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We extend the damped Zaremba-Kohn model (dZK) for long-range dispersion interaction between a molecule
and a planar surface [J. Tao, H. Tang, A. Patra, P. Bhattarai, and J. P. Perdew, Phys. Rev. B 97, 165403
(2018)] to molecules adsorbed on a curved cylindrical surface, and employ this extended model as an additive
correction to the semilocal density functionals PBE (Perdew-Burke-Ernzerhof) and SCAN (strongly constrained
and appropriately normed). The resulting PBE4-vdW (van der Waals)-dZK and SCAN-+vdW-dZK are applied
to two systems, NH; and NO, molecules adsorbed on a single-wall carbon nanotube (CNT), for calculations of
binding energies and equilibrium distances. For comparison, the results from vdW nonlocal functionals, such
as SCAN+rVV10 and PBE+rVV10, are also presented. The binding energies from PBE+rVV10 (Vydrov
and Van Voorhis), SCAN+rVV10, PBE+vdW-dZK, and SCAN+vdW-dZK are about 70-115 meV for the
system of CNT + NH; and 300-500 meV for the system of CNT + NO,. The results from PBE+vdW-dZK
and SCAN+vdW-dZK are closer to each other than those from PBE+rVV10 and SCAN+rVV10 are. The
relatively closer results from PBE4+vdW-dZK and SCAN+vdW-dZK indicate the consistency of our developed
vdW—dZK model for cylindrical surfaces. All methods, including PBE, SCAN, PBE+rVV10, SCAN+rVV10,
PBE+vdW-dZK, and SCAN+vdW-dZK, give approximately the same binding energy differences between two
adsorption configurations (types I and II) for the two systems. This implies that the two adsorption sites have
approximately the same adsorption stability. The exponent of the vdW interaction power law from our vdW-dZK
model for the two systems is about O at short distance, largely due to the damping factor, and tends slowly to
—4 to —4.5 at distances D about 2050 A. At even larger distances, the vdW power-law exponent approaches
—5. This feature is very similar to the one calculated with random-phase approximation and renormalization
group approaches, supporting the applicability of our methods. Our developed vdW-dZK method provides a
highly efficient and reliable method for large systems with cylindrical surfaces, such as vdW interactions with

nanotubes.

DOI: 10.1103/PhysRevB.103.195410

I. INTRODUCTION

van der Waals (vdW) interactions are considered to be
only a small contribution to the total energy [1,2]. However,
they are a key factor in describing the binding properties
in a majority of molecular systems and materials. Although
vdW interaction generally includes all intermolecular inter-
actions, it more specifically (and everywhere here) refers to
the London dispersion interaction [3,4], a universal interaction
between any pair of objects made of electrons. vdW interac-
tions are strongly nonlocal, extending to distances exceeding
10 nm (or 100 A) in nanoscale materials [5]. London disper-
sion based vdW interaction can be negligible in most solid
systems; however, it has non-negligible effects in alkali met-
als [6], and plays a significant role in molecular complexes,
molecular crystals, layered materials, surface adsorptions, and
many biosystems. Its influence ranges from drug binding in
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proteins and double-helix stability in DNA [7] to pedal adhe-
sion in geckos [8,9] and cohesion in asteroids [10,11]. While
the importance of understanding and modeling vdW interac-
tions in realistic systems can hardly be overemphasized, our
ability to accurately model vdW interactions from first prin-
ciples is severely impeded by the high computational cost of
the high-level methods. The adiabatic connection fluctuation-
dissipation (ACFD) theorem [12,13], or (after simplifying
the interacting density response function) the random-phase
approximation (RPA) [14,15], plays a central role in under-
standing the exact treatment of vdW interactions. However,
the literature clearly lends support to the view that the ACFD
or RPA based methods are not computationally efficient for
large systems with over several hundreds of atoms per super-
cell. Therefore, many more efficient approaches (DFT-vdW)
have been developed within the framework of density func-
tional theory (DFT), as long-range additive corrections to
semilocal approximations to the density functional for the
exchange-correlation energy. These include the vdW-DF fam-
ily [16-22], VV10 (Vydrov and Van Voorhis) [23], and rVV10
[24], DFT+D series [25,26], and Tkatchenko-Scheffler (TS)
methods [27-29]. These broadly support the view that
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DFT-vdW combined methods are perhaps one of the most
efficient ways to include vdW interactions.

Carbon is a remarkable element showing a variety of
stable forms [30] ranging from three-dimensional (3D) semi-
conducting diamond to two-dimensional (2D) semimetallic
graphite to one-dimensional (1D) conducting and semi-
conducting carbon nanotubes to zero-dimensional (OD)
fullerenes, which show many interesting properties. Single-
walled carbon nanotubes [31] (CNTs) are promising materials
and building blocks for future nanoelectronics [32-34], due
to their large surface area to volume ratios and unique elec-
tronic properties, as well as high chemical and mechanical
stabilities.

Kong et al. [35] established a connection between the elec-
trical conductivity of single-walled CNTs and their exposure
to gaseous molecules such as NO, and NHj3. Inspired by
their work, Chang et al. [36] carried out a detailed study of
the adsorption of NH; and NO, on CNTs. They emphasized
designing the geometry and computing the binding energy,
equilibrium distances, and charge transfers. However, they
only took the local density functional (LDA) [37] into con-
sideration and implemented double-numerical basis functions
(DNDs) to compute the binding energies and equilibrium
distances. Unfortunately, LDA does not correctly capture the
medium- and long-range interactions, and therefore the func-
tional approximations needed to be modified. This realization
motivated us to investigate the binding energies and equilib-
rium distances using GGA and meta-GGA functionals, i.e.,
Perdew-Burke-Ernzerhof (PBE) [38] and the strongly con-
strained and appropriately normed (SCAN) metageneralized
gradient approximation (meta-GGA) [39].

A natural question arises regarding the vdW interaction
relating to nanotubes: To what extent does the vdW energy
expression change from a flat to a cylindrical surface? Emig
et al. [40], starting from the path integral representation, de-
rived the exact Casimir force between a plate and a cylinder.
They found the force has an unexpectedly weak decay at large
plate-cylinder separations, due to transverse magnetic modes.
Rajter et al. [41] derived the formulas of vdW interactions
for plate-cylinder and cylinder-cylinder systems, based on the
Lifshitz theory. Starting from the vdW interaction between
two separated semi-infinite half-spaces, they then treated the
half-space as a composite of cylinder bundles and derived
the vdW interactions for plate-cylinder and cylinder-cylinder
systems. Their formulas can apply to systems made of metal-
lic, semiconducting, and dielectrically isotropic or anisotropic
materials, such as semiconducting or metallic carbon nan-
otubes. In general, vdW interactions are remarkably sensitive
to the geometry and electronic structure of a given system.
In this work, by using classical electrostatics starting from
a dipole outside a cylindrical surface, we put forth a deriva-
tion of an expression for vdW energy between a particle and
a cylinder. The particle-cylinder system is a prototype for
molecules adsorbed to nanotubes. By using the developed
formula, we compute the binding energies and equilibrium
distances using our vdW model for NO, and NH; molecules
adsorbed on CNTs. The present work is an extension of our
developed damped Zaremba-Kohn model (vdW-dZK), which
starts from a formula for the vdW interaction of a distant
atom with a planar solid surface [42], both with known prop-

FIG. 1. Schematic diagram of an interacting system consisting
of a dipole and a dielectric cylinder. The origin of the coordinate
system is at the center of the dipole. The cylinder has a relative
dielectric constant ¢ and a radius a. The relative dielectric constant
of the surrounding vacuum is ¢, = 1.

erties, damps this formula at short range, and then treats an
adsorbed molecule or atomic layer as a collection of renor-
malized atoms. The vdW-dZK model has previously been
successfully applied to study the physisorption of graphene
and thiophene on metals [43-45] and graphene adsorbed on
layered materials [46]. We also compare our results with
GGA and meta-GGA combined with rVV10 [23,24]. In the
present work as in other DFT-vdW approaches, the semilocal
density functional provides the short- to intermediate-range
interactions, while the fully nonlocal vdW term provides the
intermediate- to long-range interactions, each term doing what
it can do best.

II. THEORETICAL METHODS

The adsorbed molecules we study here have permanent
dipole moments that interact with the static charge densities
they induce in the carbon nanotube substrate. That effect is
already correctly included via the Hartree electrostatic energy
in the approximate density functional calculations we present
here. But time-dependent fluctuations of the electron densities
around their static averages give rise to fluctuating dipole
moments whose interaction creates the long-range dispersion
attraction that is missing from semilocal approximations to the
density functional for the exchange-correlation energy. Just
as the Zaremba-Kohn treatment of the dispersion interaction
starts from the interaction of a static dipole with a planar sur-
face, we will start here from the interaction of a static dipole
with a curved cylindrical surface. (The planar surface will
emerge as the infinite-radius limit of the cylindrical surface,
to make contact with Zaremba-Kohn theory.)

We start by calculating a dipole moment p, p = gl, in front
of a dielectric cylinder with a radius a. The distance from
the positive charge to the surface of the cylinder is denoted
D. Consequently, p is defined as D + a. The direction of the
dipole is perpendicular to the longitudinal central axis of
the cylinder and pointed towards the cylinder. The origin of
the coordinate system is at the center of the dipole, as shown
in Fig. 1. Note that the dipole moment p here should be un-
derstood as an instantaneous dipole moment, not a permanent
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one. This means that p (hence ¢ and /) is time dependent.
The average of this dipole moment over a long period of time
should be zero. However, the time average of p® (or g*I?) is
not zero and will give the dispersion interaction. Since the
vdW interaction is the interaction between fluctuating dipoles
(or multipoles) at the electrostatic limit, we start from cal-
culating the electrostatic interaction energy between a static
dipole and the cylindrical surface.

The electrostatic interaction energy, Eglt;gfe, between the
dipole moment p = g/ and the charge density it induces in
the dielectric cylinder can be calculated as a sum of two
parts E; and E,, where the first part E; corresponds to the
total electrostatic potential energy of the positive charge in
the dipole moment p interacting with all the image charges

J

Go(F,7) =

Ty

residing inside the cylinder, and similarly, the second part
E, corresponds to that of the negative charge in the dipole
moment p interacting with all the image charges inside the
cylinder.

The electric potential at a position 7, produced solely by a
point charge ¢ located at a position 7’ outside of a cylinder, is
given by the following Green’s function,

9
Svlr—r|

Go(#,7) = (1)
where ¢, is the relative dielectric constant of the vacuum
surrounding the cylinder (¢, = 1). All units are atomic units
unless otherwise specified. Equation (1) can be expanded in
cylindrical coordinates (p, z, ¢), where the z axis is the
central axis of the cylinder [47,48], as

4q [ )l - :
/ dk cos [k(z = 2] { oo Ko (kp=) + D In(kp < K (kp- )coslm(@ — ¢')] } )
0

m=1

where I, and K, are the modified Bessel functions of the mth order. These functions are defined, and their limits at small and
large argument are presented, in Ref. [48]. p or p- indicates the smaller or larger radial coordinate of the source and field points.
k denotes a variable in the integration. ¢ and ¢’ are the azimuth angles relating to the field and source points, respectively. z and
7 are the z coordinates of the field and source points, respectively. Using the above result and applying boundary conditions,
the general form of the electric potential outside the cylinder, produced only by the image charges residing inside the cylindrical
medium, is given by (see Eq. (30) of Ref. [48])

+00

2 (% a k(z —7) (k) I’"(k“)K (kp)Kyn(kp-) ( 0 3)
7'[8”/(‘) coslk(z — 7)] Z dm K, (ka) (ko) K (kps)cos[m(p — ¢)] .

G, 7) =

m=—00

Here a charge ¢ at position 7’ outside the cylinder produces image charges inside the cylinder which in turn create a potential at
r outside the cylinder. In Eq. (3), ¢,»(k) is a constant to satisfy the boundary conditions. It is expressed as

_qle —&y) _
qm(k)—m,n’Z—O, +1, £2,..., o0, (4,)
with
(k) = jfln(ka)Km(ka) ’ 5
m(ka)K,, (ka)

where ¢ is the relative dielectric constant of the cylinder. From Eq. (2) to Eq. (3), the symmetry properties of the modified Bessel
function [i.e., I_,,(x) = I,,(x) and K_,,(x) = K,,(x)] are used. Please note that Eqgs. (2) and (3) are expressed in a cylindrical
coordinate system as in Ref. [48]. This is different from the coordinate system in Fig. 1. However, p- or p. in Egs. (2) and
(3) is related to p (p4 or p_) in Fig. 1. p, is the distance between the positive charge and the central axis of the cylinder
and p. = p = D + a, and similarly, p_ is the distance between the negative charge and the central axis of the cylinder and
p—=p+1=D+a+1,as can be seen in Fig. 1. We will use Eq. (3) to calculate Egltggfe, which includes E| and E,. In Fig. 1,
since the source or field point is either the positive or the negative charge, and the source and field points are on the same line
perpendicular to the central axis of the cylinder, it follows that, in Eq. (3), we have z = 7/ and ¢ = ¢’, and Eq. (3) is simplified
as

_2 00 +00
G(F.7) = neu/o dk [ _z: Im(K) =3 ((k ))Km(kp<)Km(kp>)}. ©)

In Fig. 1, the location of the positive charge in the dipole is Z = [ /2, while that of the negative charge is Z = —[/2. With
Eq. (6), the total electric potential Vz—;/, at the location of the positive charge of the dipole, produced by all image charges
associated with both the positive and negative charges in the dipole, is expressed as

Vz=ijp = —/ dk([ qm (k) (( ))[K (kp)I? } { > [=ank)] Intka) (kp)Km(kp+kl)})v (N

m=—00

K, (ka)

m=—0oQ
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where the first term in curly braces is the contribution from the image charges associated with the positive charge of the dipole
and is obtained by letting both p_ and p. equal p; (note p; = p) in Eq. (6). Note that for the first curly brace term, both the
field point and the source point are at the location where the positive charge resides. The second term in curly braces in Eq. (7)
is the contribution from the image charges associated with the negative charge and is obtained by letting p. = p+ = p and
p~ = p— = p + 1 in Eq. (6). Note that for the second curly brace term, the field point is at the location where the positive charge
resides, and the source point is at the location where the negative charge resides. Because the second square bracket term in
Eq. (7) is associated with the negative charge, there is a negative sign in front of g,, (k). In the derivation of Eq. (7), &, = 1 is

used, so we have

E =qV = _—Zq/oodk i (k) —/——~ L (ka) (K, (kp))? +2_‘1f°odk i (k) L (k “)K (kp)K,(kp + k) |.
1 qVz=i)2 T 0 ot qm K (k ) m 7 Jo et qm ( )
®
Similarly,
24 [~ | & I(ka)
Ey=—qVs—ip=— [ dk —Gm (k) =——[Kn(kp + kD)I?
2= —qVz=1p H/O m;oo k) e Kk + )]]
+—/ a3 an 2D K ik hp + ) | ©
L K (ka)
The electrostatic interaction energy ngggfe is expressed as
static 2
Egipole = E1 + Ex = —/ dk Z qm(k)Km(k )[Km(kp)—Km(kp+kl)] , (10)

which properly vanishes

~ (gl)* when gl — 0. From this result, the total final vdW energy between the instantaneous dipole

and the cylinder can be evaluated as (the full derivation can be found in the Appendix)

Fav=—2 Y. [ ak [ auans, oo,

m=—0o0

)2 is added to cor-
rect the spurious divergence as D — 0. b is a cutoff parameter

and will be discussed in the following paragraphs. The func-
tion &,,(k, p) is defined as

In Eq. (11), the damping function (

Enlk p)—'( )[K (kp) k1. (12)
In Eq. (11), I, (u, k) is defined as
e(in) — 1
ol k) = —0 =1 (13)

e(iu) — h,, (k)

and «; (iu) and b will be defined in the next four paragraphs.
Equation (11), along with Egs. (5), (12), and (13), are the
working equations for our calculations. As will be shown in
the Results and Discussion section, Eq. (11) varies as D™*>
around D = 50 10\, and as D° when D — 0.

A (n, m) CNT can be semiconducting or metallic, depen-
dent on tube chirality. The armchair (n, n) CNTs are usually
metallic and their longitudinal polarizabilities or dielectric
constants are extremely large [49,50] whereas the (n,0)
zigzag CNTs can be semiconducting or semimetallic. The
semiconducting and metallic nanotubes have similar dielectric
responses in the direction perpendicular to the tube axis, while
their responses along the tube axis are very different [50].
In principle, our method can apply to any nanotube, whether

2

b) (1)

(

metallic or semiconducting, as long as the dielectric function
of the tube can be properly approximated. As a simple model,
the dielectric response of a metallic nanotube can be modeled
as that of a free-electron gas. Since the nanotube considered
in this work is semiconducting, we use the modified Penn
model to express the dynamic dielectric function, (iu), of the
semiconducting cylinder [51,52]. It reads

g
<

1 — A2
e(iu) =1+ 2 ( »_ In—"
u

P 214 / + u2 I,

202 A P 1
+ —‘;{&[tan1 (wi> —tan~! (ﬁ)] + ——1}.

u u u u P

Here, Le = [(14+Y*)(1 4+ u?/o)]'? £ uy/w,, y =1/A,
and P = (1+y»)"2. wg 1is the effective energy gap,
which is defined below, and A = w,/(4sr) with &r =
(B2 Nnanotube )2 /2, With fpanowbe defined in the third para-
graph after Eq. (15). This model dielectric function has been
used to study physical adsorption [51,53,54]. The effective
energy gap w is related to the static dielectric function &(0)
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TABLEI. The binding energies E, (meV) and equilibrium distances D,, (10\) calculated from different methods for NH; and NO, molecules

adsorbed on a (10,0) single-wall carbon nanotube.

Reference SCAN SCAN+ PBE PBE+
(estimated here) SCAN +rVV10 vdW-dZK PBE +rVV10 vdW-dZK

Eh Eh Deq Eh Deq Eh Deq Eb Deq Eh Deq Eh Deq

Type I CNT + NH; —100 —433 338 —-80.5 327 —-1034 3.22 —18.5 3.77 —70.8 344 —114.2 3.26
Type I CNT + NH; —100 —47.7 339 —-842 331 -107.8 322 —184 377 —-7048 345 —113.8 3.26
Type I CNT +NO;, —500 —3543 270 —4232 2.64 —486.0 2.58 -—-211.1 3.06 —-309.3 280 —441.3 2.59
Type I CNT +NO, —500 —3392 276 —-402.7 2.69 —-4624 262 -—-207.7 3.16 —296.8 286 —422.3 2.62
via the Penn model [55], O in the NO, molecule. The dynamic polarizability of each

2
202 s renormalized atom is calculated as o (iu) = oy (O)ﬁ with
£0) = 1 + —2[(1+ AY)'* — Al (15) !

2
3a)g

Since the accurate €(0) from a high-level ab initio calcu-
lation contains important hybridization, inhomogeneity, and
exciton effects, which can be carried over to our model via the
Penn model, the model dielectric function is expected to work
well for semiconductors [54]. For a (10,0) semiconducting
CNT, the average static dielectric function is evaluated as
€(0) = 12.91 from the data in Refs. [50,56]. w, is determined
to be 0.289 atomic unit by Eq. (15). The carbon nanotube is
treated here as a solid dielectric cylinder. We expect little error
from this treatment, since (a) the interaction considered here is
between the nanotube and an adsorbate outside the nanotube,
and (b) the dielectric screening within the nanotube has been
included to some extent in the effective dielectric constants.

In the derivation of Eq. (11), the case of a cylinder with
a large radius a is considered and an analogy to the flat-
surface Zaremba-Kohn formula is also made (for details see
the Appendix). This leads to Eq. (11) having features of the
Zaremba-Kohn formula. However, Eq. (11) is a modification
to a curved cylindrical surface. We call our model vdW-dZK
(damped Zaremba-Kohn). Based on the estimated reference
values (see Table I), the cutoff parameter b is fitted by op-
timizing the mean errors (MEs), root mean squared errors
(RMSEs), mean absolute errors (MAEs), and mean absolute
percentage errors (MAPEs), and consequently chosen by an
“eyeball estimation” to be 1.7 bohr (0.899 A) for the PBE
functional and 4.5 bohr (2.38 A) for the SCAN functional. A
larger b results in a damping factor that turns on the long-range
dispersion only at larger D. Note that the cutoff parameter b is
relatively large for SCAN, due to the capture of intermediate
correlations by SCAN. This is consistent with our previous
work on layered materials, where b was relatively larger for
SCAN+vdW-dZK than PBE+vdW-dZK.

The diameter of a (n, m) nanotube can be found as d =
%vmz -+ mn + n? [31], where ac.c is the nearest C-C
distance (1.42 A) [31]. Accordingly, the radius a = d/2 of
the (10,0) nanotube is 7.398 bohr (3.915 A). We treat NH;
and NO, molecules interacting with a nanotube as a collection
of renormalized atoms (see Ref. [45] for details). Each atom
has its renormalized static polarizability o;(0) [45,57]. For
example, the renormalized static polarizability is 5.034 atomic
units for N and 3.052 atomic units for H in the NH3 molecule,
while it is 7.988 atomic units for N and 5.824 atomic units for

w) = /4 "r""‘;““e, where npolecule 1S the average valence elec-
tron density within the molecule [44,45]. Furthermore, @, =
VAT yanotbe- The carbon nanotube can be formed by rolling
up a graphene sheet. The average electron density of the
carbon nanotube can be approximated as that of the graphene

sheet and is n =— 8  —0.126 atomic unit
nanotube [(0254269 )2X f «3. ]
[43,44].

Although individual factors in the integrand of Eq. (11)
are highly divergent as k — 0, the integrand itself has only
a weak 1/1n k divergence as k — 0, and decays like e~ 2(»—®
as k — oo. In the evaluation of Eq. (11), the integral over u
is performed first, followed by the integral over k£ and then
the summation over m. It is found that for distances D ranging
from 2.1 to 10.1 bohr (1.11-5.34 A), the results obtained from
the k grid of (0.001, 40, 0.001) and the m range of (0, 20,
1) deviate from those from the k grid of (0.001, 46, 0.001)
and the m range of (0, 40, 1) by less than 0.03%. Note that
we adopted the notation (Xmin, Xmax, Xincrement) t0 describe the
computation grids where xp,;, is the starting point, xp,x is the
ending point, and Xincrement 1 the increment. Within the same
distance range, the results from the & grid of (0.001, 40, 0.001)
and the m range of (0, 20, 1) are the same as those from
the k grid of (0.001, 20, 0.001) and the m range of (0, 20,
1). Furthermore, within the same distance range, when using
a denser k grid, the results from the k grid of (0.0001, 40,
0.0001) and the m range of (0, 20, 1) are different from those
from the k grid of (0.001, 40, 0.001) and the m range of (0, 20,
1) by less than 0.2%. The above tests are done for the u grid of
(0.01, 30, 0.01). At the & grid of (0.001, 40, 0.001) and the m
range of (0, 20, 1), when using the u grid of (0.001, 50, 0.001),
the deviation is less than 0.07%. For computational efficiency,
we use the k grid of (0.001, 40, 0.001), the m range of (0,
20, 1), and the u grid of (0.01, 30, 0.01) for the rest of the
calculations. Since the equilibrium distances of the systems
studied here are within this distance range, the results obtained
here show acceptable convergence.

The form of the vdW-dZK equation (11) for a conducting
cylindrical surface is very different from the expressions we
obtained before for a flat metallic surface [43,44] or a flat
semiconducting layered material surface [46], although they
all bear the same physics of the Zaremba-Kohn formula [42].
Only the dipolar effect is included in Eq. (11). High-order
terms, such as quadrupole terms, are very complicated and
not included. Similar to the formula for a finite thickness
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FIG. 2. (10,0) CNTs with adsorbed NH;3 or NO, molecules. (a)
Top view of the NH; molecule attached to the CNT in type I ge-
ometry, (b) in type II geometry. (c) Side view of the NO, molecule
attached to the CNT when the plane of the NO, is parallel to the axis
of the CNT (type ). (d) Side view of the NO, molecule attached to
the CNT when the plane of the NO, is perpendicular to the axis of
the CNT (type II).

semiconducting layered material surface slab, the multiple
image effects are included in Eq. (11); however, through a
complicated form with the modified Bessel functions. The
parameter m can be regarded as an image index. However, the
complicated form in Eq. (11) reflects the complexity of the
shape and distribution of the images in the cylinder.

III. RESULTS AND DISCUSSION

The (10,0) CNT is shown in Fig. 2. It is modeled by making
a supercell (enclosed by faint lines in Fig. 2) of eight layers
of carbon along the tube axis so that 80 atoms are included
in the cell. The size of the supercell is about 28 x 30 x 8 A.
The CNT is constructed with a nearest carbon-carbon distance
of 1.42 A; then one NH; molecule is placed near the tube
wall. Two rotational geometries are considered, as shown in
Figs. 2(a) and 2(b) denoted type I and type II. The setup
for the CNT 4 NO; system is similar. Two geometries of
CNT + NO; are also considered, type I and type II, as shown
in Figs. 2(c) and 2(d), respectively.

All DFT calculations are done in the Vienna ab initio
software package (VASP) [58] with projector augmented wave
(PAW) pseudopotentials [59,60]. The 1.42 A carbon-carbon
nearest-neighbor distance is a starting value and the nucleus
of the N atom (or O atom) of the molecule is initially placed
3 A straight above the nearest carbon atom of the tube wall;
see Fig. 2. First, the molecule-tube structure is relaxed. Then,
from the relaxed structure, the distance between molecule and
tube is varied and the DFT binding energies at different dis-
tances are calculated so that the DFT curves of binding energy
vs. distance are obtained. For the vdW energy calculations of
the renormalized N atom (or O atom) in the molecule, the
distance D is the distance between the nucleus of the N atom

Input parameters (iu is the

(i), e(iu), a, &k, p), h,(K), o, o, imaginary frequency)

Damping Function

E,. (SCAN and PBE) + .

DFT energies were
computed in VASP

E, and Dm were found from E vs D
graphs

FIG. 3. Flow chart of the computational process for the vdW in-
teraction energies, DFT energies, and total energies for the developed
PBE+vdW-dZK and SCAN+vdW-dZK methods.

(or O atom) in the molecule and that of the nearest carbon
atom. For the renormalized H atoms in the molecules, D is the
distance between the nucleus of the H atom and the surface of
a cylinder with the radius of the carbon nanotube. The energy
cutoff is 580 eV. The k-point mesh is 1 x 1 x 3. The struc-
ture optimization is conducted with all forces less than 0.01
eV/A. The binding energy is defined as the total energy of the
molecule-nanotube structure after subtraction of the energy of
the separated CNT and the energy of the separated molecule.
Several PYTHON scripts are written to compute the vdW en-
ergies using Eq. (11) for different distances, and the results
are then combined with the DFT results to get the total bind-
ing energy curve, whose minimum is the equilibrium point,
hence the equilibrium binding energy E; and the equilibrium
distance D,,. The flow chart of the computational process
is shown in Fig. 3. For comparison, the results from the
SCAN+1rVV10 and PBE4rVVI10 calculations are also pre-
sented in Table I.

As can be seen from Table I, PBE captures no long-
range and very little intermediate-range vdW interaction and
yields an unphysically weak binding energy (~-18.5 meV
for CNT + NH;3; and —210 meV for CNT + NO,). Further-
more, it results in a relatively large equilibrium distance of
about 3.77 A for CNT + NH; and about 3.06 A for CNT +
NO,;. SCAN is designed to satisfy all 17 exact constraints
that a meta-GGA functional can satisfy and can capture
intermediate-range (on the length scale of about 3 A) vdW
interactions fairly accurately. Thus, SCAN gives a better
description than does PBE. SCAN yields about half of the
binding energies, compared with the reference, and shorter
equilibrium distances than PBE does. Since it has been proven
that SCAN is much more accurate than previous semilo-
cal DFT methods, especially for geometrical and mechanical
properties of materials, the equilibrium distances from SCAN
should be closer to the real ones than those from PBE are. This
is also consistent with the results we obtained in our layered
material work [46].

As semilocal functionals, neither PBE nor SCAN includes
long-range vdW interactions. By adding the long-range
vdW corrections (rVV10 or vdW-dZK) to PBE or SCAN,
much better binding energies are achieved. This shows the
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significance of vdW energy in computing the total binding
energy in the systems considered here. However, since
the molecule-nanotube systems considered here are
relatively large (>80 atoms), there are few high-level
computational results in the literature. The available
binding energies E; and equilibrium distance D,, for
NH; and NO, molecules adsorbed on carbon nanotubes
from the literature are calculated with LDA, PBE+D, or
vdW DF functionals. For CNT + NHj;, Ref. [61] gives
E, =-0.15eV and D,; = 2.99A witlcl LDA. Reference [62]
gives £, = -0.14eV and D,, = 3.08 A with L]QDA. Reference
[36] gives E;, =-0.18e¢V and D, =2.90A with LDAO.
However, Ref. [63] gives Ej, =-0.043¢eV and D,, = 3.50 A
with vdW DE. For CNT + NO,, Refs. [36,61,64] show that
the binding energy ranges from —0.34 to —0.79 eV, and the
equilibrium distance ranges from 1.93 to 2.61 A. However,
Ref. [63] gives E, =-0.26eV and D, = 3.20A with
PBE+D. Based on these data, we estimate average values of
binding energies for the two systems. The estimated values
of binding energies are also listed in Table I. The estimated
references listed here can only serve as a rough guideline.
Nevertheless, the results shown in Table I give a clear trend,
from which we can find some physically relevant clues.

For NHj3 adsorbed on the carbon nanotube, the two adsorp-
tion configurations (types I and II) have very similar binding
energies. The predicted values of the binding energies using
SCAN, SCAN+rVV10, and SCAN+vdW-dZK are slightly
smaller for type I than for type II, while the predicted val-
ues of the binding energies using PBE, PBE4+rVV10, and
PBE+vdW—dZK are slightly larger for type I than for type
II. For NO, adsorbed on the nanotube, the predicted binding
energies (about 200-500 meV) are higher than the case of
CNT + NHs. It was reported [36] that CNTs respond more
quickly and sensitively to NO, gas than to NHj gas. This is
clearly illustrated by stronger binding energy from NO, than
from NHj. All methods in Table I predict that the binding
energies from type I are slightly larger than those from type II
for CNT + NO,. However, the differences in binding energies
between the two configurations for both CNT + NH; and
CNT + NO; are very small, indicating similar binding stabil-
ity between the two configurations [36]. Moreover, the values
of the binding energies are relatively small (<500 meV) for
both CNT + NH; and CNT + NO,, indicating that the ad-
sorption of the two molecules on nanotubes is physisorption.

With the combinations of the long-range vdW functional
rVV10, both PBE and SCAN significantly improve in their
descriptions for binding energies. However, PBE4+rVV10
produces about 15% and 25% lower binding energies than
SCAN+1rVV10 does for CNT 4+ NH3 and CNT + NO,, re-
spectively. SCAN+rVV10 delivers a generally improved
description for many systems. However, SCAN+rVV10 has
some serious issues, including the overestimated equilibrium
mass density in liquid water [65], inaccurate structural and
mechanical properties in PPTA [66], overestimated binding
energies of thiophene molecule adsorbed on metal surfaces
[45], and graphene adsorbed on transition metal dichalco-
genide multilayer materials [46], and inconsistent errors of
overbinding and underbinding in different 2D materials [67].
The drawback of SCAN+rVV10 may be due to its imperfect
balance of interactions at the intermediate range. At present,

@ 1
—— CNT + NH3 (PBE — vdW — dZK)
=== CNT + NH3 (SCAN — vdW — dZK)
0
-1
Q —~
= g
52
s 3
v 2
-3
-4
0 10 20 30 40 50
Adsorption Distance, D (A)
® 1
—— CNT + NO; (PBE — vdW — dZK)
CNT + NO; (SCAN — vdW — dZK)
0

1
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1 \
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FIG. 4. vdW interaction energy power-law exponents from the
vdW-dZK model for (a) NH; and (b) NO, molecules adsorbed on
CNT as a function of adsorption distance D.

although the results of SCAN+rVV10 seem very reasonable,
it is hard to determine its accuracy, due to the shortage of
accurate reference data. The same imperfect balance of inter-
actions at the intermediate range also exists in PBE4rVV10.
This leads to the limited accuracy of PBE+rVV10.

When combined with the developed vdW-dZK method,
both PBE and SCAN improve significantly in their descrip-
tions of adsorption for CNT 4+ NH; and CNT + NO;. As
can be seen in Table I, SCAN+vdW-dZK and PBE+vdW-
dZK give approximately the same results for CNT + NHj3.
For CNT + NO,, although PBE+vdW-dZK gives about 10%
lower binding energies than does SCAN+vdW-dZK, the
results of binding energies from SCAN+vdW-dZK and
PBE-+vdW-dZK are the closest to each other. This also shows
the consistency of our developed SCAN+vdW-dZK and
PBE+vdW-dZK methods. Based on this consistency, it seems
that the results from SCAN+vdW-dZK and PBE+vdW-dZK
are closer to the real ones. There are still gaps between the
results of SCAN+vdW-dZK and PBE+4vdW-dZK and the
estimated reference in Table I. However, since the estimated
references are averages of limited data from the literature, the
references present just a rough guideline, not an accurate one.

Ambrosetti et al. [68] have shown nontrivial variations
of power laws of the vdW interactions in systems of
atoms or small molecules and 2D thin metallic or finite-gap
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substrates with RPA-like and CDH (coupled dipolar Hamil-
tonian) treatments for substrate responses. They provided
evidence to support the claim that the power laws of vdW
interactions substantially deviate from the standard pairwise
predictions. The power-law exponent P(D) is defined as
P(D) = d(log|Ey4w|)/d log D, and is a decaying function of
separation D. We also calculate the vdW interaction energy
power laws from our vdW-dZK model for the CNT + NH;
and CNT + NO, systems. Figure 4 shows the vdW power-law
exponent from our vdW-dZK model as a function of D. It
shows that the vdW-dZK exponent is zero at small D. The
behavior of the power-law exponent at small distance (<10 A)
is more influenced by the damping function. At distances D
about 20 A, the exponent is about —4.0 and at distances D
about 50 A, the exponent is about —4.5, clearly keeping away
from the pairwise limit —5. It is apparent that, at even larger
distances, the vdW power-law exponent will go to —5. This
is the expected value for the nonretarded vdW interaction of
a molecule distant from a 1D insulator. This feature is very
similar to the one calculated by Ambrosetti et al., see the
second curve in the upper figure of Fig. 2 in Ref. [68], where
the lattice constant of the carbon atom chain is 1.4 A, very
close to that of the carbon nanotube. In Ref. [68], the re-
sults are obtained from RPA and RG (renormalization group)
approaches. The similarity between our results and that of
Ref. [68] provides support to our methods. The finite (~3.9 A)
radius of the carbon nanotube and the damping factor are also
at play in our results.

IV. SUMMARY

We have developed a vdW interaction model for molecules
adsorbed on curved cylindrical conducting surfaces, and have
combined this model with the semilocal density function-
als PBE and SCAN. The resulting PBE+vdW-dZK and
SCAN+vdW-dZK are applied to NH; and NO, adsorbed
on carbon nanotubes. The results from PBE+vdW-dZK
and SCAN+vdW-dZK are also compared with those from
vdW nonlocal functionals, such as SCAN+rVV10 and
PBE+rVV10. The PBE functional captures almost no vdW
interaction and underestimates the binding energies for the
two systems. Even without the inclusion of long-range vdW
interactions, SCAN can capture intermediate vdW interac-
tions and gives much improved binding energies. When
combined with the vdW-dZK model and vdW functional
rVV10, both PBE and SCAN improve their descriptions for
these systems in which vdW interaction is important.

Generally speaking, the binding energies from
PBE+rVV10, SCAN+rVV10, PBE+4+vdW-dZK, and
SCAN+vdW—dZK are roughly the same, about 70-115 meV
for CNT + NH; and 300490 meV for CNT + NO,.
The results from PBE+vdW-dZK and SCAN+vdW-dZK
are closer to each other than are those of PBE+rVV10
and SCAN+rVV10. For CNT + NHj3;, PBE+vdW-dZK
and SCAN+vdW-dZK give binding energies of about
103-114 meV. For CNT 4 NO,, PBE+vdW-dZK and
SCAN+vdW-dZK give binding energies of about
422-490 meV. Comparatively, for CNT + NH3, PBE+rVV10
and SCAN+rVV10 give binding energies of about 70-80
meV, while for CNT + NO,, they give about 300420 meV.
The relatively closer results from PBE+vdW-dZK and

SCAN-+vdW-dZK indicate the consistency of our developed
vdW-dZK model for curved surfaces. Due to the relatively
large systems (>80 atoms) considered here, there is no
high-level computational result. The available reference
data from the literature can just serve as a rough guideline
for the binding energies of the systems, and more reliable
reference values would yield a more reliable damping factor
b in Eq. (11). However, our vdW-dZK combined with PBE
and SCAN gives results closer to this guideline than other
methods considered here. It seems that the results from
PBE+vdW-dZK and SCAN-+vdW-dZK could be more
realistic. All methods, including PBE, SCAN, PBE+rV V10,
SCAN+rVV10, PBE+vdW-dZK, and SCAN+vdW-dZK,
give approximately the same binding energies for the
two adsorption configurations (types I and II) for the two
systems. This may imply that the two adsorption sites have
approximately the same adsorption stability.

The exponent of the vdW interaction power law from our
vdW-dZK model for CNT 4+ NH3; and CNT + NO, systems
is about O at short distance, largely due to the damping factor.
At distances D about 20—50 A, the exponent is about —4.0 to
—4.5, and not the pairwise limit —5. At even larger distances,
the vdW power-law exponent approaches —5. This feature is
very similar to the one calculated by RPA and RG (renor-
malization group) approaches. This similarity provides further
support to our methods.
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APPENDIX

In this Appendix, we present the derivation of Eq. (11).
The starting point to derive Eq. (11) is the general form of
the electric potential produced by the image charge residing
inside the cylindrical medium. It is given by Eq. (6). The
electrostatic interaction energy Eg}gtolfe between the dipole and
the cylinder, is given by Eq. (10).

With the expression for ¢, (k) in Eq. (4) (with ¢, = 1) and
the condition / < p, Eq. (10) can be written as

(o]

272 0
. —2¢q l e—1 Im(ka) 2
Esgatlc — / dk K/m kp)k
dipole T m:Z—oo 0 e — hy(k) Km(ka)[ (kp)k]

_ q212 S

° e—1
- m:Z_OO /0 dk (k. p) 5= (AD

where the function &, (k, p) is defined in Eq. (12).

When the radius of the cylinder becomes large, a — oo,
the cylinder becomes a flat surface with infinite thickness.
The problem becomes one in which an instantaneous dipole
interacts with a flat surface of a solid. For this situation, when
the distance D between the dipole and the surface is large,
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the vdW interaction energy is given by the Zaremba-Kohn
formula as [42]

1 u) — 1
% = | dwan S
4 D> [, eliu) +1

where ¢(iu) is the dynamic dielectric constant of the surface,
and o (iu) is the dynamic dipolar polarizability of the adsor-
bate. The time average of Eq. (A1) will lead to Eq. (A2) at
large a and large D. With the asymptotic expressions for the
modified Bessel functions [69], i.e., when x — o0, I,,(x) —
'/ 2nx, and K,,(x) — e "/ /(2x), it can be shown that

hn(k) — —1 as a — oo. Besides, we have

L, (ka) eka

(A2)

, A3
s K, (ka) 7 (A3)
T T
1' K/ k 2 I —ka: —2k(D+u). A4
Jm [K, (ke = 50¢ %D +a) (A4)

When a — oo and D — o0, Eq. (A1) becomes

pstatic —2q212L8—1 __ 4 e—1
dipole 7 8D3e+1 4rD3e+ 1’

2[2

(A5)

taking a form similar to that of Eq. (A2). The time average of
Eq. (A5) can be written as

. —2(g?1%), 1 e—1 1 e—1
Es}atlc ~ t - _ 212 ,
(Eaipic, 8D etl . axpd I

(A6)

where the symbol (X ), represents the time average of quantity
X (t). Since Eq. (A6) is equivalent to Eq. (A2), this means that
(qzlz)t% is equivalent to f;* duozl(iu)zg,g: . We generalize
this equivalence to a finite a and D, and write the time average
of Eq. (A1) as

) 2 S 00 00
Baw = E), === 30 [ ak [ duestin 6,05, )

m=—0oQ

x Ty (u, k),

where «(iu) is defined after Eq. (13). Note that although &
in Eq. (A1) is time independent under the electrostatic limit,
it should be understood as frequency dependent, as shown
in Eq. (A7). The frequency-dependent dielectric function is
defined in the main text.

(A7)
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