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Quantum kinetics of the magnetophotogalvanic effect
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Using the Keldysh technique, we derive a set of quasiclassical equations for Bloch electrons in noncentrosym-
metric crystals upon excitation with quasimonochromatic radiation in the presence of external electrical and
magnetic fields. These equations are the analog to the semiconductor-Bloch equations for the dynamics of
electrons including the photogalvanic effect (PGE), in particular the shift mechanism. The shift PGE was recently
identified as showing promise for the development of new photovoltaic materials. In addition, our theory may be
useful to investigate the interplay between breaking time-reversal symmetry and topological properties as well
as the analysis of recent local excitation experiments in nanophotonics. Explicit results for the photogalvanic
tensors are presented for linear and circular polarized light and a magnetic field. In addition, we disprove existing
statements that the shift-photogalvanic effect does not contribute to the photo-Hall current.
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I. INTRODUCTION

In noncentrosymmetric crystals a direct current can be
induced upon the absorption of light under homogeneous con-
ditions. This phenomenon was discovered more than 50 years
ago, and it was termed the bulk photovoltaic effect (BPVE)
or the photogalvanic effect (PGE; cf. Sturman and Fridkin
[1]). As a result of two major discoveries the PGE recently
gained an unprecedent boost: the discovery of ferroelectric
perovskite materials [2] in 2009 as potentially relevant so-
lar cell materials and the discovery of Weyl semimetals in
2015 with topologically protected states [3]. The underly-
ing physics is intimately connected with the so-called shift
mechanism (as described later). The aim of this paper is to
work out a semiclassical theory for the PGE which is suited
for numerical investigations including external electrical and
magnetic fields.

The PGE depends on the properties of the material, applied
fields, and the properties of the absorbed light. At first order
in the light intensity and in an external magnetic field with
induction B, symmetry requires the following representation
for the radiation-induced direct current (no static electrical
field, neglecting photon momentum):

jα = I
[
PS

αμν (ω) + RS
αβμν (ω)Bβ

]
Re(e∗

μeν )

+ I
[
PA

αμν (ω) + RA
αβμν (ω)Bβ

]
Im(e∗

μeν ), (1)

where I is (local) intensity, ω is frequency, and eμ is the
(Cartesian) components of the (complex) unit polarization
vector e of the light. Indices α, β, μ, ν ∈ {x, y, z} indicate
Cartesian components; an asterisk indicates complex conju-
gation. PS and PA denote polar tensors of rank 3, whereas RS

and RA are of rank 4, with axial symmetry. Superscripts S and
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A specify symmetry and antisymmetry with respect to polar-
ization indices μ, ν, and their contributions are usually termed
“linear” and “circular,” respectively [4]. PS is analogous to
the piezotensor, whereas PA is equivalent to the (rank-2 axial)
gyrotensor in gyrotropic media, and RA is equivalent to a polar
tensor of rank 3 (see Birss [5]).

In the spirit of nonlinear optics [6], the photogalvanic (PG)
current results from a quadratic term in the current-field re-
lation. Standard second-order quantum mechanical response
theory [7] revealed two different origins of the PGE: a “bal-
listic” (kinetic) mechanism and a “shift” mechanism. The
ballistic PGE results from asymmetric optical transitions in
cooperation with impurities or phonon scattering, which is
described by the diagonal matrix elements of the density op-
erator (with respect to a Bloch basis). The shift PGE, on the
other hand, is a band structure property and results from the
nondiagonal elements. It is intimately related to the Bloch rep-
resentation of the position operator [8], which leads to a shift
of Bloch wave packets in real space upon optical transitions
[9–11]. The circular PGE (PA term) is invariant under time
reversal, as opposed to the linear PGE (PS term), in which an
external magnetic field breaks time reversal explicitly.

For linear polarized light, the shift-current contribution can
be represented as (PS term, a reformulation of Eq. (19) of
Ref. [9])

jPG = I

h̄ω

e3

4π2 ω m2
0 ε0 c η

∫
( fv,0 − fc,0)

× |〈c, k|e · p|v, k〉|2 scv (e, k)

× δ(Ec(k) − Ev (k) − h̄ω) d3k, (2)

scv (e, k) = Xvv (k) − Xcc(k) + ∇k
cv (e, k), (3)

Xmn(k) =
∫

i u∗
mk(r)∇kunk(r) d3r, (4)
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where 
cv (e, k) is defined via the expression

〈c, k|e · p|v, k〉 = i |〈c, k|e · p|v, k〉| ei 
cv (e,k). (5)

|n, k〉 denotes the Bloch states of (conduction and valence)
bands [12] n = c, v at wave vector k, En(k) is the band energy,
and unk(r) = (r|n, k) is the lattice-periodic part of the Bloch
function 〈r|n, k〉. fn,0(k) is the equilibrium Fermi function,
m0 is the free-electron mass, and e is the elementary charge.
e (real) denotes the polarization vector, and I is the local
intensity of the radiation at frequency ω. η is the refractive
index of the material, and integrals over r and k extend over
the crystal unit cell and the Brillouin zone, respectively. Note
that the shift current does not depend on the carrier mobility.

By construction, the shift vector scv (e, k) is invariant with
respect to phase transformations of the Bloch states; however,
it depends on the polarization of the light, and therefore, it
is not a genuine property of the material (in contrast to PS).
Second-order quantum response theory was fully exploited
by Sipe and collaborators [13], who developed a nowadays
widely used approach to study nonlinear optical phenom-
ena on a microscopic level, such as second-order-harmonic
generation and the shift PGE. Results (3)–(5) are valid for
only linear polarization, and they are implicitly contained in
Ref. [13] [Eq. (58) and below, linear polarization of arbitrary
direction]. The shift distance is comparable to the crystal unit
cell [14,15] and may be even larger (e.g., CdSe: 0.4 nm, GaP:
0.9 nm).

Up to 2006 (to the best of our knowledge) there was
only one band structure evaluation [14] of Eq. (2) which
was performed for n-doped GaP. This material has been used
as a fast and robust IR monitor [16]. First-principles band
structure calculations were performed by Nastos and Sipe
[15,17] for GaAs and GaP below and above the band gap
and for CdSe and CdS. Young and Rappe [18] confirmed
the shift mechanism as given by Eqs. (2)–(4) for some “old
materials” like BaTiO3 and KNbO3 and claimed its key role
in the high efficiency of the new ferroelectrics in solar energy
conversion of up to 23% (see, e.g., Refs. [19–25]). Recent
numerical studies have discovered new groups of promising
materials with large shift contributions up to 20 times higher
than previously known [26], e.g., the quasi-two-dimensional
systems GeS [27] and MoS2 [28], chiral materials [29], and
materials using strain engineering [30].

It became obvious that the shift vector equation (3) is
a Berry connection which provides a sensitive tool to ana-
lyze the topological nature of quantum states in the recently
discovered Weyl semimetals (see, e.g., Refs. [31–34]). A re-
cent revisit of the second-order optical response by Holder
et al. [35] identified three different mechanisms to gener-
ate a dc current: the Berry curvature, a term closely related
to the quantum metric, and the diabatic motion. Berry con-
nections have also been recognized as relevant ingredients
for the quasiclassical dynamics of Bloch electrons [36] and
the anomalous Hall effect [37]. Other interesting phenomena
and applications with relation to the shift mechanism are,
e.g., (i) far infrared detectors in the form of semiconductor
heterostructures [38], (ii) the shift vector as the geometrical
origin of beam shifts [39], (iii) nanotubes [40], and (iv) twisted
graphene bilayers [41].

By using the Keldysh technique we derive a set of
quasiclassical equations for the PGE (Sec. II) upon (inho-
mogeneous) excitation and including external electrical and
magnetic fields. Our theory relies on the following assump-
tions: (i) electron Bloch states are a relevant basis, (ii)
scattering and recombination are treated on a phenomeno-
logical level, and (iii) electron-hole Coulomb interaction is
neglected. Explicit results for the PG tensors are worked out in
Sec. III. Section IV gives a summary and discussion, whereas
Appendixes A–C contain technical details and an application
to GaP.

II. QUANTUM KINETICS

The quantum kinetic theory of the PGE is based on a Her-
mitian matrix function f with elements fmn(k, R, T ) which
describes the single-particle states of the crystal; m and n
denote band indices. The arguments of f are, besides the wave
vector k, the position vector R and the time T . This theory
is a generalization of the classical Boltzmann description; it
includes, however, diagonal (local electron concentrations) as
well as nondiagonal (nondissipative, coherent) contributions
of the density operator.

The basic equations for f are derived by using the Keldysh
technique as formulated by Rammer and Smith [42]. This
technique provides a consistent way to construct a quasiclas-
sical description at finite temperatures; it uses solely gauge
invariant quantities. External fields can easily be included, and
applications are much simpler to work out than a full quantum
mechanical treatment as in Eqs. (2)–(4).

A. Keldysh formulation

It is algebraically favorable to use a representation in which
all Keldysh matrices have the Jordan normal form (Ref. [42],
Sec. II B). For example the Green’s function Ĝ reads

Ĝ =
[

GR GK

0 GA

]
.

GR and GA denote the usual retarded and advanced Green’s
functions, and GK is the Keldysh function, which plays a
crucial role in this formulation,

GR(R, T ; r, t ) = +θ (t ){G>(R, T ; r, t ) − G<(R, T ; r, t )},
GA(R, T ; r, t ) = −θ (−t ){G>(R, T ; r, t ) − G<(R, T ; r, t )},
GK (R, T ; r, t ) = G>(R, T ; r, t ) + G<(R, T ; r, t ).

All these functions are special combinations of the Kadanoff-
Baym functions G< and G>(Ref. [42], Secs. II A and II B, and
[43]),

G<(R, T ; r, t ) = +i〈〈ψ+(r2, t2) ψ (r1, t1)〉〉, (6)

G>(R, T ; r, t ) = −i〈〈ψ (r1, t1) ψ+(r2, t2)〉〉. (7)

ψ (r1, t1) and ψ+(r2, t2) are the electron field operators in
the Heisenberg picture. R = (r1 + r2)/2 and T = (t1 + t2)/2
denote a “center-of-mass” coordinate and a “mean” time,
respectively. In addition relative variables r = r1 − r2 and
t = t1 − t2 will be needed. 〈〈· · · 〉〉 corresponds to the grand-
canonical ensemble average (at finite temperatures).
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Our starting point is—as laid out by Sipe and Shkreptii
[13]—an independent particle description with the Hamilto-
nian

H (r, p, t ) = (p − qA)2

2 m0
+ V (r) + q
. (8)

p denotes the canonical momentum, V (r) is the periodic
crystal potential, and m0 and q are the mass and charge
(q = −e) of the electrons. A = A(r, t ) and 
 = 
(r, t ) are
the vector and scalar potentials of the radiation and external
(classical) electromagnetic field, A = Arad + Acl, divA = 0.
In the following, we assume that the energies En(k) and Bloch
states |n, k〉 of the electrons are known from a band structure
calculation (A = 
 = 0).

The photogalvanic effect is independent of photon mo-
mentum [see Eq. (1)]. Therefore, the magnetic field of the
radiation can be neglected; that is, Arad(r, t ) can be approx-
imated by a position-independent field (equivalent to the
electrical dipole approximation), Arad(t ), 
rad = 0. Regroup-
ing the remaining terms in Eq. (8), we obtain

H (r, p, t ) = Hcl(r, p, t ) + Hint (r, p, t ), (9)

Hcl(r, p, t ) = (p − qAcl )2

2 m0
+ V (r) + q
cl, (10)

Hint (r, p, t ) = − q

m0
[p − qAcl(r, t )]Arad(t ). (11)

Radiation will be treated in terms of a photon propagator;
additionally, Acl enters as a vertex operator.

In thermal equilibrium (A = 
 = 0) the Green’s functions
(6) and (7) can be represented in terms of Bloch functions of
Eq. (8) (A = 
 = 0),

Ĝ0(R; r, t ) =
∑
n,k

〈
R + r

2

∣∣∣∣n, k
〉

ĝn,0(k, t )

〈
n, k

∣∣∣∣R − r
2

〉
,

(12)
where

ĝn,0 =
[−i θ (t ) e−i Ent −i[1 − 2 fn,0(k)] e−i Ent

0 i θ (−t ) e−i Ent

]
. (13)

fn,0(k) denotes the Fermi function. Here and in the following,
units are used where h̄ = 1.

The radiation field will be treated as an external quasiclas-
sical field with no internal dynamics; that is, there exists only a
contribution to the Keldysh component of the photon Green’s
function D̂,

DK
μν (t ) = −i

I

ω2ε0cη
(eμe∗

ν e−iωt + c.c.). (14)

For a derivation, see Appendix A.
The equation of motion for Ĝ is identical to the Dyson

equation,

Ĝ−1
cl ⊗ Ĝ = δ(r)δ(t )1̂ + �̂ ⊗ Ĝ, (15)

Ĝ−1
cl = [i ∂t1 − Hcl(r1, p1, t1)] 1̂. (16)

⊗ means matrix multiplication, Hcl stands for Eq. (10), and �̂

denotes the electron-photon self-energy, which is calculated
using D̂ from Eq. (14), with − q

m0
(p − qAcl ) being the vertex

operator (Ref. [42], Sec. II C).

B. Kinetic equations

In order to set up a quasiclassical description the following
(standard) approximation for the Green’s function with inclu-
sion of the external electromagnetic field is made [44]:

Ĝ(R, T ; r, t ) =
∑
n,n′,k

〈
R + r

2

∣∣∣∣n, k
〉

ĝnn′ (R, T ; k, t )

×
〈
n′, k

∣∣∣∣R − r
2

〉
eiq[rAcl (R,T )−t
cl (R,T )],

(17)

where

ĝnn′ (R, T ; k, t ) =
[

gR
nn′ gK

nn′

0 gA
nn′

]
.

Here, I (R, T ), Acl(R, T ) [B=∇×Acl(R, T )] and 
cl(R, T )
[E = −∂T Acl(R, T ) − ∇
cl(R, T )] denote classical macro-
scopic fields which are assumed to be constant on atomic
scales so that Bloch functions are still a suitable basis and will
be noticeable only in ĝnn′ . The phase factor eiqrAcl (R,T ) takes
into account the phase shift induced by a vector potential Acl

along the direct path of the particle from r2 to r1 and reduces
the contribution of the diamagnetic part qAcl in the vertex
operator − q

m0
(p − qAcl ). Likewise, e−iqt
cl (R,T ) collects the

local shifts of the energy levels due to an electrical potential

cl(R, T ).

Observable quantities such as the charge current density
jq are calculated with the aid of the Keldysh component
〈GK (R, t ; r, t )〉, averaged over the volume of an elementary
cell, of Eq. (17):

jq(R, T ) = −i
q

m0

(
1

i
∇r − qAcl

)
〈GK (R, T ; r, t )〉|r=0,t=0,

where the spin factor of 2 is already included here. Using the
definition fnn′ (R, T ; k) = 1

2i gK
nn′ (R, T ; k, t = 0), the charge

current density becomes, in terms of f ,

jq(R, T ) = 2q

m0V

∑
n,n′,k

fnn′ (R, T, k)〈n′, k|p|n, k〉. (18)

V is the volume of the crystal.
We are looking for the current contribution which is linear

in the intensity (quadratic in the electric field); therefore, only
the “turtle” photon self-energy diagram [45] is needed. For the
Feynman rules see Ref. [42] [Eqs. (2.39)–(2.43)]. Moreover,
only the anti-Hermitian parts of the self-energies �̂ (pho-
tons and phonons) will be taken into account because these
describe irreversible processes that occur as a consequence
of the absorption processes. Hermitian parts of �̂, on the
contrary, describe band-renormalization effects which can be
safely neglected [46].

The basic equations for fnn′ are obtained from the Dyson
equation by subtracting its adjoint, [· · · = · · · ], and perform-
ing the integral transformation (Ref. [42], Sec. II E):

−1

2

∫
d3R

∫
d3r

〈
n, k

∣∣∣∣R + r
2

〉〈
R − r

2

∣∣∣∣n′, k
〉

×e−iq[rAcl (R,T )−t
cl (R,T )] [· · · = · · · ].
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R and r integrations extend over a unit cell and the whole crystal, respectively. Eventually, the relative time t is set equal to zero.
As the result, we obtain diagonal elements fn = fnn:

(∂T + qE · ∇k ) fn(R, T ; k) + ∇R · jn(R, T ; k) + qB · [∇k × jn(R, T ; k)] = G(0)
n (R, T ; k) + δG(B)

n (R, T ; k) + In,pn + In,r .

(19)
This is a modified Boltzmann equation for the distribution function fn of band n. The total particle current density jn(R, T ; k) in
the drift and acceleration terms acts as the driving term,

jn(R, T ; k) = 1

2m0

∑
n′

[〈n, k|p|n′, k〉 fn′n(R, T ; k) + H.c.] = vn(k) fn(R, T ; k) + jND
n (R, T ; k). (20)

G(0)
n , δG(B)

n , In,pn, and In,r will be defined below.
In Eq. (20), the particle current density is decomposed in terms of a kinetic and a “nondiagonal” contribution jND

n [see Eq. (26)
below]. The latter corresponds to the particle shift–current density of the state k in the band n and is only different from zero if
absorption of radiation causes an interband transition.

We also obtain nondiagonal elements fnn′ (n �= n′):

i[En(k) − En′ (k)] fnn′ (R, T ; k) = G(0)
nn′ (R, T ; k) + δG(B)

nn′ (R, T ; k) + δG(E)
nn′ (R, T ; k). (21)

These elements are determined by a comparatively simple equation because there is a dominant term [i(En − En′ ) fnn′ ] on the
left side of this equation, in light of which all others (∂T fnn′ , qE · ∇k fnn′ , etc.) can safely be neglected. In order to get a closed
set of equations, the particle current density jn and the generation matrix Gnn′ have still to be specified.

The generation matrix Gnn′ (R, T ; k) consists of the exclusively intensity dependent part G(0)
nn′ with diagonal elements G(0)

n =
G(0)

nn and the parts δG(B)
nn′ and δG(E)

nn′ which depend linearly on B and E, respectively. The latter parts stem from the phase factor in
Eq. (17), and their diagonal elements δG(B)

n and δG(E)
n are all equal to zero [dependence on (R, T ; k) is suppressed]. In addition,

there is a contribution δG(B,dia)
n from the diamagnetic part of the vertex operator to Eq. (19) which is exploited in Appendix B.

In,pn describes the momentum relaxation (e.g., by phonon collisions), and In,r describes thermalization and recombination. As
Gnn′ is a Hermitian matrix, it is conveniently written in the form

Gnn′ (k) = Ḡnn′ (k) + H.c. (22)

There are three contributions to the generation rate Gnn′ :

Ḡ(0)
nn′ (R, T ; k) = I (R, T )

πq2

2 ω2 m2
0 ε0 c η

∑
n1

�=±ω

[ fn14,0(k) − fn′,0(k)] δ[En1 (k) − En′ (k) − �]

×〈n, k|pμ|n1, k〉 〈n1, k|pν |n′, k〉 e∗
μ,� eν,�, (23)

δḠ(B)
nn′ (R, T ; k)

= I (R, T )
πq3

4 ω2 m2
0 ε0 c η

∑
n1,n2

�=±ω

([∇Q1 × ∇Q2]β{[ fn2,0(k + Q2) − fn1,0(k + Q1)]δ[En2 (k + Q2) − En1 (k + Q1) − �]

× (n, k|pμ + kμ|n1, k + Q1) (n1, k + Q1|pν + kν |n2, k + Q2) (n2, k + Q2|n′, k) (1 − δn,n′ )}) Bβ

1

i
e∗
μ,� eν,�, (24)

δḠ(E)
nn′ (R, T ; k) = I (R, T )

πq3

4 ω2 m2
0 ε0 c η

∑
n1

�=±ω

(∇Q,α{[ fn′,0(k + Q) − fn1,0(k + Q)]∂�δ[En1 (k + Q) − En′ (k + Q) + �]

× (n, k|pμ + kμ|n1, k + Q) (n1, k + Q|pν + kν |n′, k)}) Eα

1

i
e∗
μ,� eν,�. (25)

After differentiation, the vectors Q, Q1, and Q2 have to be set to zero. The expressions (n1, k1| · · · |n2, k2) are matrix elements,
which are calculated with respect to the lattice-periodic parts of the Bloch functions, and eμ,ω = eμ and eμ,−ω = e∗

μ are the
components of the complex-valued polarization vector.

jND
n is obtained from Eq. (20) with Ḡ(0)

nn′ from Eq. (23):

jND
n,α (R, T ; k) = 1

m0

∑
m �=n

Im

( 〈n, k|pα|m, k〉 Ḡ(0)
mn(R, T ; k) + Ḡ(0)∗

nm (R, T ; k) 〈m, k|pα|n, k〉∗
Em − En

)
(26)

= I (R, T )
πe2

2 ω2 m3
0 ε0 c η

∑
m �=n,n1
�=±ω

[(
fn1,0 − fn,0

)
δ
(
En1 − En − �

) + (
fn1,0 − fm,0

)
δ
(
En1 − Em − �

)]
(27)
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×
[

Im

( 〈n, k|pα|m, k〉〈m, k|pμ|n1, k〉〈n1, k|pν |n, k〉
Em − En

)
Re(e∗

μ,� eν,�) (28)

+ Re

( 〈n, k|pα|m, k〉〈m, k|pμ|n1, k〉〈n1, k|pν |n, k〉
Em − En

)
Im(e∗

μ,� eν,�)

]
. (29)

The term (28) is an even function of k that contributes to PS , Eq. (32), whereas the odd term (29) does not.

III. DERIVATION OF THE PG TENSORS

As an application of the kinetic theory we verify the result
(2) for PS and give the representations of the other PG tensors
PA, RS , and RA as defined by Eq. (1). The following assump-
tions are made: (i) there is no external electrical field, (ii)
there is external magnetic field B, and the (monochromatic)
radiation intensity I is constant in space and time so that
fnn′ does not depend on (R, T ). Under these assumptions the
kinetic equations (19)–(21) become

n = n′: qB · [∇k × jn(k)] = G(0)
n (k)

− fn(k) − 〈 fn(k)〉E

τn
+ In,r, (30)

n �= n′: i[En(k) − En′ (k)] fnn′ (k)

= G(0)
nn′ (k) + δG(B)

nn′ (k). (31)

In addition, Eqs. (20) and (26)–(29) will be needed. To sim-
plify matters, the collision operator In,pn was replaced within
a relaxation time approximation. 〈 fn(k)〉E denotes the aver-
age of the distribution function over a surface of constant
energy, and τn is the relaxation time for each band n; nu-
merical values are taken from experiment. The operator In,r

which ensures thermalization and recombination is assumed
to be only energy dependent. Obviously, the PG current solely
stems from fnn′ (k) terms which are asymmetric with respect
to k, δ fnn′ (k) = −δ f ∗

nn′ (−k), which in turn originate from
generation terms with δGn(k) = −δGn(−k) and δGnn′ (k) =
δG∗

nn′ (−k). Therefore, only such terms will be considered
when deriving representations for the tensors.

A. Tensor PS

Linearly polarized light and B = 0 are implied in Eqs. (30)
and (31). The relevant contributions of the state function are

n = n′: δ fn = 0,

n �= n′: δ fnn′ = G(0)
nn′ (k)

i[En(k) − En′ (k)]
.

The corresponding PG-current density jPG is determined
from Eq. (26) by summation over all states (including the spin
factor of 2),

jPG = 2q

V

∑
n,k

jND
n (k),

which is performed along the route described in Refs. [9,11].
As a result, we obtain [12]

PS
αμν = e3

4π2 ω2 m2
0 ε0 c η

∫
1.BZ

d3k ( fv,0 − fc,0) δ[Ec(k) − Ev (k) − ω]

×
{

1

2
Im[(∇k,α〈c, k|pν |v, k〉) 〈v, k|pμ|c, k〉 − 〈c, k|pν |v, k〉(∇k,α〈v, k|pμ|c, k〉)]

+ Re[〈c, k|pν |v, k〉 〈v, k|pμ|c, k〉] [Xvv,α − Xcc,α]

}
. (32)

Equation (32) is identical to Eq. (2), as can be checked by decomposing e · p into components.

B. Tensor PA

Circularly polarized light and B = 0 are implied in Eqs. (30) and (31). The relevant contribution of the state function to
determine PA is

n = n′: δ fn = τn δG(0)
n (k), (33)

n �= n′: δ fnn′ = 0. (34)

δG(0)
n (k) is the part of the generation rate G(0)

n (k) given by Eqs. (22) and (23),

δG(0)
n (k) = I

πq2

ω2 m2
0 ε0 c η

∑
n′

�=±ω

[ fn,0(k) − fn′,0(k)] δ[En′ (k) − En(k) − �]

× Im(〈n, k|pμ|n′, k〉 〈n′, k|pν |n, k〉) Im(e∗
μ,� eν,�). (35)
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Insertion of Eqs. (33) and (35) into Eq. (18) leads to

jcirc
α = 2q

V

∑
n=v,c

k

vn,α (k) δ fn(k), (36)

and the tensor element PA
αμν reads

PA
αμν = e3

4π2 ω2 m2
0 ε0 c η

∑
n′,n

�=±ω

∫
1.BZ

d3k[ fn′,0(k) − fn,0(k)] δ[En′ (k) − En(k) − �]

× τn vn,α (k) (δv,n + δc,n) Im(〈n, k|pμ|n′, k〉 〈n′, k|pν |n, k〉) sgn(�). (37)

Performing the sums over �, n and n′, we obtain [12]

PA
αμν = e3

4π2 ω2 m2
0 ε0 c η

∫
1.BZ

d3k[ fv,0(k) − fc,0(k)] δ[Ec(k) − Ev (k) − ω]

× [τc vc,α (k) − τv vv,α (k)] Im(〈v, k|pμ|c, k〉 〈c, k|pν |v, k〉). (38)

In contrast to the linear PGE (PS term) the circular PGE is ballistic as only diagonal elements of the state function contribute
and it depends on the scattering times of the (hot) photogenerated carriers.

C. Tensor RS

Linearly polarized light and B �= 0 are implied in Eqs. (30)
and (31). The relevant contributions of the state function are

n = n′: δ fn = −q τn B · [∇k × jn(k)], (39)

n �= n′: δ fnn′ = G(0)
nn′ (k)

i[En(k) − En′ (k)]
. (40)

The first equation describes the portion of the charge current
density which is deflected by the magnetic field, analogous
to the Hall effect. The current density jn(k) is inserted from
Eq. (20), and the contribution of Eq. (40) is used therein as
the driving term. The resulting charge current density jHall

reads

jHall
α = 2q

V

∑
n=v,c

k

vn,α (k) δ fn(k) = −2q2

V
Bβ εβγ δ

∑
n=v,c

k

vn,α (k) τn ∇k,γ jND
n,δ (k),

jHall
α = 2q2

V
Bβ εβγ δ

∑
n=v,c

k

∇k,γ [vn,α (k) τn] jND
n,δ (k). (41)

Inserting Eqs. (27) and (28) into Eq. (41), we get for the tensor element RS
αβμν the expression

RS
αβμν = e4

16π2 ω2 m3
0 ε0 c η

εβγ δ

∑
m �=n,n1

n,�=±ω

∫
1.BZ

d3k
[

fn1,0(k) − fn,0(k)
]
δ
[
En1 (k) − En(k) − �

]

×{∇k,γ [τnvn,α (k)(δv,n + δc,n) + τmvm,α (k)(δv,m + δc,m)]}

× Im

( 〈n, k|pδ|m, k〉〈m, k|pμ|n1, k〉〈n1, k|pν |n, k〉
Em − En

+ terms with μ and ν interchanged

)
. (42)

Performing all sums [12] leads to RS:

RS
αβμν = e4

16π2 ω2 m2
0 ε0 c η

εβγ δ

∫
1.BZ

d3k [ fv,0(k) − fc,0(k)] δ[Ec(k) − Ev (k) − ω]

×
{

[∇k,γ τcvc,α (k)]

[
− Im(〈v, k|pν |c, k〉 〈c, k|R†

δ pμ|v, k〉) + vc,μ

ω
Im(〈v, k|pν |c, k〉 〈c, k|pδ|v, k〉)

]

+ [∇k,γ τvvv,α (k)]

[
− Im(〈v, k|pν |c, k〉 〈c, k|pμRδ|v, k〉) − vv,μ

ω
Im(〈v, k|pν |c, k〉 〈c, k|pδ|v, k〉)

]

+ all terms with μ and ν interchanged

}
. (43)
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R is the shift operator [9,11]; in position representation,

Rn,k(r) = 〈r|R|n, k〉 = eikr{∇k + iXnn(k)}unk(r).

The shift operator R is of importance when photogalvanic
current densities are described by the nondiagonal elements
of the state function f . In particular, the shift vector (3) can be
expressed as

scv (e, k) = Im
(〈c, k

∣∣R† ep + epR
∣∣v, k〉 〈v, k|ep|c, k〉)

〈v, k|ep|c, k〉 〈c, k|ep|v, k〉 .

(44)
The elements of RS show almost the same ω dependence
as those of PS , and as a rule of thumb, |RS| ≈ |PS| · μ

may be expected, where μ is the mobility of the (hot)
photocarriers.

Result (43) is completed by the diamagnetic contribution
(B3),

RS,dia
αβμν = e

ω m0
εβνγ PA

αμγ .

D. Tensor RA

Circularly polarized light and B �= 0 are implied in
Eqs. (30) and (31). The relevant contributions are

n = n′: δ fn = −qτnB · [∇k × (
τnvnδG(0)

n

)]
, (45)

n �= n′: δ fnn′ = δG(B)
nn′ (k)

i[En(k) − En′ (k)]
. (46)

Equation (45) describes the deflection of the ballistic
charge current density Eq. (36) by the magnetic field and
is present only—like PA—in gyrotropic media, whereas the
contribution (46) is directly related to the change in the gener-
ation matrix by the external magnetic field B. Therefore, RA

consists of two contributions,

RA = RA,bal + RA,shift. (47)

1. Tensor RA,bal

Equation (45) is equivalent to Eq. (39). Following the same
route as taken by Eqs. (41) and (43) and using Eq. (35), we
arrive at [12]

RA,bal
αβμν = e4

4π2 ω2 m2
0 ε0 c η

εβγ δ

∫
1.BZ

d3k [ fv,0(k) − fc,0(k)] δ[Ec(k) − Ev (k) − ω]

×{τv vv,δ (k) [∇k,γ τvvv,α (k)] − τc vc,δ (k) [∇k,γ τcvc,α (k)]} Im(〈v, k|pμ|c, k〉 〈c, k|pν |v, k〉). (48)

2. Tensor RA,shift

The corresponding current density is

jND,B
α = 4q

m0

∑
n,n′

n �=n′

1

(2π )3

∫
1.BZ

Im

(
〈n, k|pα|n′, k〉 δḠ(B)

n′n (k)

En′ − En

)
d3k. (49)

Inserting δḠ(B)
n′n (k) from Eq. (24) and regrouping terms, we get

jND,B
α = I

e4

16π2 ω2 m3
0 ε0 c η

∑
n1 ,n2

�=±ω

∫
1.BZ

d3k
(
[∇Q1 × ∇Q2]β

{[
fn2,0(k + Q2) − fn1,0(k + Q1)

]

× δ
[
En2 (k + Q2) − En1 (k + Q1) − �

]
sgn(�)Mn1n2

αμν (k, Q1, Q2)
})

Bβ Im(e∗
μeν ), (50)

with

Mn1n2
αμν (k, Q1, Q2) =

∑
n,n′

n �=n′

Im

{
(n, k|n2, k + Q2) (n2, k + Q2|pν + kν |n1, k + Q1)

× (n1, k + Q1|pμ + kμ|n′, k) (n′, k|pα + kα|n, k)

En − En′
− all terms with μ and ν interchanged

}

= m0

∑
n

Im{(n, k|n2, k + Q2) (n2, k + Q2|pν + kν |n1, k + Q1)(n1, k + Q1|(pμ + kμ) Rα|n, k)

− all terms with μ and ν interchanged}. (51)

In expression (51) we have used the representation of the shift operator R with respect to the lattice-periodic part of the Bloch
functions, (r|R|n, k) = [∇k + iXnn(k)]unk(r).
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As a result, we obtain [12]

RA,shift
αβμν = e4

16π2 ω2 m3
0 ε0 c η

∫
1.BZ

d3k
(
[∇Q1 × ∇Q2]β

{
[ fv,0(k + Q1) − fc,0(k + Q2)]

× δ[Ec(k + Q2) − Ev (k + Q1) − ω]
[
Mcv

αμν (k, Q2, Q1) − Mvc
αμν (k, Q1, Q2)

]})
. (52)

After differentiation, the vectors Q1 and Q2 have to be set to
zero. Due to the differentiations with respect to Q1 and Q2,
even an approximate evaluation of the tensor elements of RA

requires details of the band structure [En(k) and momentum
matrix elements], at least at a symmetry point k0 where the
optical transition occurs. If the bands are isotropic near k0,
the cross-product operation (∇Q1×∇Q2), whose terms are
exclusively dependent on Qi via the energy E (k + Qi ), does
not contribute. We therefore expect warped energy bands as a
favorite ingredient for the circular shift magneto-PGE.

IV. SUMMARY AND DISCUSSION

We have developed a systematic semiclassical description
of the PGE within the Kadanoff-Baym-Keldysh technique
which ensures gauge invariance as well as particle conser-
vation from the beginning. In addition, band-renormalization
terms (Hermitian parts of the self-energies �̂) are identified,
and external (slowly varying) electric and magnetic fields
are included. This approach is based on a Boltzmann-type
equation for the diagonal elements of the state operator
and captures nondiagonal contributions by simple algebraic
equations, similar to the well-known semiconductor-Bloch
equations [47] (but without Coulomb interaction).

In our approach, the PGE is a band structure property
of the noncentrosymmetric crystal, and the photogalvanic
current is caused by the absorption of light in combina-
tion with (symmetric) scattering by phonons and impurities.
Sections III A–III D gave explicit results for the tensors
PS, PA, RS , and RA. Here, only the case of an external
magnetic field was considered because the influence of an
electrical field on the PGE was studied recently in detail
by Fregoso [48]. Not included are (i) asymmetric scattering
terms, (ii) the magnetic field dependence of scattering, and
(iii) transitions from bound impurity states. Result (32) for
PS is identical to the known result of Eq. (2) and serves as
a check, and we also gave results for PA, RS , and RA. Here,
PA, Eq. (38), is equivalent to Eq. (29) of Holder et al. [35,49].
Implementation of the p-matrix elements within density func-
tional theory (DFT) calculations is described in Ref. [50].
Appendix C provides a numerical application to GaP.

For linear polarization there are several examples which
clearly demonstrate that the magnitude and spectral structure
are dominated by the shift mechanism: (i) n-GaP [14] (pseu-
dopotential theory) and (ii) BaTiO3 [18,51] (DFT includes the
calculated phonon spectrum and electron-phonon couplings).
In both cases, there is almost perfect agreement with experi-
ment [16,52]; nevertheless, asymmetric phonon contributions
cannot be excluded in general. For GaAs a purely ballistic
theory gave a good overall description, but the predicted spec-
trum differed from that observed [53]. For a critique of the

shift mechanism as a main source of the PGE see Sturman
[54].

Nonlocal aspects of the PGE are usually neglected but
have shown up in connection with the analysis of volume-
phase holograms in ferroelectrics [55]. Such phenomena are
captured by the semiclassical description, Eqs. (19)–(21), and
may become relevant for optical nanodevices, as recently
studied by local photoexcitation [56], and are under discus-
sion in connection with spatiotemporal quantum pumping by
femtosecond light pulses [57].

Quantum kinetic descriptions for the PGE were implicitly
used in several previous publications, e.g., [10]; Deyo et al.
[58] worked out a semiclassical theory of nonlinear transport
and the PGE but only the influence of electric and magnetic
fields on the scattering probabilities were considered, and
recently, Kral [59] presented a quasiclassical description of
the PGE for the problem of electron pumping in semicon-
ductors. Barik and Sau [60] showed that the PGE/BPVE can
be attributed to the dipole moment of the photogenerated
excitons, which resembles the difference [Xvv,α − Xcc,α] in
Eq. (32). An attempt for a systematic theory in terms of the
Kadanoff-Baym-Keldysh technique was undertaken by one of
the present authors in Ref. [61].

There are several numerical studies of the shift vector
scv (e, k) as well as an analytic estimate to find optimal param-
eters (concerning band structure and polarization directions)
for the PG response [18,62]. These investigations, however,
are based on a simplified version of the shift vector (3) with
restricted combinations of the current and light-polarization
components (see discussion around Eq. (58) in Ref. [13]). To
overcome such restrictions, we have worked out the general
coordinate-free form of the shift vector given by Eqs. (2)–(4).

In an external magnetic field B, the currents described
by PS and PA are deflected like Hall currents, which result
in ballistic contributions described by RS (proportional to
the mobility) and RA,bal [proportional to the square of the
mobility; see Eqs. (40) and (45)]. In addition, RA includes
a shift contribution RA,shift, which is related to the influ-
ence of magnetic field B on the generation matrix Gnn′ (k).
Concerning the experimental situation, we refer to the work
of Fridkin and his group [1,63]. For tellurium theoreti-
cal and experimental studies were carried out by Ivchenko
et al. [64,65]. However, application of their theoretical re-
sults in first-principles calculations does not seem to be
straightforward.

The Hall property of the linear PGE in a magnetic field
(described by RS) has been used to determine the mobility of
photogenerated charge carriers [53,63,66]. Very large mobili-
ties have been reported: 0.5×106 cm2/V s (4.2 K) for GaAs,
approximately 6000 cm2/V s for piezoelectric Bi12GeO20

(point group 23), and up to 1900 cm2/V s (room temperature)
for ferroelectric BaTiO3 (point group 4mm). The analysis of
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the measurements is based on the standard Hall formula,

jHall = μ j(0) × B, (53)

which stems from a Drude-type description and holds under
isotropic conditions. For Bi12GeO20 the PG current without
magnetic field j(0) is strongest just below the gap (3.2 eV)
and is believed to originate from impurity transitions into the
conduction band; that is, it is of the ballistic type. Hence,
Eq. (53) is a suitable basis for the experimental analysis.
For BaTiO3, however, the PGE is mainly due to interband
transitions [18,51,52], so that Eq. (53) is not appropriate, even
if μc 
 μv [compare Eq. (32) with (43)].

The idea to separate shift and ballistic contributions of the
PG current by using a magnetic field in combination with
linearly and circularly polarized light has been pursued by
Fridkin and collaborators (see, e.g., Ref. [63]) and, more re-
cently, by Burger et al. [67,68] for Bi12GeO20 and Bi12SiO20.
Their analysis, however, is based on the assumption that the
shift mechanism does not contribute to the photo Hall current
(“ jsh describes coherence between wave packets rather than
a transport process” [68]), which is at odds with our results
given by Eqs. (41) and (49). It also contradicts a previous
result of Ref. [65] [their formula (13)]. Moreover, in these
studies the PG current is due to (ballistic) impurity transitions
and does not originate from interband transitions, which are
the origin of the shift mechanism [69].
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APPENDIX A: PHOTON GREEN’S FUNCTION

The Keldysh Green’s function Dμν for photons has the
usual Jordan normal form, and each matrix element is a polar
tensor of rank 2. We start from (Ref. [42], Sec. II A)

D<
μν (r1, t1; r2, t2) = −i 〈〈Aν (r2, t2) Aμ(r1, t1)〉〉. (A1)

Aμ(r j, t j ) ( j = 1, 2) denotes the (Hermitian) vector potential
(field operator) of the radiation, and μ and ν refer to the polar-
ization of the photons. D>

μν (r1, t1; r2, t2) = D<
νμ(r2, t2; r1, t1);

the other photon-correlation functions are defined in the same
way as for the electrons.

As thermal radiation at ambient temperature plays no role,
radiation is described as a classical external field of a single
mode. Its quantum analog is a coherent state |α〉, a|α〉 = α|α〉,
〈〈· · · 〉〉 → 〈α| · · · |α〉. a and a† denote destruction and creation
operators of the mode, aa† − a†a = 1. α = |α| exp(iφ) is a
complex number, where |α|2 is the mean photon number of
the mode which is proportional to the light intensity.

The vector potential operator reads

Aμ(r j, t j ) =
√

1

2εε0V

1

ω

(
eμ a ei(qr j−ωt j ) + H.c.

)
,

where q, ω = ω(q), and e denote the wave vector, frequency,
and polarization vector of the mode. ε = η2 is the dielectric
constant of the medium, and V is the volume of the cavity
(periodic boundary conditions are implied; see, e.g., Louisell
[70], Sec. 4.3). To simplify notation mode indices have been
suppressed.

The phase φ of the radiation is a statistical quantity; hence,
terms in (A1) containing α2 = 〈α|a2|α〉 vanish upon averag-
ing on φ [the same thing happens for (α∗)2, equally distributed
phases on 0, . . . , 2π ]. Apart from a very small difference
of |α|2 and |α|2 + 1, D<

μν (r, t ) and D>
μν (r, t ) become equal

and depend only on r = r1 − r2, t = t1 − t2. As a result, the
retarded and advanced D vanish, and the Keldysh component
becomes

DK
μν (r, t ) = −i

I

ω2ε0cη

(
eμ e∗

ν ei(qr−ωt ) + c.c.
)
. (A2)

As the light wavelength is much larger than the crystal unit
cell, we may approximate e±iqr → 1 (the dipole approxima-
tion, neglecting the photon-drag effect). This is result (14).

APPENDIX B: DIAMAGNETIC CONTRIBUTION
TO THE TENSOR RS

In the velocity gauge there is a (small) “diamagnetic”
contribution from the vertex operator q2

m0
Acl to the generation

matrix Gnn′ , which is usually neglected. In linear order with
respect to B, this contribution reads

δG(B,dia)
n (k) = I

πq3

ω3 m3
0 ε0 c η

Bβ εβνγ

∑
n′

�=±ω

[ fn′,0(k) − fn,0(k)] δ[En′ (k) − En(k) − �] sgn(�)

×{Re(〈n, k|pμ|n′, k〉 〈n′, k|pγ |n, k〉) Im(e∗
μ,� eν,�) + Im(〈n, k|pμ|n′, k〉 〈n′, k|pγ |n, k〉) Re(e∗

μ,� eν,�)}. (B1)

This result is obtained in the same way as G(0)
n in Eqs. (22) and (23) by taking into account the terms linear in B in the product

of the matrix elements 〈n, k|pμ − q
2 (B×r)μ|n′, k〉 〈n′, k|pν − q

2 (B×r)ν |n, k〉 of the vertex operator. Note that the phase factor
contained in the approximation (17) is responsible for transforming the gauge-dependent field Acl into the gauge-independent
term 1

2 B×r in the vertex operator. Subsequently, the matrix element of the position operator r is replaced by that of the
momentum operator p using the identity 〈n, k|r|m, k〉 = 1

i m0
〈n, k|p|m, k〉/[En(k) − Em(k)], which holds for En(k) �= Em(k).

Moreover, only odd terms in k contribute, i.e., terms containing Im(〈n, k · · · n, k〉)Re(e∗
μ,� eν,�), giving a contribution to RS but
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not to RA. Following the same route as for PA [see Eqs. (33)–(37)], we obtain

RS,dia
αβμν = I

q4

4 π2 ω3 m3
0 ε0 c η

εβνγ

∑
n′ ,n

�=±ω

∫
1.BZ

d3k [ fn′,0(k) − fn,0(k)] δ[En′ (k) − En(k) − �]

× τn vn,α (k) (δv,n + δc,n) Im(〈n, k|pμ|n′, k〉 〈n′, k|pγ |n, k〉) sgn(�). (B2)

Remarkably, result (B2) can be linked to PA by Eq. (37),

RS,dia
αβμν = e

ω m0
εβνγ PA

αμγ . (B3)

Hence, diamagnetic contributions to RS exist only in nongy-
rotropic media, yet a different spectral dependence may be
expected.

For a crude estimate we consider parabolic valence and
conduction bands and disregard the angular dependence of k
in Eqs. (B2) and (43). Near the energy gap �, we have

|RS,dia| ≈ |RS|
(

1 − �

ω

)
, ω � �.

This result supports the usual approximation to neglect the
diamagnetic contribution near the gap. Nevertheless, it should
be taken into account in numerical calculations covering a
wide frequency range.

APPENDIX C: NUMERICAL APPLICATION TO GaP

The expressions for the response coefficients, Eqs. (32),
(38), (43), (48), and (52), involve band energies and mo-
mentum matrix elements which are directly available or can
be obtained from band structure calculations. With respect
to the shift mechanism, n-doped GaP is a particularly fa-
vorable system. Optical transitions occur from the bottom
of the conduction band (near the X point) to the next upper
band which is separated by a small gap of � = 355 meV.
The latter is solely due to the noninversion symmetry of
the crystal. Previous calculations [14] for the absorption
coefficient and linear photogalvanic tensor component Pxyz

proved to be in almost perfect agreement with experimental
results.

GaP belongs to the symmetry group 4̄3m. For PS there is
only a single independent element, Pxyz, whereas PA vanishes
identically because GaP is nongyrotropic. In this symmetry,
a fourth-rank axial tensor has three independent components,
which are RS

xxyy, RS
xyxy, and RA

xyxy.

To keep the presentation simple, we use the results for GaP
from a local pseudopotential calculation [14]. The conduction
band and next upper band near the X point are nondegener-
ate, and there are six pockets with equal occupation. Band
energies are modeled analytically, whereas the k dependence
of the momentum matrix elements [14] will be neglected.
〈c, k|pν |c∗, k〉 (ν=̂x, y) is solely different from zero in the
pockets on the kx and ky axes. At room temperature the
electron system for n = 2.4×1016 cm−3 is nondegenerate.

Within this approximation (rotationally symmetric energy
surfaces) RS

xxyy vanishes, whereas RS
xyxy is nonvanishing, and

a momentum relaxation time of τ = 5.0×10−14 s has been
assumed.

To determine RA,shift
xyxy , the Qi derivatives (i = 1, 2) have first

to be calculated. The dominant contribution results from a
sum of products whose two factors are first derivatives with
respect to Qi. One factor contains the Fermi functions and
the δ function, while the second factor results from prod-
ucts of matrix elements Mvc/cv

xxy . The Qi derivatives of the
latter are determined using k · p perturbation theory. There
is no contribution from RA,bal because GaP is nongyrotropic,
RA

xyxy = RA,shift
xyxy . Numerical results are displayed in Fig. 1. The

comparatively small numerical values for RS
xyxy and RA

xyxy are
due to the low electron concentration n.
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 2
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 2
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xyxy  x (-10)

FIG. 1. Tensor components RA
xyxy and RS

xyxy.
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