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Emerging chiral optics from chiral interfaces
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Twisted atomic bilayers are emerging platforms for manipulating chiral light-matter interaction at the extreme
nanoscale, due to their inherent magnetoelectric responses induced by the finite twist angle and quantum
interlayer coupling between the atomic layers. Recent studies have reported the direct correspondence between
twisted atomic bilayers and chiral metasurfaces, which features a chiral surface conductivity, in addition to
the electric and magnetic surface conductivities. However, far-field chiral optics in light of these constitutive
conductivities remains unexplored. Within the framework of the full Maxwell equations, we find that the chiral
surface conductivity can be exploited to realize perfect polarization transformation between linearly polarized
light. Remarkably, such an exotic chiral phenomenon can occur either for the reflected or transmitted light.
Moreover, we reveal that all transmitted light through the judiciously designed chiral surface conductivity can
always have the polarization different from the incident light, irrespective of the incident angle.
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I. INTRODUCTION

Due to the pioneering discovery of superconducting and
correlated insulating states in twisted bilayer graphene [1–5],
twisted atomic bilayers have been igniting enormous research
interest both in practical applications and fundamental physics
[6–11], including optics with two-dimensional (2D) twistron-
ics [12–21]. Due to the rotational misalignment and the strong
quantum coupling between the neighboring atomic layers, all
mirror symmetry in twisted atomic bilayers is broken, and
the corresponding light-matter interaction is inherently chiral.
As such, twisted atomic bilayers are emerging atomically
thin platforms for chiral optics [22–28] and chiral plasmon-
ics [29–35], which may facilitate novel on-chip applications
such as the discrimination of chiral molecules with opposite
handedness.

On the other hand, recent studies [34] have revealed the
direct correspondence between twisted atomic bilayers and
chiral metasurfaces in the framework of the full Maxwell
equations. In essence, the twisted atomic bilayer is equivalent
to a chiral metasurface, which simultaneously possesses the
electric surface conductivity σ e, magnetic surface conductiv-
ity σ m, and chiral surface conductivity σχ . Mathematically,
the electromagnetic boundary conditions for such a chiral
metasurface are described by [34]

n̂ × (Ē1 − Ē2) = −σ m(H̄1 + H̄2) + σχ (Ē1 + Ē2), (1)

n̂ × (H̄1 − H̄2) = +σ e(Ē1 + Ē2) + σχ (H̄1 + H̄2), (2)
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where Ē1 and Ē2 (H̄1 and H̄2) are the components of elec-
tric (magnetic) fields parallel to the boundary in the regions
above the boundary (i.e., denoted as region 1) and beneath the
boundary (region 2), respectively, and n̂ = −ẑ is the surface
normal [Fig. 1]. In principle, these surface conductivities can
be arbitrary tensors, which can be constructed by stacking
appropriate atomic layers (e.g., in-plane anisotropic or mag-
netic 2D materials) [7–9,36–39], or with regular metasurface
approaches (e.g., nanopatterning) [40–44]. Recent study of
chiral plasmonics as governed by Eqs. (1) and (2) [34] re-
vealed that the chiral surface conductivity can be exploited to
manifest the longitudinal spin of surface plasmons, in addi-
tion to the conventional transverse spin of surface plasmons
[45–48]. Apart from this work, the field of chiral optics with
the chiral surface conductivity remains relatively elusive, and
exotic chiral optical phenomena remain to be discovered.

Here, we systematically investigate the far-field chiral
optical phenomena with chiral interfaces due to the in-
terplay between the chiral, electric, and magnetic surface
conductivities. The general expressions for the reflection and
transmission coefficients under the incidence of linearly polar-
ized light are analytically derived. Without loss of generality
and in accordance with Ref. [34], we set σ e = [σe,x 0

0 σe,y
],

σ m = [σm,x 0
0 σm,y

] and σχ = [σχ,x 0
0 σχ,y

] in this work, where
each matrix element can be taken to be arbitrary values. In
principle, the derivation here can be readily generalized to
the cases with other forms of surface conductivities, such
as those with nonzero off-diagonal terms, e.g., in systems
with broken time reversal symmetry. Remarkably, we realize
that all transmitted light through the ultrathin chiral inter-
face always has the polarization different from the incident
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FIG. 1. Schematic of the reflection and transmission from a chi-
ral metasurface under the incidence of linearly polarized waves. The
chiral metasurface is featured with an electric surface conductiv-
ity σ e, a magnetic surface conductivity σ m, and a chiral surface
conductivity σχ . The chiral metasurface is located at the boundary
between region 1 (z < 0) and region 2 (z > 0). Due to the chiral
response of metasurfaces, the reflected and transmitted waves gen-
erally contain both the transverse-electric (TE, or s polarized) and
transverse-magnetic (TM, or p polarized) field components.

light, irrespective of the incident angle. Besides, we reveal the
possibility to achieve the perfect polarization transformation
between linearly polarized light in the limit when the chiral
surface conductivity dominates. To be specific, this exotic
chiral phenomenon can occur either in the transmission or
reflection mode, if the chiral surface conductivity fulfills the
condition of σχ,xσχ,y = 1 or σχ,xσχ,y = −1, respectively.

II. RESULTS AND DISCUSSION

A. Reflection and transmission from a chiral metasurface
with arbitrary σe, σm, and σχ

We begin with the analysis of the scattering coefficients
due to a chiral metasurface in the framework of the full
Maxwell equations [49–52]. Due to the chiral response of
chiral interfaces, the reflected and transmitted light generally
has both the transverse magnetic (TM, or p polarized) and
electric (TE, or s polarized) components, irrespective of the
polarization of incident light; see the schematic illustration
in Fig. 1. Without loss of generality, here we set the chiral
metasurface to be located at the boundary (at z = 0) between
region 1 and region 2. For region 1 (region 2), its permittivity
and permeability are ε1 and μ1 (ε2 and μ2), respectively.
Below we present the general solution for the reflection and
transmission under the incidence of TM waves, while the
corresponding solution under the incidence of TE waves is
given in Appendix B.

Under the incidence of TM waves, the magnetic field of
incident waves has the following form:

H̄i = ŷeik̄1·r̄ = ŷeikxx+ik1zz, (3)

where k̄1 = x̂kx + ẑk1z is the wave vector of incident light in
region 1. For simplicity, the incident plane is set to be parallel

to the xz plane. Since ∇ × H̄ = −iωεĒ in a homogeneous
isotropic media, the corresponding electric field of incident
light is

Ēi = − k1

ωε1

(
ẑ

kx

k1
− x̂

k1z

k1

)
eikxx+ik1zz. (4)

The reflected and transmitted fields then take the following
forms:

H̄TM
r = ŷeikxx−ik1zzRi,TM

r,TM, (5)

ĒTM
r = − k1

ωε1

(
ẑ

kx

k1
+ x̂

k1z

k1

)
eikxx−ik1zzRi,TM

r,TM, (6)

ĒTE
r = k1

ωε1
ŷeikxx−ik1zzRi,TM

r,TE , (7)

H̄TE
r =

(
ẑ

kx

k1
+ x̂

k1z

k1

)
eikxx−ik1zzRi,TM

r,TE , (8)

H̄TM
t = ŷeikxx+ik2zzT i,TM

t,TM , (9)

ĒTM
t = − k2

ωε2

(
ẑ

kx

k2
− x̂

k2z

k2

)
eikxx+ik2zzT i,TM

t,TM , (10)

ĒTE
t = k2

ωε2
ŷeikxx+ik2zzT i,TM

t,TE , (11)

H̄TE
t =

(
ẑ

kx

k2
− x̂

k2z

k2

)
eikxx+ik2zzT i,TM

t,TE . (12)

In the above equations, k̄2 = x̂kx + ẑk2z is the wave vector
of transmitted light in region 2, and we have four unknown
coefficients, namely two reflection coefficients (Ri,TM

r,TM and

Ri,TM
r,TE ) and two transmission coefficients (T i,TM

t,TM , T i,TM
t,TE ). The

superscript and subscript of denotes the incident polarization
(i,TE or i,TM), and that of the reflected (r) and transmitted
(t) light, respectively. The above scattering coefficients can
be solved by enforcing the boundary conditions [53–55], i.e.,
by substituting Eqs. (3)–(12) into the boundary conditions
governed by Eqs. (1) and (2); see details in Appendix A. Simi-
larly, for the incidence of TE waves, the reflection coefficients
(Ri,TE

r,TE, Ri,TE
r,TM) and transmission coefficients (T i,TE

t,TE , T i,TE
t,TM) can

be obtained by following a similar procedure; see details in
Appendix B.

B. Exotic polarization transformation between the incident and
transmitted light for arbitrary incident angle

Although the general scattering coefficients for the far-field
response of chiral metasurfaces are obtained above, these
expressions are complicated and will hamper the intuitive
understanding of electromagnetic phenomena. To elucidate
emerging chiral phenomena, several limiting cases are con-
sidered below. First, we assume that the chiral metasurface is
located in a symmetric environment (e.g., vacuum), that is,
ε1 = ε2 = ε and μ1 = μ2 = μ. Hence, we have k1 = k2 =
k. Second, we let σ e = 0 and σ m = 0; see detailed dis-
cussion about the possible realization of this assumption in
Appendix C. In other words, we consider the phenomenon
when the chiral surface conductivity dominates over other
conductivities in the problem. With these simplifications, the
complexity for these reflection and transmission coefficients
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FIG. 2. Perfect polarization transformation between TM (incident) and TE (transmitted) waves. Here the chiral metasurface has σχ,xσχ,y =
1. Regions 1 and 2 are the same dielectric (e.g., vacuum used here). (a) Schematic illustration. (b) Reflection and transmission coefficients as a
function of the incident angle θi. For conceptual demonstration, σχ,x = 2 and σχ,y = 0.5 are chosen. If σχ,xσχ,y = 1, Ri,TM

r,TE and T i,TM
t,TM are equal

to zero, irrespective of the incident angle. The critical incident angle is denoted as θc, at which Ri,TM
r,TM = 0 and |T i,TM

t,TE | = 1. (c) θc as a function
of σχ,y/σχ,x .

can be significantly reduced, as detailed in the subsequent
analysis.

We consider the incidence of TM waves in Fig. 2. By
applying the above simplification conditions, we readily have

Ri,TM
r,TM = −4σχ,xσχ,y

(
σχ,y + k2

z
k2 σχ,x

)(
σχ,y − k2

z
k2 σχ,x

)
(
σχ,y + k2

z
k2 σχ,x

)2
(1 + σχ,xσχ,y)2 − (

σχ,y − k2
z

k2 σχ,x
)2

(1 − σχ,xσχ,y)2
, (13)

T i,TM
t,TM = 4 k2

z
k2 σχ,xσχ,y(1 + σχ,xσχ,y)(1 − σχ,xσχ,y)(

σχ,y + k2
z

k2 σχ,x
)2

(1 + σχ,xσχ,y)2 − (
σχ,y − k2

z
k2 σχ,x

)2
(1 − σχ,xσχ,y)2

, (14)

Ri,TM
r,TE = −4 kz

k σχ,xσχ,y(1 − σχ,xσχ,y)
(
σχ,y − k2

z
k2 σχ,x

)
(
σχ,y + k2

z
k2 σχ,x

)2
(1 + σχ,xσχ,y)2 − (

σχ,y − k2
z

k2 σχ,x
)2

(1 − σχ,xσχ,y)2
, (15)

T i,TM
t,TE = −4 kz

k σχ,xσχ,y(1 + σχ,xσχ,y)
(
σχ,y + k2

z
k2 σχ,x

)
(
σχ,y + k2

z
k2 σχ,x

)2
(1 + σχ,xσχ,y)2 − (

σχ,y − k2
z

k2 σχ,x
)2

(1 − σχ,xσχ,y)2
. (16)
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Interestingly, from Eqs. (14) and (15), we always have
T i,TM

t,TM = Ri,TM
r,TE = 0, if

σχ,xσχ,y = 1. (17)

Under this scenario, since T i,TM
t,TM = 0 and T i,TM

t,TE �= 0, the
transmitted light always has the polarization different from
the incident light, indicating the occurrence of polarization
transformation during the transmission process. Moreover,
when Eq. (17) is satisfied, we further have Ri,TM

r,TM = 0 and

|T i,TM
t,TE | = 1 from Eqs. (13) and (16), if

σχ,y

σχ,x
= k2

z

k2
. (18)

Remarkably, |T i,TM
t,TE | = 1 indicates the occurrence of the

perfect linear-polarization transformation between the inci-
dent and transmitted light under the incidence of TM waves;
see the schematic illustration in Fig. 2(a). For clarity, the
reflection and transmission coefficients are shown as a func-
tion of the incident angle θi in Fig. 2(b), where σχ,x = 2 and
σχ,y = 0.5 are chosen to satisfy Eq. (17). Figure 2(b) shows
that T i,TM

t,TM = Ri,TM
r,TE = 0, irrespective of the incident angle.

Moreover, we have Ri,TM
r,TM = 0 and |T i,TM

t,TE | = 1 at θi = 60◦
in Fig. 2(b). We denote this critical incident angle as θc at
which the perfect polarization transformation occurs. From
the geometry setup in Fig. 2(a) and Eq. (18), we have cosθc =
kz/k =

√
σχ,y

σχ,x
. As such, the value of θc is simply determined

by the ratio between σχ,x and σχ,y, as shown in Fig. 2(c).
We highlight that previous studies about polarization

transformation are focused on the perfect polarization trans-
formation between linearly polarized light [56–58], between
circularly polarized light [59–61], or between the linearly
polarized and circularly polarized light [62,63], and the
high-efficiency polarization transformation within a broad fre-
quency range [64,65]. However, all these exotic phenomena
of polarization transformation mainly happen at a specific
incident angle or within a certain angular range of incidence
[66–68], but certainly not for arbitrary incident angle. In con-
trast, we revealed in Fig. 2 that all transmitted light through
the judiciously designed chiral interface always has the po-
larization different from the incident light, irrespective of the
incident angle (namely the transmitted light with the polar-
ization same as the incident light does not exist). Such an
exotic phenomenon of polarization transformation for arbi-
trary incident angle is generally difficult to achieve by using
conventional metamaterials or metasurfaces.

In addition, when σχ,xσχ,y = 1, we have |T i,TM
t,TE | → 0 and

Ri,TM
r,TM → −1 if θi → 90◦. This phenomenon indicates the oc-

currence of total reflection from chiral metasurface under the
grazing incidence, which almost has no transformation of the
polarization.

C. Perfect polarization transformation between
the incident and reflected light

Upon close inspection of Eqs. (13)–(16), we find that the
perfect polarization transformation can also happen for the
reflected light under the incidence of TM waves [Fig. 3(a)], if

σχ,xσχ,y = −1, (19)

σχ,y

σχ,x
= −k2

z

k2
. (20)

To be specific, if σχ,xσχ,y = −1, we always have T i,TM
t,TM =

T i,TM
t,TE = 0 in Eqs. (14) and (16) under the incidence of TM

waves [Fig. 3(b)]. Under this scenario, the total reflection
happens, irrespective of the incident angle.

Furthermore, when Eqs. (19) and (20) are simultane-
ously fulfilled, we further have Ri,TM

r,TM = 0 and |Ri,TM
r,TE | = 1

in Eqs. (13) and (15) at the critical incident angle cosθc =√
− σχ,y

σχ,x
. In other words, the perfect polarization transfor-

mation between the incident and reflected light occurs at
this critical incident angle. For example, if σχ,x = 2 and
σχ,y = −0.5, we have |Ri,TM

r,TE | = 1 in Fig. 3(b) at θc = 60◦.
In addition, a grazing angle phenomenon is also observed in
Fig. 3(b), similar to that discussed for the transmission mode
in Fig. 2(b).

The critical incident angle is also shown as a function of
σχ,y

σχ,x
in Fig. 3(c). For either the reflected or transmitted light,

both phenomena of the perfect polarization transformation in

Figs. 2 and 3 occur at the critical angle of cosθc =
√

| σχ,y

σχ,x
|. As

such, all critical incident angles in Figs. 2(c) and 3(c) decrease
from 90◦ to 0◦ when | σχ,y

σχ,x
| increases from 0 to 1.

Last but not least, we find that Ri,TM
r,TE = −Ri,TE

r,TM, T i,TM
t,TE =

−T i,TE
t,TM, Ri,TM

r,TM = +Ri,TE
r,TE, and T i,TM

t,TM = +T i,TE
t,TE , if the above

simplification conditions are adopted. Therefore, the exotic
chiral phenomena in Figs. 2 and 3 can also occur under the
incidence of TE waves, and the polarization of the incident
light actually has no influence on the revealed phenomenon of
exotic linear-polarization transformation.

III. CONCLUSION

In conclusion, we have systematically investigated the chi-
ral optics from metasurfaces with a chiral surface conductivity
under the incidence of linearly polarized light. Remarkably,
we have found some emerging exotic chiral phenomena. To
be specific, if σχ,xσχ,y = 1, the polarization of all transmitted
light through such a chiral metasurface is distinct from that of
the incident light, irrespective of the incident angle. Moreover,
we can achieve the total transmittance at a critical incident
angle. In contrast, if σχ,xσχ,y = −1, this type of chiral meta-
surfaces can be exploited to achieve total reflection instead,
irrespective of the incident angle; moreover, the polarization
of all reflected light can be made different from the incident
light at the critical incident angle. Our work indicates the
rich fundamental physics in chiral interfaces, which warrant
further exploration and could find diverse chiral optical appli-
cations.

ACKNOWLEDGMENTS

The work was sponsored by the National Natural Science
Foundation of China (NNSFC) under Grants No. 61625502,
No. 11961141010, and No. 61975176, the Top-Notch Young
Talents Program of China, the Fundamental Research Funds
for the Central Universities, and Zhejiang University Global
Partnership Fund. T.L. acknowledges support by the National
Science Foundation, NSF/EFRI Grant No. EFRI-1741660.

195405-4



EMERGING CHIRAL OPTICS FROM CHIRAL INTERFACES PHYSICAL REVIEW B 103, 195405 (2021)

FIG. 3. Perfect polarization transformation between TM (incident) and TE (reflected) waves. The basic structural setup is the same as
Fig. 2, except for that the chiral metasurface has σχ,xσχ,y = −1. (a) Schematic illustration. (b) Reflection and transmission coefficients as a
function of θi. Here σχ,x = 2 and σχ,y = −0.5 are chosen for conceptual illustration. If σχ,xσχ,y = −1, T i,TM

t,TE and T i,TM
t,TM are equal to zero for

arbitrary incident angle. The critical incident angle is denoted as θc, at which Ri,TM
r,TM = 0 and |Ri,TM

r,TE | = 1. (c) θc as a function of σχ,y/σχ,x .

APPENDIX A: REFLECTION AND TRANSMISSION FROM CHIRAL INTERFACES UNDER
THE INCIDENCE OF TM WAVES

All reflection and transmission coefficients can be solved by enforcing the boundary conditions [53–55], i.e., by substituting
Eqs. (3)–(12) into the boundary conditions governed by Eqs. (1) and (2).Then we have the relations of Ri,TM

r,TM, Ri,TM
r,TE , T i,TM

t,TM , and

T i,TM
t,TE , as follows:

⎡
⎢⎢⎢⎢⎣

Ai,TM
1 Bi,TM

1 Ci,TM
1 Di,TM

1

Ai,TM
2 Bi,TM

2 Ci,TM
2 Di,TM

2

Ai,TM
3 Bi,TM

3 Ci,TM
3 Di,TM

3

Ai,TM
4 Bi,TM

4 Ci,TM
4 Di,TM

4

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ri,TM
r,TM

T i,TM
t,TM

Rt,TM
r,TE

T i,TM
t,TE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Fi,TM
1

Fi,TM
2

Fi,TM
3

Fi,TM
4

⎤
⎥⎥⎥⎥⎦, (A1)
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where
⎡
⎢⎢⎢⎢⎣

Ai,TM
1 Bi,TM

1 Ci,TM
1 Di,TM

1

Ai,TM
2 Bi,TM

2 Ci,TM
2 Di,TM

2

Ai,TM
3 Bi,TM

3 Ci,TM
3 Di,TM

3

Ai,TM
4 Bi,TM

4 Ci,TM
4 Di,TM

4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

k1z

ωε1
+ σm,y

k2z

ωε2
+ σm,y −σχ,y

k1
ωε1

−σχ,y
k2

ωε2

σχ,x
k1z

ωε1
−σχ,x

k2z

ωε2

k1
ωε1

+ σm,x
k1z

k1
− k2

ωε2
− σm,x

k2z

k2

1 + σe,x
kz1

ωε1
−1 − σe,x

k2z

ωε2
−σχ,x

k1z

k1
σχ,x

k2z

k2

σχ,y σχ,y
k1z

k1
+ σe,y

k1
ωε1

k2z

k2
+ σe,y

k2
ωε2

⎤
⎥⎥⎥⎥⎥⎦

, (A2)

⎡
⎢⎢⎢⎢⎣

Fi,TM
1

Fi,TM
2

Fi,TM
3

Fi,TM
4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

k1z

ωε1
− σm,y

σχ,x
k1z

ωε1

−1 + σe,x
k1z

ωε1

−σχ,x

⎤
⎥⎥⎥⎥⎦. (A3)

Then, the analytical expressions for Ri,TM
r,TM, Ri,TM

r,TE , T i,TM
t,TM , and T i,TM

t,TE are obtained by solving Eq. (A1):

Ri,TM
r,TM =

(
αi,TM

1 Qi,TM
1 − β i.TM

1 Ni,TM
1

)/
Gi,TM

Si,TM
, (A4)

T i,TM
t,TM =

(
β i,TM

1 Mi,TM
1 − αi,TM

1 Pi,TM
1

)/
Gi,TM

Si,TM
, (A5)

Ri,TM
r,TE =

(
αi,TM

2 Qi,TM
2 − β i,TM

2 Ni,TM
2

)/
Ki,TM

Si,TM
, (A6)

T i,TM
t,TE =

(
β i,TM

2 Mi,TM
2 − αi,TM

2 Pi,TM
2

)/
Ki,TM

Si,TM
, (A7)

where

αi,TM
1 = (

Fi,TM
1 Ci,TM

2 − Fi,TM
2 Ci,TM

1

)(
Di,TM

3 Ci,TM
4 − Di,TM

4 Ci,TM
3

) − (
Fi,TM

3 Ci,TM
4 − Fi,TM

4 Ci,TM
3

)(
Di,TM

1 Ci,TM
2 − Di,TM

2 Ci,TM
1

)
,

(A8)

β i,TM
1 = (

Fi,TM
1 Di,TM

2 − Fi,TM
2 Di,TM

1

)(
Ci,TM

3 Di,TM
4 − Ci,TM

4 Di,TM
3

) − (
Fi,TM

3 Di,TM
4 − Fi,TM

4 Di,TM
3

)(
Ci,TM

1 Di,TM
2 − Ci,TM

2 Di,TM
1

)
,

(A9)

Mi,TM
1 = (

Ai,TM
1 Ci,TM

2 − Ai,TM
2 Ci,TM

1

)(
Di,TM

3 Ci,TM
4 − Di,TM

4 Ci,TM
3

) − (
Ai,TM

3 Ci,TM
4 − Ai,TM

4 Ci,TM
3

)(
Di,TM

1 Ci,TM
2 − Di,TM

2 Ci,TM
1

)
,

(A10)

Ni,TM
1 = (

Bi,TM
1 Ci,TM

2 − Bi,TM
2 Ci,TM

1

)(
Di,TM

3 Ci,TM
4 − Di,TM

4 Ci,TM
3

) − (
Bi,TM

3 Ci,TM
4 − Bi,TM

4 Ci,TM
3

)(
Di,TM

1 Ci,TM
2 − Di,TM

2 Ci,TM
1

)
,

(A11)

Pi,TM
1 = (

Ai,TM
1 Di,TM

2 − Ai,TM
2 Di,TM

1

)(
Ci,TM

3 Di,TM
4 − Ci,TM

4 Di,TM
3

) − (
Ai,TM

3 Di,TM
4 − Ai,TM

4 Di,TM
3

)(
Ci,TM

1 Di,TM
2 − Ci,TM

2 Di,TM
1

)
,

(A12)

Qi,TM
1 = (

Bi,TM
1 Di,TM

2 − Bi,TM
2 Di,TM

1

)(
Ci,TM

3 Di,TM
4 − Ci,TM

4 Di,TM
3

) − (
Bi,TM

3 Di,TM
4 − Bi,TM

4 Di,TM
3

)(
Ci,TM

1 Di,TM
2 − Ci,TM

2 Di,TM
1

)
,

(A13)

αi,TM
2 = (

Fi,TM
1 Ai,TM

2 − Fi,TM
2 Ai,TM

1

)(
Bi,TM

3 Ai,TM
4 − Bi,TM

4 Ai,TM
3

) − (
Fi,TM

3 Ai,TM
4 − Fi,TM

4 Ai,TM
3

)(
Bi,TM

1 Ai,TM
2 − Bi,TM

2 Ai,TM
1

)
,

(A14)

β i,TM
2 = (

Fi,TM
1 Bi,TM

2 − Fi,TM
2 Bi,TM

1

)(
Ai,TM

3 Bi,TM
4 − Ai,TM

4 Bi,TM
3

) − (
Fi,TM

3 Bi,TM
4 − Fi,TM

4 Bi,TM
3

)(
Ai,TM

1 Bi,TM
2 − Ai,TM

2 Bi,TM
1

)
,

(A15)

Mi,TM
2 = (

Ci,TM
1 Ai,TM

2 − Ci,TM
2 Ai,TM

1

)(
Bi,TM

3 Ai,TM
4 − Bi,TM

4 Ai,TM
3

) − (
Ci,TM

3 Ai,TM
4 − Ci,TM

4 Ai,TM
3

)(
Bi,TM

1 Ai,TM
2 − Bi,TM

2 Ai,TM
1

)
,

(A16)

Ni,TM
2 = (

Di,TM
1 Ai,TM

2 − Di,TM
2 Ai,TM

1

)(
Bi,TM

3 Ai,TM
4 − Bi,TM

4 Ai,TM
3

) − (
Di,TM

3 Ai,TM
4 − Di,TM

4 Ai,TM
3

)(
Bi,TM

1 Ai,TM
2 − Bi,TM

2 Ai,TM
1

)
,

(A17)

Pi,TM
2 = (

Ci,TM
1 Bi,TM

2 − Ci,TM
2 Bi,TM

1

)(
Ai,TM

3 Bi,TM
4 − Ai,TM

4 Bi,TM
3

) − (
Ci,TM

3 Bi,TM
4 − Ci,TM

4 Bi,TM
3

)(
Ai,TM

1 Bi,TM
2 − Ai,TM

2 Bi,TM
1

)
,

(A18)
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Qi,TM
2 = (

Di,TM
1 Bi,TM

2 − Di,TM
2 Bi,TM

1

)(
Ai,TM

3 Bi,TM
4 − Ai,TM

4 Bi,TM
3

) − (
Di,TM

3 Bi,TM
4 − Di,TM

4 Bi,TM
3

)(
Ai,TM

1 Bi,TM
2 − Ai,TM

2 Bi,TM
1

)
,

(A19)

Gi,TM = (
Ci,TM

1 Di,TM
2 − Ci,TM

2 Di,TM
1

)(
Ci,TM

3 Di,TM
4 − Ci,TM

4 Di,TM
3

)
, (A20)

Ki,TM = (
Bi,TM

1 Ai,TM
2 − Bi,TM

2 Ai,TM
1

)(
Ai,TM

3 Bi,TM
4 − Ai,TM

4 Bi,TM
3

)
, (A21)

Si,TM = Mi,TM
1 Qi,TM

1 − Pi,TM
1 Ni,TM

1

Gi,TM
= Mi,TM

2 Qi,TM
2 − Pi,TM

2 Ni,TM
2

Ki,TM
. (A22)

APPENDIX B: REFLECTION AND TRANSMISSION FROM CHIRAL INTERFACES UNDER THE INCIDENCE OF TE WAVES

By following a similar procedure in Eqs. (3)–(12), we can calculate the reflection and transmission of light from a chiral
metasurface under the incidence of TE waves. To be specific, the electric field of incident TE waves has

Ēi = ŷeik̄1·r̄ = ŷeikxx+ik1zz, (B1)

where the wave vector of incident light is k̄1 = x̂kx + ẑk1z. Correspondingly, the magnetic field of incident light has

H̄i = k1

ωμ1

(
ẑ

kx

k1
− x̂

k1z

k1

)
eikxx+ik1zz. (B2)

The reflected and transmitted fields then take the following forms:

ĒTE
r = ŷeikxx−ik1zzRi,TE

r,TE, (B3)

H̄TE
r = k1

ωμ1

(
ẑ

kx

k1
+ x̂

k1z

k1

)
eikxx−ik1zzRi,TE

r,TE, (B4)

H̄TM
r = k1

ωμ1
ŷeikxx−ik1zzRi,TE

r,TM, (B5)

ĒTM
r = −

(
ẑ

kx

k1
+ x̂

k1z

k1

)
eikxx−ik1zzRi,TE

r,TM, (B6)

ĒTE
t = ŷeikxx+ik2zzT i,TE

t,TE , (B7)

H̄TE
t = k2

ωμ2

(
ẑ

kx

k2
− x̂

k2z

k2

)
eikxx+ik2zzT i,TE

t,TE , (B8)

H̄TM
t = k2

ωμ2
ŷeikxx+ik2zzT i,TE

t,TM, (B9)

ĒTM
t = −

(
ẑ

kx

k2
− x̂

k2z

k2

)
eikxx+ik2zzT i,TE

t,TM, (B10)

where the wave vector of transmitted light is k̄2 = x̂kx + ẑk2z. The four coefficients, namely Ri,TE
r,TE and Ri,TE

r,TM (reflection

coefficients) and T i,TE
t,TE and T i,TE

t,TM (transmission coefficients), can be solved by enforcing the boundary conditions of Eqs. (1)
and (2) in the main text. By substituting Eqs. (B1)–(B10) into Eqs. (1) and (2), we obtain the relation of these coefficients as
follows:

⎡
⎢⎢⎢⎣

Ai,TM
1 Bi,TM

1 Ci,TM
1

Ai,TM
2 Bi,TM

2 Ci,TM
2

Ai,TM
3 Bi,TM

3 Ci,TM
3

Di,TM
1

Di,TM
2

Di,TM
3

Ai,TM
4 Bi,TM

4 Ci,TM
4 Di,TM

4

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Ri,TM
r,TM

T i,TM
t,TM

Ri,TM
r,TE

T i,TM
t,TE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Fi,TM
1

Fi,TM
2

Fi,TM
3

Fi,TM
4

⎤
⎥⎥⎥⎥⎦, (B11)

where
⎡
⎢⎢⎢⎣

Ai,TE
1 Bi,TE

1 Ci,TE
1

Ai,TE
2 Bi,TE

2 Ci,TE
2

Ai,TE
3 Bi,TE

3 Ci,TE
3

Di,TE
1

Di,TE
2

Di,TE
3

Ai,TE
4 Bi,TE

4 Ci,TE
4 Di,TE

4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 + σm,x
k1z

ωμ1
−1 − σm,x

k2z

ωμ2
σχ,x

k1z

k1
−σχ,x

k2z

k2

σχ,y σχ,x −σm,y
k1

ωμ1
− k1z

k1
−σm,y

k2
ωμ2

− k2z

k2

σe,y + k1z

ωμ1
σe,y + k2z

ωμ2
σχ.y

k1
ωμ1

σχ,y
k2

ωμ2

σχ,x
k1z

ωμ1
−σχ,x

k2z

ωμ2
− k1

ωμ1
− σe,x

k1z

k1

k2
ωμ2

+ σe,x
k2z

k2

⎤
⎥⎥⎥⎥⎦, (B12)
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⎡
⎢⎢⎢⎢⎣

Fi,TE
1

Fi,TE
2

Fi,TE
3

Fi,TE
4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−1 + σm,x
k1z

ωμ1

−σχ,x
k1z

ωμ1
− σe,y

σχ,x
k1z

ωμ1

⎤
⎥⎥⎥⎥⎦. (B13)

Ri,TE
r,TE, Ri,TE

r,TM, T i,TE
t,TE , and T i,TE

t,TM then can be solved from Eq. (A12). They are expressed as follows:

Ri,TE
r,TE =

(
αi,TE

1 Qi,TE
1 − β i.TE

1 Ni,TE
1

)/
Gi,TE

Si,TE
, (B14)

T i,TE
t,TE =

(
β i,TE

1 Mi,TE
1 − αi,TE

1 Pi,TE
1

)/
Gi,TE

Si,TE
, (B15)

Ri,TE
r,TM =

(
αi,TE

2 Qi,TE
2 − β i,TE

2 Ni,TE
2

)/
Ki,TE

Si,TE
, (B16)

T i,TE
t,TM =

(
β i,TE

2 Mi,TE
2 − αi,TE

2 Pi,TE
2

)/
Ki,TE

Si,TE
, (B17)

where

αi,TE
1 = (

Fi,TE
1 Ci,TE

2 − Fi,TE
2 Ci,TE

1

)(
Di,TE

3 Ci,TE
4 − Di,TE

4 Ci,TE
3

) − (
Fi,TE

3 Ci,TE
4 − Fi,TE

4 Ci,TE
3

)(
Di,TE

1 Ci,TE
2 − Di,TE

2 Ci,TE
1

)
, (B18)

β i,TE
1 = (

Fi,TE
1 Di,TE

2 − Fi,TE
2 Di,TE

1

)(
Ci,TE

3 Di,TE
4 − Ci,TE

4 Di,TE
3

) − (
Fi,TE

3 Di,TE
4 − Fi,TE

4 Di,TE
3

)(
Ci,TE

1 Di,TE
2 − Ci,TE

2 Di,TE
1

)
, (B19)

Mi,TE
1 = (

Ai,TE
1 Ci,TE

2 − Ai,TE
2 Ci,TE

1

)(
Di,TE

3 Ci,TE
4 − Di,TE

4 Ci,TE
3

) − (
Ai,TE

3 Ci,TE
4 − Ai,TE

4 Ci,TE
3

)(
Di,TE

1 Ci,TE
2 − Di,TE

2 Ci,TE
1

)
, (B20)

Ni,TE
1 = (

Bi,TE
1 Ci,TE

2 − Bi,TE
2 Ci,TE

1

)(
Di,TE

3 Ci,TE
4 − Di,TE

4 Ci,TE
3

) − (
Bi,TE

3 Ci,TE
4 − Bi,TE

4 Ci,TE
3

)(
Di,TE

1 Ci,TE
2 − Di,TE

2 Ci,TE
1

)
, (B21)

Pi,TE
1 = (

Ai,TE
1 Di,TE

2 − Ai,TE
2 Di,TE

1

)(
Ci,TE

3 Di,TE
4 − Ci,TE

4 Di,TE
3

) − (
Ai,TE

3 Di,TE
4 − Ai,TE

4 Di,TE
3

)(
Ci,TE

1 Di,TE
2 − Ci,TE

2 Di,TE
1

)
, (B22)

Qi,TE
1 = (

Bi,TE
1 Di,TE

2 − Bi,TE
2 Di,TE

1

)(
Ci,TE

3 Di,TE
4 − Ci,TE

4 Di,TE
3

) − (
Bi,TE

3 Di,TE
4 − Bi,TE

4 Di,TE
3

)(
Ci,TE

1 Di,TE
2 − Ci,TE

2 Di,TE
1

)
, (B23)

αi,TE
2 = (

Fi,TE
1 Ai,TE

2 − Fi,TE
2 Ai,TE

1

)(
Bi,TE

3 Ai,TE
4 − Bi,TE

4 Ai,TE
3

) − (
Fi,TE

3 Ai,TE
4 − Fi,TE

4 Ai,TE
3

)(
Bi,TE

1 Ai,TE
2 − Bi,TE

2 Ai,TE
1

)
, (B24)

β i,TE
2 = (

Fi,TE
1 Bi,TE

2 − Fi,TE
2 Bi,TE

1

)(
Ai,TE

3 Bi,TE
4 − Ai,TE

4 Bi,TE
3

) − (
Fi,TE

3 Bi,TE
4 − Fi,TE

4 Bi,TE
3

)(
Ai,TE

1 Bi,TE
2 − Ai,TE

2 Bi,TE
1

)
, (B25)

Mi,TE
2 = (

Ci,TE
1 Ai,TE

2 − Ci,TE
2 Ai,TE

1

)(
Bi,TE

3 Ai,TE
4 − Bi,TE

4 Ai,TE
3

) − (
Ci,TE

3 Ai,TE
4 − Ci,TE

4 Ai,TE
3

)(
Bi,TE

1 Ai,TE
2 − Bi,TE

2 Ai,TE
1

)
, (B26)

Ni,TE
2 = (

Di,TE
1 Ai,TE

2 − Di,TE
2 Ai,TE

1

)(
Bi,TE

3 Ai,TE
4 − Bi,TE

4 Ai,TE
3

) − (
Di,TE

3 Ai,TE
4 − Di,TE

4 Ai,TE
3

)(
Bi,TE

1 Ai,TE
2 − Bi,TE

2 Ai,TE
1

)
, (B27)

Pi,TE
2 = (

Ci,TE
1 Bi,TE

2 − Ci,TE
2 Bi,TE

1

)(
Ai,TE

3 Bi,TE
4 − Ai,TE

4 Bi,TE
3

) − (
Ci,TE

3 Bi,TE
4 − Ci,TE

4 Bi,TE
3

)(
Ai,TE

1 Bi,TE
2 − Ai,TE

2 Bi,TE
1

)
, (B28)

Qi,TE
2 = (

Di,TE
1 Bi,TE

2 − Di,TE
2 Bi,TE

1

)(
Ai,TE

3 Bi,TE
4 − Ai,TE

4 Bi,TE
3

) − (
Di,TE

3 Bi,TE
4 − Di,TE

4 Bi,TE
3

)(
Ai,TE

1 Bi,TE
2 − Ai,TE

2 Bi,TE
1

)
, (B29)

Gi,TE = (
Ci,TE

1 Di,TE
2 − Ci,TE

2 Di,TE
1

)(
Ci,TE

3 Di,TE
4 − Ci,TE

4 Di,TE
3

)
, (B30)

Ki,TE = (
Bi,TE

1 Ai,TE
2 − Bi,TE

2 Ai,TE
1

)(
Ai,TE

3 Bi,TE
4 − Ai,TE

4 Bi,TE
3

)
, (B31)

Si,TE = Mi,TE
1 Qi,TE

1 − Pi,TE
1 Ni,TE

1

Gi,TE
= Mi,TE

2 Qi,TE
2 − Pi,TE

2 Ni,TE
2

Ki,TE
. (B32)

If the simplification conditions (i.e. ε1 = ε2 = ε, μ1 = μ2 = μ, σ e = 0, and σ m = 0) are adopted in the calculation, the
expression for the scattering coefficients in Eqs. (B15)–(B18) can be significantly simplified. Under these simplification
conditions, we have

Ri,TE
r,TE = −4σχ,xσχ,y

(
σχ,y + k2

z
k2 σχ,x

)(
σχ,y − k2

z
k2 σχ,x

)
(
σχ,y + k2

z
k2 σχ,x

)2
(1 + σχ,xσχ,y)2 − (

σχ,y − k2
z

k2 σχ,x
)2

(1 − σχ,xσχ,y)2
, (B33)
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FIG. 4. Schematic illustration of the hybrid chiral structure constructed by the twisted atomic bilayer and the uniaxial magnetic
metasurface.

T i,TE
t,TE = 4σχ,xσχ,y

k2
z

k2 (1 + σχ,xσχ,y)(1 − σχ,xσχ,y)(
σχ,y + k2

z
k2 σχ,x

)2
(1 + σχ,xσχ,y)2 − (

σχ,y − k2
z

k2 σχ,x
)2

(1 − σχ,xσχ,y)2
, (B34)

Ri,TE
r,TM = 4 kz

k σχ,xσχ,y
(
σχ,y − k2

z
k2 σχ,x

)
(1 − σχ,xσχ,y)(

σχ,y + k2
z

k2 σχ,x
)2

(1 + σχ,xσχ,y)2 − (
σχ,y − k2

z
k2 σχ,x

)2
(1 − σχ,xσχ,y)2

, (B35)

T i,TE
t,TM = 4 kz

k σχ,xσχ,y
(
σχ,y + k2

z
k2 σχ,x

)
(1 + σχ,xσχ,y)(

σχ,y + k2
z

k2 σχ,x
)2

(1 + σχ,xσχ,y)2 − (
σχ,y − k2

z
k2 σχ,x

)2
(1 − σχ,xσχ,y)2

. (B36)

APPENDIX C: A FEASIBLE WAY TO ACHIEVE THE CONDITION OF σe = 0, σm = 0, and σχ �= 0

As schematically shown in Fig. 4, the hybrid structure constructed by the twisted atomic bilayer and a uniaxial magnetic
metasurface can in principle help to achieve the above condition. To be specific, according to our previous work [34], the
twisted atomic bilayer (TAB) is equivalent to a chiral metasurface, which simultaneously has the electric (σ e, TAB), magnetic
(σ m,TAB), and chiral (σχ,TAB) surface conductivities. These effective surface conductivities are all 2 × 2 diagonal matrices, and
particularly, we have σχ = −σxyσ m [34]. On the other hand, for the uniaxial magnetic metasurface, it can be readily modeled by
the electric (σ e, META) and magnetic (σ m,META) surface conductivities, which are also both 2 × 2 diagonal matrices. Then if we
deposit this uniaxial magnetic metasurface very close to the twisted atomic bilayer, the effective total surface conductivities for
this hybrid structure can be approximately characterized by σ e, total = σ e, META + σ e, TAB, σ m, total = σ m, META + σ m, TAB, and
σχ,toal = σχ,TAB. As such, through judiciously designing σ e, META and σ m, META, we can obtain σ e, total = 0 and σ m, total = 0,
while keeping σχ,toal �= 0.

FIG. 5. Influence of imperfections on the polarization transformation between the incident and transmitted light. All basic setup here are the
same as Fig. 2, except for the value of σχ,xσχ,y. As a typical example of imperfection, here we set σχ,xσχ,y �= 1. (a) Reflection and transmission
coefficients as a function of the incident angle under the scenario of σχ,xσχ,y = 0.8. (b) Proportion of TE waves among all transmitted waves
as a function of σχ,xσχ,y. Here the incident light is TM polarized (same as Fig. 2), and we set the incident angle to be 60 °, namely the critical
incident angle at which the perfection polarization transformation happens in Fig. 2.
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FIG. 6. Influence of imperfections on the polarization transformation between the incident and reflected light. The basic setup here is
the same as Fig. 3, except for the value of σχ,xσχ,y. As a typical example of imperfection, here we set σχ,xσχ,y �= −1. (a) Reflection and
transmission coefficients as a function of the incident angle under the scenario of σχ,xσχ,y = −0.8. (b) Proportion of TE waves among all
reflected waves as a function of σχ,xσχ,y. Here the incident light is TM polarized (same as Fig. 3), and we set the incident angle to be 60 °,
namely the critical incident angle at which the perfection polarization transformation happens in Fig. 3.

APPENDIX D: INFLUENCE OF IMPERFECTION ON THE POLARIZATION TRANSFORMATION

As a typical example of imperfection, below we set |σχ,xσχ,y| �= 1 and discuss its influence on the polarization transformation.
For the exotic polarization transformation between the incident (TE) and transmitted (TM) waves revealed in Fig. 2, Fig. 5(a)
shows that if |σχ,xσχ,y| �= 1 (e.g., σχ,xσχ,y = 0.8), we can still have that most of the transmitted light has the polarization
different from the incident light, irrespective of the incident angle. As a further quantitative study, we show in Fig. 5(b) that
at the critical incident angle (at which the perfect polarization transformation happens in Fig. 2), the proportion of TM waves
among all transmitted light is always above 90%, when σχ,xσχ,y varies from 0.5 to 1.5. Similarly, for the perfect polarization
transformation between the incident (TM) and reflected (TE) light revealed in Fig. 3, Fig. 6 shows that at the critical incident
angle, the proportion of TM waves among all reflected light is also always above 90%, when σχ,xσχ,y varies from 0.5 to 1.5.
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