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Optical rogue waves in multifractal photonic arrays
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Optical rogue waves are demonstrated in the far-field scattered radiation from photonic arrays designed
according to the aperiodic distributions of prime elements in complex quadratic fields. Specifically, by studying
light diffraction from Eisenstein and Gaussian prime arrays, we establish a connection between the formation of
optical rogue waves and multifractality in the visible single-scattering regime. We link strong multifractality with
the heavy-tail probability distributions that describe the fluctuations of scattered radiation from the fabricated
arrays. Our findings pave the way to control high-intensity rogue waves using deterministic arrays of dielectric
nanostructures for enhanced sensing and lithographic applications.
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I. INTRODUCTION

The term “rogue waves” (RWs) was originally introduced
in hydrodynamics to describe the behavior of giant waves that
emerge unexpectedly on a relatively calm ocean releasing ex-
ceptionally destructive power [1]. Since then, RWs have been
observed in different contexts (e.g., optics [2–8], condensed-
matter physics [9], optical turbulence [10], and even in finance
[11], to cite a few), becoming an important subject of interdis-
ciplinary research [2,3,12].

Despite the theoretical and experimental efforts of the past
12 years [2,3,13], an exact definition of a RW does not exist
yet [12]. Moreover, as pointed out in recent reviews [2,3],
the analogy between optical and ocean rogue waves must be
handled with care. However, a common feature of all these
studies is the presence of heavy-tailed probability density
functions (PDFs) describing the intensity fluctuations of the
waves. Therefore, RWs are characterized by non-Gaussian
statistics, implying that waves with extremely large ampli-
tudes appear more often than what is predicted from the
normal distribution. Heavy-tailed statistical distributions arise
in the context of extreme value theory (EVT) beyond the
validity of the central limit theorem when limit processes,
such as the sum of dependent and correlated variables, are
considered [14,15]. Fundamental aspects of the physics of
optical RWs are the presence of heavy-tailed PDFs in the
statistical distribution of scattered radiation and its connection
with the structural properties of complex systems. However,
the mechanisms driving the formation of RWs is a matter
of debate and depends on the particular system under study
[1,3,16,17].

Recently, Dematteis et al. proposed and tested a statis-
tical theory demonstrating that water tank rogue waves are
hydrodynamic instantons [18]. Instead, optical RWs were
demonstrated for the first time by Solli et al. in microstruc-
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tured optical fibers driven within a noise-sensitive nonlinear
regime [4]. The strong phase gradients and fluctuations that
give rise to natural focusing phenomena [19], described by
the theory of catastrophe optics [20,21], also produce abrupt,
rare, and extreme fluctuations of field amplitudes. These
studies established a connection between rogue-type behav-
ior and far-field diffracted caustics [7,8,22]. Moreover, these
discoveries showed that nonlinearity is not essential for the
generation of optical RWs that can be observed in linear
systems when a suitable random phase structure is imparted
on a coherent optical field [6–8] or when disordered phases
exhibit long-range correlations in space [23]. Wave focusing
due to collective effects in a correlated complex medium [15],
granularity, and spatial inhomogeneity [5,17] have been iden-
tified as the main factors for the occurrence of RWs in the
optical regime.

In this work, we propose and demonstrate an approach for
the generation of optical RWs based on the engineering of de-
terministic arrays of dielectric nanostructures with aperiodic
multifractal geometry [24]. Multifractals, i.e., intertwined
sets of self-similar structures, are inhomogeneous systems
characterized by complex fluctuations over multiple-length
scales that encode long-range correlations [19]. Introduced
by Frisch and Parisi to analyze the multiscale energy dissi-
pation in turbulent fluids [24], multifractality (MF) became
an interdisciplinary concept that is investigated in various
fields of research. Besides finance [25], chaotic systems
[26], and condensed-matter physics [27], self-similarity and
multifractality have been observed in soliton-based systems
[28]—like the ones used to demonstrate optical RWs (see,
e.g., [2] and references therein)—and in extremely rare natural
hazards [19], such as tsunami [29], earthquakes [30], and
oceanographic rogue waves [31]. Interestingly, also diffracted
caustics, as pointed out by Berry and Upstill [22], are charac-
terized by a hierarchy of self-similar lengthscales.

Motivated by these findings, we ask whether a fundamental
connection exists between MF and RWs in linear optics. To
establish such a relation, we measured the diffraction intensity
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patterns produced by aperiodic photonic arrays designed from
fundamental structures of algebraic number theory [32–35]
that inherit the multifractality of the distributions of prime
elements [36]. The multifractality of these photonic systems
has been demonstrated in Ref. [32] in the multiple scatter-
ing regime by performing leaky-mode imaging experiments
at high numerical aperture. Instead, in the present work we
systematically investigate their single-scattering properties,
focusing on the far-field diffracted radiation from Eisenstein
and Gaussian prime arrays. First of all, we demonstrate that
the structure factor of these arrays, which is proportional to the
far-field scattered intensity [37], exhibits strong multifractal
behavior. As a second step, we show that the PDFs of scattered
radiation, which characterize the spatial fluctuations of coher-
ent laser light diffracted by the aperiodic structures, as well
as the distributions of the most intense values, are described
by Pareto-type and Fréchet-type extreme value distributions,
respectively. Finally, we determine that these non-Gaussian
statistics originate from the strong multifractal geometry of
the investigated photonic arrays.

II. MULTIFRACTAL DIFFRACTION OF PRIME ARRAYS

The photonic structures are fabricated using electron beam
lithography. Specifically, TiO2 nanocylinders deposited atop
a transparent SiO2 substrate are arranged as the prime el-
ements of the Eisenstein and Gaussian integers. Recently,
these photonic arrays were introduced to exploit structural
multifractality as an engineering approach for optical sensing,
lasing, and multispectral devices [32,33]. Scanning electron
microscope (SEM) images of the fabricated devices are re-
ported in Figs. 1(a) and 1(b). More details on the fabrication
as well as on their geometrical properties are discussed in
Ref. [32] and in the Supplemental Material [38]. The ex-
perimental setup used to measure the diffraction pattern of
laser light scattered by the arrays is shown in Fig. 1(c). A
405 nm laser is focused onto the device to uniformly illu-
minate the sample. The forward scattered light is collected
by a high numerical aperture objective (NA=0.9 Olympus
MPlanFL N) that gathers light scattered up to 64◦ from the
normal direction. Immediately behind the objective, a 4-F
optical system creates an intermediate image plane and an
intermediate Fourier plane. An iris, located at the intermediate
image plane, was used to restrict the light collection area only
to the patterned regions. The intermediate Fourier plane was
reimaged onto a charge-coupled device (CCD) with the ap-
propriate magnification by using a second 4-F optical system.
Finally, digital filtering was employed to remove the strong
direct component of the diffraction spectra to produce the
clear images reported in Figs. 1(d) and 1(e) for the Eisenstein
and Gaussian configurations, respectively. The experimental
results are compared with the predicted far-field diffraction
intensity that is proportional to the computed structure factor
of the investigated arrays, defined as [32,37]

S(k) = 1

N

∣∣∣∣∣
N∑

j=1

e−ik·r j

∣∣∣∣∣
2

, (1)

where k is the in-plane component of the wave vector, and r j

are the vector positions of the N nanoparticles in the array.

FIG. 1. SEM images of the fabricated photonic arrays arranged
in an Eisenstein (a) and Gaussian (b) geometry, respectively.
Nanocylinders have a 210 nm mean diameter, 250 nm height, and
average interparticle separation of 650 nm. Note that unavoidable
fabrication imperfections, such as surface roughness and fluctuations
in the size and position of the particles (see the Supplemental Mate-
rial [38] for more information), are deeply subwavelength and do
not significantly influence the diffraction patterns measured using
the customized optical setup shown in panel (c). IP denotes image
plane, and AS denotes aperture stop. Measured (d),(e) and calculated
(f),(g) intensity profiles of the prime arrays reported at the top of
each column. The diffraction patterns (f) and (g) are calculated by
considering more than 104 prime elements.

The computed structure factors are displayed in Figs. 1(f) and
1(g). We found a good agreement between the computed and
the experimentally measured diffraction spectra, whose peaks
are slightly broadened due to unavoidable fabrication imper-
fections. We have quantified these effects in the Supplemental
Material [38], where we also provide a detailed analysis
based on the comparison of the pair distribution functions of
the arrays.

To demonstrate that the fluctuations of light scattered by
the arrays exhibit strong multifractal properties, we apply the
statistical approach proposed by Chhabra and Jensen [39]
and implemented in the FRACLAC IMAGEJ software package
[40]. This approach is based on the box-counting method that
divides the space embedding an object into a hypercubic grid
of boxes of varying size ε (see the Supplemental Material
[38] for more details). We have computed three characteristic
indicators of MF: (i) the generalized dimension D(q), the
mass exponent τ (q), and the multifractal spectrum f (α). The
generalized dimension D(q), first proposed as an alternative
characterization of strange attractors of some dynamical sys-
tems, is defined as [41]

D(q) = 1

q − 1
lim
ε→0

[
ln μ(q, ε)

ln ε

]
, (2)
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FIG. 2. D(q) as a function of the moments q extrapolated from the measured (pastel-blue and pastel-red) and simulated (navy-blue and
dark-red) scattered radiation from the Eisenstein (a) and Gaussian (b) arrays, respectively. The insets report the τ (q) exponents. Panels (c) and
(d) show the f (α) spectra of the diffracted intensity of the Eisenstein and Gaussian array, respectively. Markers represent the data, while the
continuous lines refer to the best fits obtained by using a least-squares method based on the polynomial function f (α) = p1 + p2α + p3α

2 +
p4α

3 + p5α
4. Error bars take into account the different threshold percentages (between 55% and 75% of the maximum intensity value) used

to binarize the diffraction patterns reported in Figs. 1(d)–1(g), as well as the different scaling methods used in the multifractal analysis [32].

where q are the moments of distribution, and the partition
function μ(q, ε) is equal to

μ(q, ε) =
∑

k

Pk (ε)q ∼ ε−τ (q). (3)

The probability Pk (ε) is evaluated as the integral of the mea-
sure over the kth box, and it scales as Pk (ε) ∼ εαk . The
coefficients αk are the Lipschitz-Holder exponents, and they
quantify the strength of the singularity of a given positive
measure [39,41]. The mass exponent τ (q) describes the scal-
ing of the partition function with respect to ε, and it defines
D(q) through the relation D(q) = τ (q)/(q − 1). Moreover,
the Chhabra-Jensen method allows us to define the one-
parameter family μ̂k (q, ε) through the relation μ̂k (q, ε) =
Pk (ε)q/

∑
k Pk (ε)q, such that the multifractal spectrum f (α)

is obtained directly from the data by using the following
expression:

f (α) = lim
ε→0

∑
k μ̂i(q, ε) ln[μ̂i(q, l )]

ln ε
. (4)

In particular, the numerator of Eq. (4) is evaluated for each
moment q for decreasing box sizes. Then, f (α) is extrapolated
from the slopes of

∑
i μ̂i(q, ε) ln[μ̂i(q, ε)] as a function of ln ε

[39].
Multifractal distributions are characterized by a smooth

D(q) function and a nonlinear dependence of τ from the
moments q. These features are clearly visible in Figs. 2(a) and
2(b). Moreover, the singularity spectra reported in Figs. 2(c)

and 2(d) exhibit a downward concavity with a large width
�α, which is the hallmark of multifractality [27,39]. The mul-
tifractal exponents extrapolated from the experimental data
(lighter markers) follow well the ones estimated from the sim-
ulations (darker markers). Also note that multifractal spectra
are global morphological properties of the diffraction spectra
and are not influenced by the small local intensity fluctuations
due to subwavelength fabrication imperfections, as we show
in more detail in the Supplemental Material [38].

Even though little is known about the singularity spec-
trum from an analytical point of view [42], the shape of
f (α) encodes information on the PDF of the quantity under
investigation [43]. In particular, it is known that if f (α) is
parabolic [i.e., well reproduced by the model f (α) = a +
bα + cα2 with three free parameters], then the PDF follows
a log-normal statistic (i.e., a model characterized by two free
parameters; the mean and standard deviation) [27]. On the
other hand, deviations of f (α) from a simple parabolic model
reflect the non-Gaussian nature of its PDF [26,42–44]. In this
case, we speak of strong-MF [43].

To better understand the multifractal properties of the
diffraction intensity pattern of prime arrays, we have de-
veloped a nonparabolic model characterized by the polyno-
mial function f (α) = p1 + p2α + p3α

2 + p4α
3 + p5α

4. This
model [continuous lines in Figs. 2(c) and 2(d)] reproduces
very well our data with an R2-coefficient equal to 0.99 (see the
Supplemental Material [38] for more details), demonstrating
that photonic prime arrays exhibit strong-MF. Moreover, the

195403-3



F. SGRIGNUOLI et al. PHYSICAL REVIEW B 103, 195403 (2021)

FIG. 3. Panels (a) and (b) display the PDFs of the fluctuations of the scattered radiation from the Eisenstein and Gaussian prime array. As
a comparison, the negative exponential statistic of FDS, ensemble-averaged over 100 different uncorrelated arrangements of 2000 particles,
is reported with a continuous green line. PDFs of the most intense light intensity fluctuations produced by the Eisenstein (c) and Gaussian
(d) prime array. The dashed lines indicate the threshold values IRW. Markers represent the data: pastel-blue and pastel-red markers express the
measured data, while navy-blue and dark-red markers refer to the calculated intensities. Continuous lines in panels (a),(b) and (c),(d) refer,
respectively, to the best fits of both measured and simulated data obtained by using a least-squares method based on Eqs. (5) and (6).

nonparabolicity of the f (α) spectra indicates that the asso-
ciated PDFs are non-Gaussian distributions characterized by
heavy tails.

III. MULTIFRACTALITY AND ROGUE WAVE FORMATION

To demonstrate the link between strong-MF and non-
Gaussian PDFs of the fluctuation of light intensity, we
evaluate the histograms of the array structure factor normal-
ized with respect to its averaged value Ŝ(k) = S(k)/S(k).
Figures 3(a) and 3(b) show the results of this analysis ex-
trapolated from the measured (lighter markers) and simulated
(darker markers) data. In particular, these PDFs display
remarkable heavy-tail features confirming the rogue wave
character of the investigated far-field intensity profiles. The
rare and extreme character of these distributions is particu-
larly evident when compared against the negative exponential
statistics exp[−Ŝ(k)] (green continuous lines) that describes
the fluctuations of waves scattered by uncorrelated ran-
dom arrangements of particles, i.e., fully developed speckles
(FDS) [45].

To quantify the observed heavy-tail behavior, we use a
least-squares method based on the Pareto-type distribution
defined as follows [46]:

P(x) = β

γ σ

[
1 +

(x − μ

σ

)1/2γ
]−(β+1)(x − μ

σ

)−1+1/γ

, (5)

where x = Ŝ(k), while μ, σ , β, and γ are four free param-
eters named, respectively, the location, the scale, the shape,
and the inequality exponent. The distribution (5) reproduces
the experimental and simulation data very well with an R2-
coefficient almost equal to 0.99. These results, as discussed
in more detail in the Supplemental Material [38], are robust
with respect to the number of scatterers (up to 104) and to
the exposure time used to measure the diffraction intensities
reported in Figs. 1(d) and 1(e). The distributions of the Pareto
family are α-stable distributions often used in EVT to model
hazards in nature with long-range correlations, such as earth-
quakes, avalanches, rainfall distributions, the scaling laws of
human travel, and financial crash markets [19,47–49]. Our
findings demonstrate their applications to the optical regime
by linking the multifractal properties of the scattered radiation
of photonic arrays with the heavy-tailed PDF (5).

To demonstrate directly the optical rogue wave properties
of the arrays, we compute histograms of the most intense
fluctuations S∗(k) and we evaluate the intensity threshold
for rogue wave formation IRW by using the oceanographic
definition IRW � 2I1/3. The quantity I1/3 indicates the mean
intensity of the highest third of events [2]. The results are
reported in Figs. 3(c) and 3(d), where the statistics extrapo-
lated from the measured and simulated peak intensities are
shown along with the intensity thresholds for rogue wave
formation (dashed lines). The agreement between the statistics
extracted from simulations (darker markers) and experiments
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(lighter markers) is remarkable. Moreover, these distributions
are characterized by heavy tails that exceed the thresh-
old IRW, demonstrating that the scattered radiation from the
investigated arrays manifests the RW behavior. Concerning
the probability of optical rogue wave events, Eisenstein and
Gaussian prime arrays yield 3.6 ± 0.95 % and 4.1 ± 1.3 % of
events [50]. Thanks to the multifractality of their geometrical
structures, the proposed devices support a larger probability
for optical rogue wave generation as compared to what is
observed in linear systems that impart a random phase on a
coherent optical field [7].

Finally, the continuous lines in Figs. 3(c) and 3(d) show
that the distributions of the most intense fluctuations of
the scattered intensities are well reproduced, with an R2-
coefficient almost equal to 0.98, by the distribution G(x)
defined as [19]

G(x) = 1

ρ

[
1 + ξ

(
x − τ

ρ

)]−(1+1/ξ )

× exp

{
−

[
1 + ξ

(
x − τ

ρ

)]−1/ξ

+

}
, (6)

where + indicates the constraint [1 + ξ ( x−τ
ρ

)] > 0, while ξ ,
ρ, and τ are the shape, the scale, and the location parame-
ter, respectively. The probability density function (6) is the
compact form of three widely used distributions in EVT,
named Gumbel (primarily adopted in corrosion engineering to
guarantee the safety of buildings and in meteorological phe-
nomena), Fréchet (mostly utilized to model market returns),
and Weibull (originally developed in materials science) [48].
In fact, the extremal types theorem, which is the analog of
the central limit theorem in EVT, states that the distribution
of the rescaled maxima of extreme events belongs to one
of these three families [14,49]. Collectively, these three dis-
tributions are named extreme value distributions, and they
can be parametrized into the single family distribution (6)
known as the generalized extreme value distribution [14,49].
The shape parameter ξ discriminates the distribution class.
G(x) belongs to the Gumbel, to the Weibull, or to the Fréchet
class, depending on whether ξ is equal to zero, lower than
zero, or larger than zero, respectively. Moreover, a direct link
exists between the distribution of extreme events P(x) and the
distribution of their most intense values G(x) [14,19,48,49].
Such a link is particularly used in finance to predict the
price movements characterized by independent and stationary
increments, i.e., Lévy processes [48]. In particular, if P(x)
corresponds to the normal or exponential distribution, the
distribution of the maxima values follows a Gumbel function.
In cases in which P(x) is characterized by a finite support
(i.e., an upper end point such as the uniform and the beta

distribution), G(x) approaches Weibull distribution. Lastly,
G(x) falls into the Fréchet class when P(x) exhibits power-law
(i.e., Pareto-type) tails [19,48,49]. The data of Figs. 3(c) and
3(d) are well-described for ξ values always larger than zero
(see the Supplemental Material [38]), in agreement with the
power-law features of the PDFs of panels (a) and (b). Inter-
estingly, extreme value Fréchet distributions were observed
in the statistics of natural hazards with long-term memory
characteristics [19,48] and in the scaling behavior of focused
waves in random media modeled as a Gaussian random field
[15]. Our findings generalize these results to linear optical
systems with strong multifractal behavior, introducing an al-
ternative approach to achieve high-intensity optical hot spots.

IV. CONCLUSIONS

In conclusion, using the approach of extreme value theory,
we demonstrated the formation of optical RWs with enhanced
probability in multifractal arrays of dielectric nanoparticles
based on the distributions of the prime elements in complex
quadratic fields (prime arrays). Our findings link directly the
strong multifractality of photonic prime arrays with intense
RW phenomena in the linear optical regime. In particular,
we developed a nonparabolic multifractal model that well-
reproduces the experimentally measured multifractal spectra
for the scattered radiation. The non-Gaussian PDFs of light
intensity fluctuations associated with strong-multifractality
have been characterized using heavy-tailed Pareto-type and
Fréchet distribution for the most intense values, in excellent
agreement with the experimental results. Notably, multifrac-
tality characterizes also oceanic rogue waves [31], suggesting
a novel interpretation in the long-debated analogy between
oceanographic and optical rogue waves. Our results unveil
the key role of long-range structural correlations and strong-
multifractality for the engineering of planar diffraction arrays
that produce high-intensity RWs for applications to enhanced
sensing and lithography.
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