt. Express 21, 5636 (2013).
[37] R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S.

Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev,
Opt. Express 15, 13682 (2007).

[38] A. L. Koh, K. Bao, I. Khan, W. E. Smith, G. Kothleitner, P.
Nordlander, S. A. Maier, and D. W. McComb, ACS Nano 3,
3015 (2009).

[39] Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, J. Phys. D
43, 185401 (2010).

195412-12

https://doi.org/10.1103/PhysRevLett.116.103002
https://doi.org/10.1016/j.mattod.2017.09.002
https://doi.org/10.1039/D0NA00095G
https://doi.org/10.1021/acsnano.7b08206
https://doi.org/10.1021/acsnano.0c04795
https://doi.org/10.1103/PhysRevApplied.14.054030
https://doi.org/10.1103/PhysRevB.80.201401
https://doi.org/10.1021/jz2002452
https://doi.org/10.1103/PhysRevLett.101.143902
https://doi.org/10.1021/ph400072z
https://doi.org/10.1103/PhysRevLett.122.013901
https://doi.org/10.1126/science.aat6981
https://doi.org/10.1126/science.aar7709
https://doi.org/10.1109/JPROC.2019.2939396
https://doi.org/10.1103/PhysRevLett.110.106801
https://doi.org/10.1103/PhysRevB.34.3730
https://doi.org/10.1103/PhysRevB.57.302
https://doi.org/10.1021/acsphotonics.7b01426
https://doi.org/10.1103/PhysRevLett.91.227402
https://doi.org/10.1103/PhysRevB.22.4950
https://doi.org/10.1103/PhysRevB.70.195412
https://doi.org/10.1021/jp066539m
https://doi.org/10.1088/1367-2630/18/10/103029
https://doi.org/10.1364/OE.21.005636
https://doi.org/10.1364/OE.15.013682
https://doi.org/10.1021/nn900922z
https://doi.org/10.1088/0022-3727/43/18/185401

