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Orbital Hall effect as an alternative to valley Hall effect in gapped graphene
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Gapped graphene has been proposed to be a good platform to observe the valley Hall effect, a transport
phenomenon involving the flow of electrons that are characterized by different valley indices. In the present
work, we show that this phenomenon is better described as an instance of the orbital Hall effect (OHE), where
the ambiguous “valley” indices are replaced by a physical quantity, the orbital magnetic moment, which can
be defined uniformly over the entire Brillouin zone. This description removes the arbitrariness in the choice
of arbitrary cutoff for the valley-restricted integrals in the valley Hall conductivity, as the conductivity in the
OHE is now defined as the Brillouin zone integral of a new quantity, called the orbital Berry curvature. This
reformulation in terms of OHE provides a direct explanation to the accumulated opposite orbital moments at the
edges of the sample, observed in previous Kerr rotation measurements.
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I. INTRODUCTION

The two inequivalent but degenerate valleys in the elec-
tronic structure of graphene are used to characterize the
electrons by associating them with the “valley” index in the
same spirit as the usual spin indices are used to designate
the electrons. Such valley degrees of freedom in graphene
are widely explored [1–4] with an eye toward potential use in
transport phenomena analogous to the spin transport [3,5,6].
One of the notable outcomes of these studies is the valley Hall
effect [1], which is most easily visualized in graphene with
broken inversion (I) symmetry [7,8], also known as “gapped
graphene.” The broken I symmetry gives rise to equal and
oppositely directed Berry curvatures in the two valleys, giving
rise to oppositely directed anomalous velocities in response to
an electric field. As a result, electrons in the two valleys flow
in opposite directions, thereby leading to the valley Hall effect
(VHE).

In the present work, we show that an alternative way to
describe the valley degrees of freedom in gapped graphene
is to associate the two valleys with the corresponding orbital
degrees of freedom of the electrons, i.e., characterizing the
valley electrons by their orbital angular momentum rather than
the valley indices. The two valleys K,K′ carry electrons with
opposite orbital angular momenta, which also flow in opposite
directions due to opposite anomalous velocities at different
valleys in the presence of a longitudinal electric field. This
leads to a transverse orbital Hall current, as schematically
illustrated in Fig. 1. We describe this effect as the “valley
orbital Hall effect” (VOHE).

This redescription in terms of VOHE is physically more
meaningful than the usual description in terms of VHE, in the
sense that the orbital Hall current can be computed uniformly
over the entire BZ, and the corresponding conductivity is
defined as the BZ integral of a new quantity called “orbital

*Current address: Materials Theory, ETH Zurich, Wolfgang-Pauli-
Strasse 27, 8093 Zurich, Switzerland.

Berry curvature.” This is in contrast to the VHE where the
conductivity is computed by integrating over a neighborhood
of each valley minimum separately, and subtracting, rather
than adding, the contributions of the two valleys: σv,K(K′)

xy =

− e2

h

∫
K(K′)

d2k
2π

∑
n fnkΩn,z(�k) [9]. This definition is not entirely

satisfactory, because the valley-restricted integrals
∫

K(K′)
d2k
2π

require the demarcation of the two valley domains, which is
quite arbitrary. A frequently used prescription is to consider
the Γ-M line in the Brillouin zone (BZ) as the boundary
between two valleys [9,10]. However, this choice seems to
be suggested by practical rather than fundamental consider-
ations. Furthermore, the very sign of the valley Hall current
is purely conventional, since we could use jK − jK′ as well
as jK′ − jK , where jK′ and jK are, respectively, the current
densities corresponding to the individual K,K′ contributions
to the conductivities σv,K(K′)

xy . This again casts doubt on the
fundamental significance of the “valley current.”

On the other hand, the central quantity in the orbital Hall
effect (OHE) is “orbital Berry curvature,” which, as we show,
is nothing but a product of the orbital moment and the Berry
curvature for a gapped graphene system. The concept of “or-
bital Berry curvature” has the advantage that, by definition,
it has the same sign at the two valleys, whereas the ordinary
Berry curvature—the key quantity in the VHE—has opposite
signs at the two valleys. This practically resolves the difficulty
of the VHE, i.e., we no longer need to consider an ambiguous
“valley region” in momentum space. The magnitude of the
computed orbital Hall conductivity does not depend on some
arbitrary momentum cutoff or valley labeling convention and
can be unambiguously compared to the experimental mea-
surements.

In fact, the description in terms of orbital magnetic mo-
ments is directly connected with the main experimental
technique that is used to detect the VHE, namely Kerr rotation
microscopy [11,12], in which an out-of-plane polarization
with opposite signs at the edges of the sample has been de-
tected in the presence of a longitudinal electric current. Our
redefinition of the effect allows us to explain the observed
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FIG. 1. Illustration of (a) valley and (b) valley orbital Hall effect,
indicating the flow of electrons with opposite valley indices and
opposite orbital angular momenta, respectively. Notice that due to
the equal number of electrons in the two valleys, the net transverse
charge current (Jc) is zero in the intrinsic system. This is in contrast to
the orbital angular momentum current (JL) in the valley orbital Hall
effect, which is present even in the intrinsic system. The big arrows
in (b) denote the component of the orbital moment mz, relevant for
gapped graphene.

opposite polarizations at the two edges in terms of the accu-
mulated opposite orbital moments at the edges of the sample
due to OHE, emphasizing further the relevance of orbital
moments over the abstract “valley indices.”

It is important to notice that the VOHE is only a spe-
cial case of the more general OHE, which is ubiquitous
in solids and does not require broken inversion symmetry
[13–18]. In this context, p-doped fully hydrogenated cen-
trosymmetric graphene, known as graphane, is a relevant
example in which the OHE, related to the 2π Berry flux of
the light- and heavy-hole bands, has already been predicted
[19]. The VOHE is specific to noncentrosymmetric systems
(like gapped graphene) where each of the two valleys carries
an orbital moment due to broken I symmetry, and moments
in the two valleys are oppositely directed due to time-reversal
symmetry. Interestingly, as shown in the example of gapped
graphene, which we work out in detail below, VOHE does
not even require the presence of spin-orbit coupling. Thus, we
believe that gapped graphene, which is usually not considered
a good candidate for spintronics applications due to weak
spin-orbit effects [20,21], could play an important role in the
context of efforts to control the orbital degrees of freedom
in two-dimensional systems by electrical means [22–30]. The
recent experiments [31,32] on orbital dynamics that utilize the
orbital torque, generated by OHE [33,34] in magnetic multi-
layers, further raise the hope for future orbitronics devices.

The rest of the paper is organized as follows. In Sec. II,
we describe the physics of the VOHE using the continuum
valley model. We compute the analytical forms for the orbital
moment operator, the orbital Berry curvature, and the valley
orbital Hall conductivity. In Sec. III, the results of the con-
tinuum valley model are further verified by using a minimal
tight-binding model. The tight-binding model provides the
platform to study the VOHE over the entire BZ, and the results
are compared with those of the continuum model. Our results
are discussed and summarized in Sec. IV.

II. VALLEY MODEL AND VOHE

In this section, we illustrate the VOHE for a prototyp-
ical massive Dirac Hamiltonian, which is relevant for the

valley points K(4π/3
√

3a, 0),K′(−4π/3
√

3a, 0) of the gapped
graphene system, e.g., graphene on hexagonal boron nitride.
Here a is the distance between C atoms.

The Hamiltonian near the valley points has the following
form:

H(�q) = vF(ντxqx − τyqy) + Δτz, (1)

where �q represents the crystal momentum near the two val-
leys, viz., �q = �k − �K or �q = �k − �K′, vF = −3ta/2 is the Fermi
velocity divided by �, which includes nearest-neighbor hop-
ping t between C atoms, �τ are the Pauli matrices in the
pseudospin basis, 2Δ is the energy gap, induced by broken I
symmetry, and ν is the valley index, which can take two values
±1 for the K and K′ valleys, respectively.

The energy eigenvalues of the valley Hamiltonian (1)
represent gapped Dirac bands with energies ε± = ±ε(q) =

±
√
Δ2 + v2

Fq2, where ± correspond to the conduction and the
valence bands, respectively. The corresponding wave func-
tions are given by

|ψ+〉 =
(
νuq

vqe−iνφ

)
, |ψ−〉 =

(
vq

−νuqe−iνφ

)
.

Here uq =
√

1
2 (1 + Δ

ε(q) ), and vq =
√

1
2 (1 − Δ

ε(q) ), φ =
tan−1(qy/qx).

The valley Hamiltonian allows for an analytical derivation
of the VOHE, which provides useful insights into the physics
of the effect. We start by computing the matrix elements of
the orbital magnetic moment operator for the valley Hamil-
tonian, which is the key element for the valley orbital Hall
conductivity. Before going into the explicit calculation, we
want to emphasize that the existence of the nonzero orbital
magnetic moment for the Hamiltonian (1) can be argued even
from the simple symmetry transformation relations of the

orbital moment �m, viz., under inversion �m(�k)
I→ �m(−�k), while

under time-reversal �m(�k)
T→ −�m(−�k). Therefore, the existence

of nonzero �m(�k) requires either of the two symmetries to be
broken. Since the valley Hamiltonian (1) breaks the I symme-

try (because τz
I→ −τz), we expect the presence of a nonzero

�m(�k) in the BZ of the system.
To explicitly compute the orbital moment, we construct the

corresponding operator, which may be written as

�̂m = − e
4

[(�̂r × �̂v) − (�̂v × �̂r)]. (2)

Here �̂r is the position operator and �̂v is the velocity opera-
tor. The gauge-covariant form of the position operator �̂r in the
Bloch momentum representation may be computed using the
following relation:

(�̂r)qq′ = (i∂�qδqq′ )τ0 + �A(�q)δqq′ , (3)

where �A(�q) is the Berry connection, the matrix elements of
which can be computed from the eigenstates of the Hamilto-
nian (1), viz., Ann′ (�q) = i〈ψn(�q)|∂�qψn′ (�q)〉. By performing this
straightforward algebra, we get

�A(�q) = q̂

(
νΔvF

2ε2
q

)
τy + φ̂

(
vF

2εq

)
τx. (4)
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Substituting �A(�q) back in Eq. (3), we get the position oper-
ator for the Hamiltonian (1),

(�̂r)qq′ = (i∂�qδqq′ )τ0 +

[
q̂

(
νΔvF

2ε2
q

)
τy + φ̂

(
vF

2εq

)
τx

]
δqq′ . (5)

All that remains is to construct the velocity operator for the
valley model, which is given by

�̂v =
i
�

[H, �̂r] =
1
�

[(
νΔvF

εq

)
τxq̂ − vFτyφ̂

]
. (6)

Here in obtaining the second equality we have used H(�q) =
εqτz. Using Eqs. (5) and (6), from Eq. (2), we get the desired
orbital magnetic moment operator for the valley model,

�̂m =
eνΔv2

F

2�ε2
q
τ0δqq′ ẑ =

e
2�

νv2
FΔ(

Δ2 + v2
Fq2

)τ0δqq′ ẑ. (7)

Note the important result that, for the valley model, the
orbital moment matrix is diagonal, i.e., the interband elements
do not contribute. Also, it is clear that the orbital moments
for the valence and the conduction bands are equal in mag-
nitude, mz

v(�q) = mz
c(�q) = ν e�

2m∗
1

(1+v2
F q2/Δ2)

, where m∗ = �2Δ/v2
F

is the effective mass. As expected, due to the presence of
time-reversal (T ) symmetry, the orbital magnetic moments at
different valleys K,K′ have opposite signs, resulting in a net
zero orbital magnetization in the system.

In the presence of an electric field, these oppositely ori-
ented orbital moments flow in opposite directions, leading to
a transverse flow of orbital current. The corresponding valley
orbital Hall conductivity for the valence band may be com-
puted as the BZ sum of the orbital Berry curvature Ωγ,orb

αβ (�q),

σ
γ,orb
αβ = − e

(2π)2

∫
BZ
Ω
γ,orb
αβ (�q) d2q, (8)

where the integration is over the occupied states in the two-
dimensional BZ, and −e < 0 is the electronic charge. Note the
important differences between the orbital Hall conductivity
and the valley Hall conductivity: (i) The integration in Eq. (8)
is over the entire BZ rather than just around the valley points.
(ii) The central quantity in the VOHE is the orbital Berry
curvature, which has different symmetry properties than the
Berry curvature in the valley Hall conductivity, as we discuss
now.

The orbital Berry curvature in Eq. (8) may be computed
using the Kubo formula,

Ω
γ,orb
αβ (�q) = 2� Im

⎛⎜⎜⎜⎜⎜⎝
∑
n′�n

〈ψn�q|J γ,orb
α |ψn′�q〉〈ψn′�q|vβ|ψn�q〉

(εn′�q − εn�q)2 − (iδ)2

⎞⎟⎟⎟⎟⎟⎠, (9)

where the velocity operator vα in the Berry curvature is re-
placed by the orbital current operator J γ,orb

α = 1
2 {vα, L

γ} =
1
2 (vαLγ + Lγvα), and (α, β, γ) are Cartesian indices (x, y, z).
The orbital angular momentum operator Lγ = −(�/gLμB)mγ,
where gL = 1 is the Landé g-factor for the orbital angular
momentum, and μB =

e�
2me

is the Bohr-magneton. Notice that
Lγ is defined in terms of the orbital magnetic moment and
therefore generally differs from the canonical orbital angu-
lar momentum operator (�̂r × �̂p)γ, the generator of rotations

with quantized eigenvalues. It is also important to empha-
size that the orbital magnetic moment [see Eq. (7)] in the
present gapped graphene model originates from the intersite
circulation current [35–38], the intrasite contribution being
zero due to the assumed s-like localized orbital basis of our
tight-binding model, discussed later in Eq. (16). This is in con-
trast to the previous studies of OHE on multiorbital systems
[14–17], where the orbital magnetic moment develops from
the intrasite circulation current at each atom. The parameter δ
in Eq. (9) represents the finite lifetime broadening that takes
into account the impurity scattering effect [39]. For simplicity,
we assume δ = 0 here. The lifetime broadening, however,
plays an important role in the metallic limit Δ→ 0, which we
discuss later.

Since for the gapped graphene, only the z-component of
the orbital magnetic moment is nonzero [see Eq. (7)], it is
easy to see from Eqs. (8) and (9) that the relevant component
of the orbital Hall conductivity is σz,orb

xy = −σz,orb
yx . Now, as

shown in Eq. (7), the orbital magnetic moment operator is
diagonal in the valence (ψ−) and the conduction (ψ+) band
representation, i.e., the interband matrix elements of the or-
bital magnetic moment operator 〈ψ−|�̂m|ψ+〉 = 〈ψ+|�̂m|ψ−〉 = 0,
and only the intraband matrix elements have nonzero val-
ues, viz., 〈ψ−|�̂m|ψ−〉 = mz

v(�q) and 〈ψ+|�̂m|ψ+〉 = mz
c(�q), where

mz
v(�q) = mz

c(�q) = ν e�
2m∗

1
(1+v2

F q2/Δ2)
, as already discussed above.

The same is true for the orbital angular momentum, as the or-
bital angular momentum and the orbital moment differ only by
a constant factor. This essentially simplifies the orbital current
operator, the matrix elements of which may be written as

(J z,orb
α

)
nn′ = −

�

2gLμB
〈ψn�q|(v̂αm̂z + m̂zv̂α)|ψn′�q〉

= − �

2gLμB

⎡⎢⎢⎢⎢⎣∑
m

〈ψn�q|m̂z|ψm�q〉〈ψm�q|v̂α|ψn′�q〉

+
∑

m

〈ψn�q|v̂α|ψm�q〉〈ψm�q|m̂z|ψn′�q〉
⎤⎥⎥⎥⎥⎦

= − �

2gLμB

∑
m

[(m̂z)nm(v̂α)mn′ + (v̂α)nm(m̂z)mn′ ]

(10)

= − �

2gLμB
[mz

n(�q) + mz
n′ (�q)]〈ψn�q|vα|ψn′�q〉. (11)

Notice that while Eq. (10) is true in general, Eq. (11) is
specific to the Hamiltonian of Eq. (1), as in obtaining the last
equality, we have used the fact that for this model (m̂z)nm =

〈ψn�q|m̂z|ψm�q〉 = mz
nδnm, where mz

n = 〈ψn�q|m̂z|ψn�q〉 is the orbital
moment for the eigenstate ψn�q of the Hamiltonian (1). Here
n = ± correspond to the conduction and valence bands, re-
spectively, and α represents the Cartesian directions x, y. In
general, the magnetic moment operator does have off-diagonal
elements, which means that Eq. (10), rather than Eq. (11),
should be used to calculate the OHE. In the following, we
focus on the simple model of Eq. (1).

Using Eqs. (9) and (11), it is easy to see that the orbital
Berry curvature for the valence band of the valley model has
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the simple analytical form

Ωz,orb
xy (�q) = − 2�2

gLμB
Im

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(
mz

v + mz
c

)
[〈ψ−|vx|ψ+〉〈ψ+|vy|ψ−〉]

4ε2
q

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

1
2gLμB

[
mz

v(�q) + mz
c(�q)

]
Ωz

v(�q)

=
1

gLμB
mz

v(�q)Ωz
v(�q), (12)

whereΩz
v(�q) = −2�2Im( 〈ψ−|vx |ψ+〉〈ψ+ |vy |ψ−〉

4ε2
q

) = − νv
2
FΔ

2ε3
q

is the Berry

curvature for the valence band. This is one of the central
results of the present work. While physically it describes the
flow of the electrons, carrying the orbital angular momentum,
due to the anomalous velocity governed by the Berry curva-
ture, it also provides important insight into the symmetry of
the orbital Berry curvature. As we can clearly see from this
equation, the orbital Berry curvatures at the two valleys not
only have the same magnitude, but they also have the same
sign, as both mz

v and Ωz
v change sign at the two valleys. As a

result, the BZ integration of the orbital Berry curvature gives
a nonzero contribution to the valley orbital Hall conductivity,
which is given by

σz,orb
xy =

eΔ3

2(2π)2

(me

m∗

) ∫
BZ

v2
F(

Δ2 + v2
Fq2

)5/2
d2q. (13)

An analytical result is obtained by assuming circular Fermi
surfaces of radius qh centered at the valley points, where qh

is defined by the Fermi energy EF , viz., EF = ±
√
Δ2 + v2

Fq2
h.

Note that qh = 0 corresponds to the case when the Fermi
energy is at the top of the valence band, i.e., within the energy
gap. For any Fermi energy that lies within the valence band,
viz., EF � −Δ, the orbital Hall conductivity is given by

σz,orb
xy ≈ 2eΔ3

(me

m∗

) 1
(2π)2

∫ ∞

qh

v2
F

2
(
Δ2 + v2

Fq2
)5/2

d2q

=
eΔ3

6π

(me

m∗

) 1(
Δ2 + v2

Fq2
h

)3/2

=
e

2π

(
mev

2
F

3�2Δ

)
Δ3

(
Δ2 + v2

Fq2
h

)3/2
. (14)

Here, the factor of 2 in the numerator takes care of the
contributions for both valleys, K,K′ points, which are equal
in magnitude. Note that the conductivity is linear in v2

F/Δ,
indicating that the magnitude of the effect may be tuned by
changing the energy gap of the system. Also, it is clear from
Eq. (14) that the valley orbital Hall conductivity can occur
even without the spin-orbit coupling since there is no spin-
orbit coupling in our model.

Following the same procedure as above, and also consider-
ing the conduction bands, it is straightforward to see that the
result for the orbital Hall conductivity in Eq. (14) is also true if
the Fermi energy is inside the conduction band, i.e, EF � Δ.
Therefore, Eq. (14) represents the orbital Hall conductivity
for the gapped graphene Hamiltonian, Eq. (1), for any arbi-
trary Fermi level. It is interesting to note that the orbital Hall
conductivity has a particle-hole symmetry, as evident from

the q2
h dependence of σz,orb

xy in Eq. (14). The conductivity is
maximum when the Fermi level is within the energy gap (qh =

0), where it attains the value σz,orb
xy (0) = e

6π ( me

m∗ ), and then falls
off as EF shifts on either side of the energy spectrum. Notice
that, unlike the valley Hall conductivity, which is quantized to
the value e2/h, independent of Δ, when the Fermi energy is
within the energy gap [9], the orbital Hall conductivity does
depend on the energy gap Δ through the effective mass, which
enters the expression of the magnetic moment.

III. TWO-SUBLATTICE TIGHT-BINDING MODEL

The analytical results for the valley orbital Hall effect,
discussed above, provide several important insights into the
effect. As shown above, in contrast to the valley Hall effect
where the two valley contributions are equal and opposite, the
two valleys contribute equally to the VOHE, both in magni-
tude and sign, which allows us to define the valley orbital
Hall current over the entire BZ of the system and not just in
the vicinity of the two valleys. To demonstrate this crucial
distinction of the VOHE from the valley Hall effect, it is
instructive to work out the VOHE for a lattice model, which
gives access to the wave functions over the entire BZ and not
just around the valley points as in Eq. (1).

We start by constructing the tight-binding model for
a honeycomb lattice, defined by the lattice vectors �a1 =

(a/2)(−
√

3î + 3 ĵ) and �a2 = (a/2)(
√

3î + 3 ĵ), with two atoms
A and B at (0,0) and (0,−a), respectively. For simplicity,
we have considered only hopping t between the nearest-
neighbor (NN) atoms, connected by the three vectors �δ1 =

(a/2)(−
√

3î + ĵ), �δ2 = (a/2)(
√

3î + ĵ), and �δ3 = −a ĵ. The on-
site energies of A and B atoms are considered to be different,
viz. ±Δ, which breaks I symmetry and gives us a gapped
spectrum. The resulting tight-binding Hamiltonian is

H(�k) =
∑
�k,α,β

ĉ†
�kα

Hα,β(�k)ĉ†
�kβ
, (15)

where

Hα,β(�k) =

[
Δ f (�k)
f ∗(k) −Δ

]
, (16)

with f (�k) = t[1 + 2 cos(
√

3kxa/2) exp(i3kya/2)].
The energy eigenvalues of the Hamiltonian (16) are

ε±(�k) = ±
√
Δ2 + | f (�k)|2, (17)

where ± correspond to the conduction (+) and the valence
(−) bands of gapped graphene, as shown in Fig. 2(a). No-
tice that expanding the Hamiltonian H(�k) around the valley
points K(4π/3

√
3a, 0) and K′(−4π/3

√
3a, 0), and defining

vF = −3ta/2, we can immediately recover the valley model,
Eq. (1), discussed in the previous section.

We now proceed to compute the valley orbital Hall effect
for the two-sublattice model (16). Similar to the continuum
model, we start by calculating the matrix elements of the
orbital magnetic moment operator, which is given by

(�̂m)nn′ =
e

2�
Im[〈∂�kun(�k)| × H(�k) |∂�kun′ (�k)〉]

+
e

4�
[εn(�k) + εn′ (�k)] �̂Ωnn′ . (18)
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FIG. 2. (a) The band structure of gapped graphene [see Eq. (17)]
for different values of the parameter Δ that determines the energy
gap. (b) The corresponding valley orbital Hall conductivity (VOHC),
shown as a function of the Fermi energy. The magnitude of the
VOHC is maximum when the Fermi energy lies within the gap. The
dependence of the VOHC on the parameter Δ is also apparent from
this plot. The typical values of the chosen parameters are t = 2.8 eV
and a = 1.42 Å.

Here, the matrix element of the Berry curvature �̂Ωnn′ =

−Im[〈∂�kun(�k)| × |∂�kun′ (�k)〉]. Using the following identity for

the �k derivative of the Bloch bands:

|∂�kun(�k)〉 =
∑
n′�n

〈un′ (�k)|∂�kH(�k)|un(�k)〉
(εn′ − εn)

|un′ (�k)〉 , (19)

and recalling that the eigenstates |u±(�k)〉 of the Hamiltonian
H(�k) are orthogonal to each other, i.e., 〈u+(�k)|u−(�k)〉 = 0, after
some straightforward algebra, we can see from Eq. (18) that
the off-diagonal elements (n � n′) of the orbital moment op-
erator vanish for the Hamiltonian (16). The diagonal elements
are, however, nonzero, and for n = n′ we recover the well-
known formula [35,36] for the intrinsic orbital moment �mn

for the nth band, as given below,

�mn(�k) =
e

2�
Im 〈∂�kun(�k)| × [H(�k) − εn(�k)] |∂�kun(�k)〉 . (20)

Explicit calculation shows that the orbital magnetic moment
has only a nonzero component along the z-direction, mz

n,
which again has the same magnitude for both the valence and
the conduction bands of the Hamiltonian (16), viz.,

mz
v(�k) = mz

c(�k) = − e
4�

3
√

3a2t2Δ

[Δ2 + | f (k)|2]
sin(
√

3kxa). (21)

The momentum space distribution of mz
v is depicted in the

inset of Fig. 3(c), showing that the magnitude of the orbital
moment is maximum at the valley points and it has opposite
directions at the two valleys, in agreement with the valley
model. Using the orbital magnetic moment operator mz, and
the velocity operators for the Hamiltonian (16),

vx = �
−1

[
0 ∂kx f (�k)

∂kx f �(�k) 0

]
,

vy = �
−1

[
0 ∂ky f (�k)

∂ky f �(�k) 0

]
, (22)

FIG. 3. (a) The Berry curvature, Eq. (24), and (b) the orbital
Berry curvature, Eq. (23), both in units of Å2, for the valence band of
the Hamiltonian (16) along a high-symmetry k-path. While the Berry
curvature has opposite signs at K,K′ valleys, the orbital Berry curva-
tures at different valleys have the same sign. (c) The variation of the
valley orbital Hall conductivity (VOHC) in units of emev

2
F(�2Δ)−1 as

a function of t2/Δ, where vF ∝ t. The dashed line corresponds to the
analytical result, Eq. (14), at qh = 0 for the valley model, indicating
agreement between the two models in the large t2/Δ regime, where
VOHC varies linearly with t2/Δ. The inset shows the distribution of
the orbital moment (in units of e/�) in the BZ. The parameters are
the same as stated in the caption of Fig. 2, except in (c), where the
hopping t is varied keeping Δ fixed at 0.25 eV to get the variation
of t2/Δ. For these typical chosen parameters, Berry curvature, orbital
moment, and orbital Berry curvature are localized around the valley
points.

where ∂kx f (�k) = −
√

3ta sin(
√

3kxa/2) exp(i3kya/2) and
∂ky f (�k) = i3ta cos(

√
3kxa/2) exp(i3kya/2), we can compute

the orbital Berry curvature using Eq. (9). The result for the
valence band is

Ωz,orb
xy (�k) = − 2me

gL�
2

(3
√

3a2t2Δ)2

16
sin2(

√
3kxa)

[Δ2 + | f (�k)|2]5/2
. (23)

Note that the orbital Berry curvature is an even function of kx,
in contrast to the Berry curvature, which is an odd function.
The explicit analytical expression for the Berry curvature for
the valence band of the tight-binding model (16) is given by

Ωz
v(�k) =

3
√

3a2t2Δ sin(
√

3kxa)

4[Δ2 + | f (�k)|2]3/2
. (24)

Combining Eqs. (21), (23), and (24), we can again see that the
orbital Berry curvature is nothing but the product of the orbital
moment and the Berry curvature,

Ωz,orb
xy (�k) =

1
gLμB

mz
v(�k)Ωz

v(�k). (25)

Both the Berry curvature and the orbital Berry curvature
are shown in Figs. 3(a) and 3(b), respectively, along a high-
symmetry k-path. As expected from the analytical results, the
orbital Berry curvature has the same sign at the two valleys, in
contrast to the Berry curvature, which changes sign at the two
valleys. The orbital Berry curvature being an even function in
�k, the sum of the orbital Berry curvature gives a nonzero value,
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and the conductivity reads

σz,orb
xy =

2mee
gL�

2(2π)2

∫
BZ

(3
√

3a2t2Δ)2

16
sin2(

√
3kxa)

[Δ2 + | f (�k)|2]5/2
d2k,

(26)

where the integration is over the occupied part of the BZ. The
numerical value of the integration is shown in Fig. 2(b) as well
as in Fig. 3(c). Figure 2(b) depicts the variation of the valley
orbital Hall conductivity as a function of the Fermi energy
(EF). As we can see from this figure, the valley orbital Hall
conductivity is maximum when EF lies within the gap, while
the conductivity falls off as EF moves into the valence or
the conduction band, in agreement with the continuum model
result Eq. (14). Note that the magnitude of the effect decreases
with Δ, which is also expected from the 1/Δ dependence of the
orbital Hall conductivity [see Eq. (14)].

The variation of the valley orbital Hall conductivity in units
of emev

2
F(�2Δ)−1, for the case when the Fermi energy is within

the energy gap, is shown in Fig. 3(c) as a function of t2/Δ. As
seen from Fig. 3(c), the scaled valley orbital Hall conductivity
[as it is in units of emev

2
F(�2Δ)−1, where vF ∝ t] increases

for small t2/Δ and then quickly saturates to a constant value,
indicating that in the large t2/Δ regime, valley orbital Hall
conductivity is linear in t2/Δ. A similar linear t2/Δ depen-
dence can also be seen in Eq. (14) for the valley model with
qh = 0, as well as in Fig. 3(c), showing that the scaled valley
orbital Hall conductivity [σz,orb

xy /emev
2
F(�2Δ)−1] is a constant

1/6π ≈ 0.053 for all values of t2/Δ.
We note that for large values of t2/Δ, the orbital Hall

conductivity, computed from the two-sublattice model, agrees
well with the valley model. This can be understood from the
fact that in the small Δ regime, the orbital Berry curvature
is concentrated around the valley points, and therefore in
this regime the lattice model essentially reduces to the valley
model.

We now analyze the contributions of different parts of the
occupied BZ to the total orbital Hall conductivity. It is easy
to see from Fig. 3(b) that the orbital Berry curvature has a
significant magnitude only around the valley points, while it is
almost zero everywhere else, hence we can refer to the effect
as the “valley orbital Hall effect.” The strong valley contri-
butions to the orbital Hall conductivity may be traced back
to the intrinsic orbital magnetic moment mz in k-space, which,
together with the Berry curvature, constitutes the orbital Berry
curvature at each k point, as in Eqs. (12) and (25). While the
individual sums of mz or the Berry curvature over the entire
occupied BZ vanish, it is this new quantity, the orbital Berry
curvature, that has a nonzero value over the occupied BZ.

It is also important to appreciate that the simple analytical
form in Eqs. (12) and (25), expressing the orbital Berry cur-
vature as the product of orbital moment and Berry curvature,
is strictly a characteristic of the gapped graphene model and
may not be the case in general. In other words, the orbital
current operator may not have, in general, the simple form as
in Eq. (11), where only the intraband matrix elements of the
orbital magnetic moment operator contribute. In general, the
interband matrix elements may also appear, and the orbital
Berry curvature should be explicitly computed from Eq. (9)
using the general form of the orbital current operator, Eq. (10).

In fact, for centrosymmetric systems where the intraband
matrix elements of the orbital angular momentum operator
vanish, it is the interband matrix elements of the orbital an-
gular momentum operator that give rise to the nonzero orbital
angular momentum current, resulting in an OHE even in the
presence of inversion symmetry [17,40]. Conversely, for a
noncentrosymmetric system [23,26], the orbital Hall conduc-
tivity may not be so tightly connected to the valley points
as it is in the gapped graphene. This is precisely because,
in general, all the momentum points in the BZ contribute to
the OHE, in contrast to the VHE, which only considers the
contributions from the valley points. Notice that the intra-
and interband contributions to the orbital moment are differ-
ent from the previously discussed intra- and intersite orbital
magnetic moment.

We now consider the Δ→ 0 limit, i.e., when the Dirac
bands touch at the valley points and the Fermi energy lies
exactly at the point of contact between the bands. In this limit,
the orbital moment vanishes everywhere in the BZ, except at
the valley points, where the orbital moment as well as the
orbital Berry curvature diverge. A similar divergence is also
observed in the diverging orbital diamagnetism of graphene.
However, in the metallic limit, disorder may remove the di-
vergence by shifting the Fermi energy away from the crossing
point or by lifting altogether the degeneracy at the band cross-
ing point. In spite of these difficulties, recent experiments
were able to observe a diverging orbital diamagnetism in
clean graphene monolayers [41]. This gives us reason to hope
that a similar divergence may be observed in experimental
measurements of the VOHE as well. Such a diverging feature
is absent in the valley Hall conductivity in the Δ→ 0 limit.

IV. SUMMARY AND DISCUSSION

To summarize, we have suggested that a more physical
description of the valley Hall effect in systems like “gapped
graphene” can be given in terms of the orbital Hall effect.
Thus, instead of a fictitious “valley current,” which has no
physical operator associated with it, and requires the introduc-
tion of arbitrary demarcations in momentum space, we talk of
a current of orbital magnetic moment, which has a physical
operator associated with it and can be computed uniformly
and unambiguously over the entire momentum space. To be
sure, the OHE is a more general concept than the VHE,
since a current of orbital magnetic moment can exist even
in centrosymmetric systems where it is not associated with
valley degrees of freedom. In the broken inversion symmetry
systems considered here, the OHE subsumes the VHE: it is to
emphasize this tight connection that we have chosen to call it
the valley-orbital Hall effect.

Nevertheless, the view proposed here also has implications
for the understanding of the OHE in certain inversion-
symmetric systems, e.g., the bilayer of transition-metal
dichalcogenide with “hidden” broken inversion symmetry of
the individual layers, studied recently by Cysne et al. in
Ref. [18]. This system has inversion symmetry and therefore
does not support a VHE. The orbital Hall conductivity of the
bilayer, when the Fermi level is in the band gap, turns out to be
essentially twice the value of the single layer. But the single
layer has broken inversion symmetry and might therefore be
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suspected of supporting a VHE, which would contribute to
the magnetization current in addition to the OHE [18]. In the
present view, however, the VHE of the single layer does not
produce any additional orbital magnetization current. It is the
same orbital magnetization current that is generated by the
OHE, which is, in fact, the physical effect. Then, combining
the two layers simply doubles the OHE (as long as the Fermi
level lies within the energy gap, suppressing the effect of
interlayer hopping).

On a mathematical level, two different quantities underlie
the VHE and the VOHE, viz., the Berry curvature for the
VHE and the “orbital Berry curvature” for the VOHE. We
have shown that for both the continuum model as well as the
two-sublattice model of gapped graphene, the orbital Berry
curvature acquires a simple form, i.e., it is defined by the prod-
uct of the magnetic moment and the Berry curvature. While
the Berry curvature has opposite signs at different valleys,
the orbital Berry curvature has the same sign, simply because
both the magnetic moment and the Berry curvature change
sign in going from one valley to the other. An interesting
consequence of this is the possibility of getting a finite value
by integrating the orbital Berry curvature over the entire BZ
without any arbitrary assumptions, whereas the integral of the
Berry curvature would vanish.

Our calculation shows that the valley orbital Hall conduc-
tivity varies as t2/Δ, indicating the possibility to tune the
effect by changing the energy gap, which may be achieved
by growing graphene on different substrates. Furthermore, the
Fermi energy can also control the magnitude of the effect.
A maximum conductivity may be achieved if the Fermi en-
ergy falls within the energy gap. Our work emphasizes the
important role of broken I symmetry in the VOHE in gapped
graphene.

Experimentally, VOHE can be detected by measuring the
accumulations of orbital magnetic moment at the edges of
the sample via magneto-optical Kerr rotation [42]. Angle-
resolved photoemission measurements [43,44] can also be
used to probe the valley orbital moments.
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