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Using the local moment counter charge (LMCC) method to accurately represent the asymptotic electrostatic
boundary conditions within density functional theory supercell calculations, we present a comprehensive analysis
of the atomic structure and energy levels of point defects in cubic silicon carbide (3C-SiC). Finding that the
classical long-range dielectric screening outside the supercell induced by a charged defect is a significant
contributor to the total energy. we describe and validate a modified Jost screening model to evaluate this
polarization energy. This leads to bulk-converged defect levels in finite size supercells. With the LMCC boundary
conditions and a standard Perdew-Burke-Ernzerhof (PBE) exchange correlation functional, the computed defect
level spectrum exhibits no band gap problem: the range of defect levels spans ∼2.4 eV, an effective defect band
gap that agrees with the experimental band gap. Comparing with previous literature, our LMCC-PBE defect
results are in consistent agreement with the hybrid-exchange functional results of Oda et al. [J. Chem. Phys.
139, 124707 (2013)] rather than their PBE results. The difference with their PBE results is attributed to their use
of a conventional jellium approximation rather than the more rigorous LMCC approach for handling charged
supercell boundary conditions. The difference between standard DFT and hybrid functional results for defect
levels lies not in a band gap problem but rather in solving a boundary condition problem. The LMCC-PBE
entirely mitigates the effect of the band gap problem on defect levels. The more computationally economical
PBE enables a systematic exploration of 3C-SiC defects, where, most notably, we find that the silicon vacancy
undergoes Jahn-Teller-induced distortions from the previously assumed Td symmetry, and that the divacancy,
like the silicon vacancy, exhibits a site-shift bistability in p-type conditions.
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I. INTRODUCTION

Silicon carbide is a wide band gap semiconductor and
a candidate material for use in high-power, high-frequency
electronics in extreme environments (such as space), where
its higher breakdown fields and lesser sensitivity to radiation
and thermal effects (cf. silicon) would provide significant
advantages for high-temperature applications or in radiation
environments [1]. Its native oxide (away from the immedi-
ate interface) is a-SiO2, making it compatible with standard
MOSFET technology. The quality of the interface is good
enough that the channel can be inverted, enabling CMOS tech-
nologies. There are 30 polytypes, with band gaps that range
from 2.3 (3C-SiC) to 3.3 eV (2H-SiC). While the 4H is the
most common polymorph used in technological applications,
doped 3C-SC has become interesting for potential electronic
applications, e.g., in solar cells [2].

An understanding of the structural and electronic proper-
ties of atomic defects in the lattice is important to achieving
the potential of this class of materials. Given the importance
that defects play in the performance of SiC in electronic de-
vices, little has been definitively determined concerning the
behavior of defects in most SiC polytypes. The 3C-SiC is
arguably the simplest of the SiC polymorphs, and the charac-
terization of intrinsic defects in 3C-SiC has been the subject
of several computational studies using density functional

theory methods [3–13]. Even in this simplest of polymorphs,
however, there has been surprisingly little agreement about
defects and their transition levels in the gap, and a good
understanding is lacking of the electronic structure of even
the most basic defect, the neutral silicon vacancy [7,13–15].
Many of the very early studies, while insightful, were com-
putationally constrained to very small supercell models and
k samples, making the results prone to finite size errors, and
methods to properly account for charged boundary conditions
were just beginning to be developed [16], making it chal-
lenging to evaluate reliable formation energies of charged
defects.

Oda, Zhang, and Weber [13] advanced beyond these early
studies to use a larger, more-converged 216-atom supercell
for selected defects in 3C-SiC (both types of single vacancies,
and single interstitials), with both a conventional local func-
tional and a hybrid exchange correlation functional. Noting
that conventional DFT manifested a large underestimate of
the band gap, they attributed the differences between their
DFT and their hybrid functional results for defect levels to a
band gap problem in the DFT, that was eliminated by tailoring
the hybrid functional to give the experimental band gap [17].
The DFT and hybrid functionals gave very similar results in
defect structure and electron density distribution, these proved
nearly interchangeable, but the ensuing defect levels were
very different, leading to their conclusion that overcoming
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the band gap problem was essential to describe defects in
SiC [13].

In the present work, we investigate importance of overcom-
ing the boundary condition problem and finite size errors in
supercell calculations for a broad set of defects in 3C-SiC:
C and Si vacancies, interstitials, and antisites, as well as
divacancies and diantisites. We use the local moment counter-
charge method (LMCC) method [18–20] that more accurately
treats the asymptotic boundary conditions for charged defect
supercell calculations than the conventional jellium method.
In previous applications to silicon [20], CsI [21], and III-V’s
such as GaAs [22], defect levels computed with this approach
have been shown to not be sensitive to a Kohn-Sham band
gap problem [23] and provide predictive accuracy to within
0.1–0.2 eV compared to measured experimental defect lev-
els [20,21,24]. In 3C-SiC, a lack of definitive experimental
assignments of defects to defect levels prevents a similar
experimental validation of defects. Instead, when the more
rigorous boundary conditions are applied, and finite size er-
rors are eliminated in converged larger supercells, the band
gap problem is found to be absent; the bounds defined by
the range of computed defect levels proves to give a very
good estimate of the experimental band gap. These results
show great qualitative and quantitative similarity to the levels
computed with hybrid functionals [13], showing that it is
overcoming the boundary condition problem and not a band
gap problem that is crucial to describe defects in 3C-SiC. With
the computational economy afforded by the conventional DFT

functionals, we explore the large-supercell limits of defects
in 3C-SiC and verify that these results are converged with
supercell size, obtaining new insights into the mystery of the
neutral silicon vacancy, and better resolve questions concern-
ing near-band-edge states in the interstitial and other defects.

The paper continues in the next section with a description
of the computational methods and details of the calculations.
This is followed by an analysis of the long-range dielectric
screening energy, and development of an analytic model to
accurately evaluate its contribution to a charged defect’s total
energy. This electrostatic energy outside the volume of the su-
percell is shown to be quite large, as large or larger than a band
gap, making the construction of an accurate screening model
an essential aspect of a viable computational approach. We
describe the development of an analytic modified Jost model
and demonstrate its efficacy in achieving cell size convergence
even with rather small supercells. The subsequent section
discusses the collective defect level diagram for the 3C-SiC
defects considered here, and illustrates the consistency of
these defect levels with the experimental band gap. This is
followed by a description of the results for individual defects,
including discussion of cell-size convergence, and making
comparisons to previous calculations (where available in the
literature). We close with a brief discussion and a section to
conclude.

II. COMPUTATIONAL METHODS

A. Computational details

In the DFT calculations, we use SEQQUEST, a local orbital,
pseudopotential, DFT code [25]. The pseudopotentials are

standard Hamann-type generalized norm-conserving pseu-
dopotentials [26] cast in the original semilocal form. The wave
function solutions are expanded as linear combination of care-
fully optimized (double-zeta plus polarization) atom-centered
contracted-Gaussian basis sets, that have been demonstrated
to give converged results in previous defects studies [20].
In calculations of vacancies, additional “floating orbitals” on
a phantom atom placed at the vacated atomic site are in-
cluded in the basis set to remove basis-set incompleteness
errors.

For computation of benchmark bulk properties of the SiC
polytypes, we use both local density approximation (LDA)
[27] and generalized gradient approximation (GGA). Calcu-
lations of defect energies in SiC require a more accurate
treatment of spin polarization than offered by a local density
approximation (LDA), thus we adopt the Perdew-Becke-
Ernzerhof (PBE) flavor of the GGA [28] as the principal
exchange-correlation functional used in the defect calcula-
tions, including spin polarization. The PBE functional does
not incorporate the exact exchange that a hybrid functional
does, but as shown below, this does not lead to materi-
ally different results once finite size errors are properly
accounted for. The PBE calculations retain the computa-
tional economy of standard DFT, lose no meaningful accuracy
in the description of the electronic structure with respect
to hybrid functionals, and, using the efficient local-orbital
basis, allow routine exploration of much larger unit cells
that make possible the systematic elimination of finite size
errors.

For the 3C-SiC defect calculations, we install a single
defect into supercells that are 2×2×2, 3×3×3, 4×4×4, and
5×5×5, expansions of the conventional eight-atom cubic unit
cell, computational models with 64, 216, 512, and 1000 atoms
in the perfect crystal supercell, respectively. The Brillouin
zone is sampled with a uniform 33 k grid (offset from �) in
the 64-atom supercell, and a 23 k grid is sufficient to converge
the calculations for the larger supercells.

The lattice constants are fixed to the stress-optimized val-
ues computed for the perfect crystal, e.g., a0 = 4.388 Å for
3C-SiC with the PBE functional. The atomic positions are
optimized until the force on each atom is less than 0.0003
Rydberg/Bohr (∼0.008 eV/Å), found to be sufficient to con-
verge a defect structure to less than 0.01 eV.

The state occupations across the defects are set to be con-
sistent with occupations for an asymptotically dilute defect in
a discrete defect occupation approach [20]. The Kohn-Sham
levels of valid localized defect states are distinct from the band
edge, and therefore there is no need for a finite “smearing”
of states such as commonly used for metallic systems. The
effective electronic temperature is set to zero. The ability to
discriminate the Kohn-Sham state from the band edge markers
in the supercell, assessed over a series of different supercell
sizes, is the distinguishing characteristic used to discriminate
a localized defect state [29]. However, the separation between
a Kohn-Sham defect state and Kohn-Sham band edge marker
has no role in determining the charge-transition defect level.
The defect energy for charged systems is instead determined
through a total energy method that includes rigorous treatment
of electrostatic boundary conditions for a net charge in a
periodic supercell.
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To provide a more rigorous treatment of the electrostatic
boundary conditions in supercell calculations of defects with
net charge, we use the local moment counter charge (LMCC)
method [18,19]. Unlike the conventional expedient of a jel-
lium approach (using a flat background charge to neutralized
a supercell), the LMCC method divides the charge into a
model localized charge and a remainder neutral density, solv-
ing the Poisson equation for the model charge using Dirichlet
boundary conditions that provide the correct q/r asymptotic
behavior around an isolated charge and does not corrupt the
potential in periodic images of the supercell, and for the re-
mainder net-neutral charge using the usual periodic boundary
conditions. The LMCC explicitly avoids the numerical diver-
gence that accompanies supercell calculations of a periodic
replicated net charge, and provides the correct asymptotic
q
r electrostatic potential generated by an isolated charge in
infinite bulk. This self-consistently induces the correct elec-
tron screening behavior near a charged defect within a finite
supercell model [30] in response to that potential.

The LMCC identifies a fixed energy electron reservoir for
net charge, formally equivalent to having the q

r potential for
a net charge and the perfect crystal asymptotically align, at
a distance infinitely far from the position of the defect—the
bulk equivalent [19] of aligning to a vacuum level at zero for a
molecular calculation [18]. The resulting shift from the defect
cell average potential reference to the perfect crystal potential
reference [19] Eμe(q)

defect then allows electron removal and addi-
tion energies, ionization potential and electron affinity, to be
computed with reference to the fixed electron reservoir.

That a well-defined electron potential reservoir energy
is identified and enforced through the LMCC replaces the
standard realignment of each defect calculation through a
Kohn-Sham edge. The challenge of constructing a valid DFT

defect energy changes, from this ad hoc realignment, to a
meticulous and accurate description of finite cell contributions
to the energy, and, especially, depends upon an accurate eval-
uation of the energy of dielectric screening outside the volume
of the supercell.

The energy computed in a supercell DFT calculation of
a defect with net charge q lacks long-range screening. For
the evaluation of long-range classical screening contribution
Epol(q) to defect energy we use a modified Jost model [20,31]

(Rydberg atomic units):

Epol(q; cell) =
(

1 − 1

ε0

)(
q2

Rcell
Jost

)
. (1)

This approximates the missing long-range screening energy
outside the volume of a finite supercell by the classical di-
electric screening response outside a sphere of radius RJost

centered at a charge q.
The static dielectric constant ε0 defining the isotropic di-

electric medium in Eq. (1) is set to the experimental value
(9.7) [32]. The final defect energy analysis proves only weakly
sensitive to ε0 of this magnitude. A computed GGA-PBE
value for 3C-SiC (10.3) [17] lies within this range where the
analysis is weakly sensitive.

The computed defect supercell energy, augmented by this
long-range polarization becomes:

Edefect (q; cell) = Ecell(q) + Eμe
defect (q) + Epol

(
q; Rcell

Jost

)
. (2)

Note that this energy expression does not include any align-
ment to a band edge, it is strictly a ground state DFT that
has incorporated long-range electrostatics. The first term is
the raw energy reported from the calculation, the second
term shifts the electrostatic reference to align with the perfect
crystal density and potential, and the last addition adds the
long-range screening energy that is not included within a finite
size supercell

This approach provides the framework that has been val-
idated to provide predictive 0.1 eV accuracy over dozens of
defect levels in silicon [20]. Similar demonstrated accuracy
in GaAs [22] could be used to confidently assign previously
misidentified levels [23] on the strength of the computed
defect levels. It has been also used effectively to analyze
N-vacancy defect level positions in SiC [33].

B. Verification: bulk properties

Table I summarizes the structural properties for 3C-SiC ob-
tained in this work. We benchmark our results against selected
previous computational works [13,17,34–37] and to exper-
imental values [38–41]. The computed structural properties
are broadly consistent with previous DFT work, providing a
verification of the methods used here.

TABLE I. Structural properties of 3C-SiC: lattice parameter a0, heat of formation �Hf (cf. elemental diamond structure reference), and
elastic constants C11, C12, C44, and bulk modulus, B (in GPa).

LDA PBE HSE Exp.

Reference: Current [34] [35] Current [36] [37] [17] [17] [38]a,[39]

a0(Å) 4.327 4.315 4.34 4.388 4.38 4.380 4.379 4.347 4.3577b

�Hf (eV/f.u.) 0.49 - - 0.41 0.42 - 0.54c 0.63c 0.7d

C11 402 420 390 378 394 382 383 418 390, 395
C12 135 126 134 120 133 128 127 141 142, 123
C44 247 287 253 234 247 239 241 263 256, 236
B 224 223 222 206 220 213 212 233 225, 214

aAs converted by Ref. [34].
bReference [40].
cReference [13].
dReference [41] (using a graphite C reference).
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FIG. 1. Computed PBE band structure of SiC-3C using the local
orbital basis and norm-conserving pseudopotentials. The valence
band and conduction band edge positions are denoted by dotted lines,
with the VBE aligned to 0.

These results are also in broad agreement with experimen-
tal measurements, validating that this computational context
gives reasonable results for bulk SiC properties. The LDA
and PBE results bracket the experimental lattice constant [40],
both within 1%, typical behavior for local DFT. These results
also roughly bracket the elastic constants, providing results to
within 10% of the experimental values, the LDA stiffer and
the PBE softer, again in line with the standard behavior and
accuracy in these local functionals.

Figure 1 presents the computed PBE band structure.
Compared to previous plane-wave-basis band structure cal-
culations [17,42], these results demonstrate that our well-
converged local orbital basis sets achieve excellent agreement
not only for the occupied valence bands but several eV above
the band gap into the empty conduction band states.

Table II summarizes the most important aspect of the band
structure for prospective defect calculations, the width of the
Kohn-Sham (KS) band gap, as computed here and compared
to selected DFT literature and to experiment. The KS band gaps
using these local functionals, at 1.3–1.4 eV, are observed to be
much smaller than the experimental 2.417 eV [43] band gap
for 3C-SiC. The empirically tuned HSE0.15 functional pro-
duced a Kohn-Sham gap that nearly matched the experimental
band gap [17]. A formally more rigorous GW approach to

TABLE II. Kohn-Sham band gaps for 3C-SiC (eV). All band
gaps are indirect � → X .

Experiment: 2.417 eV (Ref. [43])

LDA Current Ref. [44] Ref. [35] Ref. [45]
1.326 1.24 1.30 1.30

PBE Current Ref. [17] HSE/Ref. [17] GW /Ref. [12]
1.380 1.37 2.38 2.19

compute the band gap directly (as opposed to comparing KS
levels) falls short by ∼0.2 eV. As we had demonstrated earlier
in Si [20] and GaAs [23], we shall show below that mismatch
between the smaller KS gap and the fundamental electronic
band gap, infamously known as the “band gap” problem, is
no impediment to defect level calculations across the full
fundamental band gap.

III. ANALYSIS OF LONG-RANGE SCREENING

It is not commonly appreciated in literature how signifi-
cant classical long-range screening outside the volume of the
computational supercell is to the energy of a charged defect.
In Eq. (1), the long-range screening energy can amount to
1-10’s eV for typical size supercells and potentially accessible
defect charge states. This energy dwarfs other energy scales
in defect calculations; in particular, it is larger than typical
band gap energies, which define the pertinent energy scale
for defect levels. Given the importance of this classical long-
range screening to the energy of a charge defect, we describe
in greater detail the conceptual design of this screening, the
implementation to determine the physical parameters defining
the screening model, and then the verification of the long-
range screening model for use in 3C-SiC.

The essential conceptual elements of the modified Jost
screening model are illustrated in Fig. 2. An isolated defect
with charge q in a semiconductor is screened by the infinite
dielectric medium, Fig. 2(a). To make a tractable computa-
tional model in conventional DFT codes, a small region around
the defect is excised and periodically replicated in a supercell
approximation, Fig. 2(b). Assuming that the defect state itself
is well-localized within the supercell (i.e., that the finite size
errors become dominated by classical screening rather quan-
tum defect interactions) the supercell truncates the range of
the screening included within a DFT supercell calculation. An
exact accounting of the missing polarization energy outside
a given supercell is impossible, the details of the edge and
corner effects vary with the shape and size of the supercell, but
it proves effective to estimate the missing screening energy by
using an equivalent sphere, as in Fig. 2(c), The polarization
energy due to a charge q outside of a sphere of radius RJost has
an analytical solution in the Jost expression of Eq. (1).

In a naïve implementation, the RJost would be set to match
the supercell volume, Vcell = 4π

3 R3
Jost. However, the screening

inside the supercell is by construction incomplete—the super-
cell construction fixes the electron count inside the supercell
to be the full nominal charge q of the defect. The defect
cannot be screened by the net polarization of electrons across
a supercell boundary. As illustrated in Figs. 2(b) and 2(c),
the outer boundaries of the supercell are descreened in order
to screen the central region around the defect charge [30].
Hence to fully account for the missing long-range screening,
long-range Jost dielectric screening term must be extended
into this equivalent sphere volume by a skin depth Rskin = 1.1
Bohr (∼0.6 Å), as illustrated in Fig. 2(c),

RJost = Rcell − Rskin (3)

and thereby recover the desired physical limit of a fully
screened defect [Fig. 2(d)]. This physics-inspired correction
can only be empirically determined, as described below, and
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FIG. 2. A schematic diagram illustrating the evaluation of long-range screening energy contribution to a DFT supercell calculation of
a charged defect. (a) The bulk defect with charge q has dielectric screening extending infinitely, inscribed square indicating the range of
computational supercell. (b) The DFT supercell confines the full net charge q within the supercell parallelepiped, screening the near-defect
region by drawing electrons from the supercell edges, descreening the edge region. (c) The equivalent-volume sphere, radius Rvol, around
which long-range screening energy needs to be evaluated. (d) This radius is reduced by Rskin to account for the unscreened cell volume, leading
to a Jost classical dielectric screening defined by RJost .

then must be verified in systematic cell-size extrapolation
tests.

To calibrate the Jost model parameters, we select a single
test defect, and examine the extrapolation behavior of its
charge transition defect levels with Jost polarization. This Jost
model, once calibrated with a single defect, is then used for
all defects. In the 3C-SiC, we chose the silicon split-(110)
interstitial as the calibration defect. The C2v interstitial, while
not the structural ground state for every charge state, has a
stable localized charge state from the neutral defect through
(4+). This offers the extrapolation behavior of multiple charge
transitions to be simultaneously monitored, a built-in veri-
fication check. The existence of a (4+) offers a maximally
stringent test of convergence, the energy incorporating a large
Jost screening. The structure is relatively unchanged across
the charge states, so differential relaxation effects between
supercells are limited, allowing the extrapolation calibration
to focus more exclusively on the electrostatic behavior rather
than other finite size effects.

An ionization potential (IP) is computed in the usual way
from the Jost-corrected defect energy in Eq. (4), as the differ-
ence between the energy of defects with different charges:

Edefect (q/(q − 1); cell) = Edefect (q; cell)

− Edefect (q − 1; cell). (4)

Note again, that this IP has still no alignment with any band
edge, it is aligned with respect to the fixed LMCC-derived
crystal potential.

For the interim purpose of extracting the screening-induced
extrapolation behavior, we align the IP for all the charge
transitions—the (1 + /2+), (2 + /3+), and (3 + /4+)—with
respect to the (0/1+) transition. Figure 3 plots the IP for
the Sii charge transition energies from the smallest 64-site
(2 × 2 × 2) supercell through the largest 1000-site supercell,
for different values of the Jost skin depth Rskin.

It is immediately apparent that the simple volume-
matching sphere, Rskin = 0 (marked with the red dotted lines),
fails badly. In the 64-site cell (typical size used in many cost-
limited hybrid functional approaches), this incurs an error
∼0.2 eV in the (1 + /2+) defect level level, and greater than
0.8 eV in the (3 + /4+) level. That error remains more than

0.1 eV in even the largest 1000-site supercell. This result
indicates that simple scaling rules, such as that derived by
Makov and Payne [16], need to be extended to include finite
size effects—edge effects—in these very small supercells.
Specifically, the need for an internal unscreened skin depth
within each supercell would indicate an importance adding a
term proportional to 1

L2 in any practical dimensional analysis
of finite size effects.

For each charge transition, each of the IP are seen to con-
verge with supercell size, regardless of the screening model,
to 0.33 eV below the (0/1+) for the (1 + /2+), 0.70 eV
for the (2 + /3+), and 1.03 eV for the (3 + /4+) charge
transition. With Rskin = 1.1 Bohr (∼0.5 Å), the IP converge
to the asymptotic values within 0.01 eV for the 216-site
supercell. The finite size errors are more significant in the

FIG. 3. Jost calibration using the Sii test defect, from neutral
to (4+) charge, all in the split-(110) structure without spin. Us-
ing a common Rskin unscreened skin depth of 1.1 Bohr (∼0.6 Å)
for all supercells, the computed relative defect levels from (0/1+)
through (3 + /4+) all align across the supercells. Notably, the sim-
ple supercell-volume-matching sphere (Rskin = 0, dotted red lines)
converges badly with cell size.
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TABLE III. Classical long-range dielectric screening energy for 3C-SiC supercell sizes, for a defect of charge q, computed with the
modified Jost approximation [Eq. (1)].

Jost polarization energy (eV)

Supercell Number of atoms |q| = 1 |q| = 2 |q| = 3 |q| = 4

(2 × 2 × 2) 64 1.328 5.312 11.952 21.248
(3 × 3 × 3) 216 0.851 3.405 7.662 13.622
(4 × 4 × 4) 512 0.627 2.506 5.639 10.024
(5 × 5 × 5) 1000 0.496 1.982 4.460 7.930

64-site supercell, but the Jost-screened IP calculated using the
(2 × 2 × 2) supercell are nonetheless brought within 0.04 eV
of the asymptotic IP. To appreciate the numerical precision
of this convergence and the effectiveness of this modified-
Jost screening, consider that this convergence in the 64-site
supercell is resolved to within less than 0.2% of the computed
Jost polarization contribution (21 eV) to the (4+) defect en-
ergy. Even in the 1000-atom supercell, the missing screening
energy for q = 1 is 0.5 eV, and for the q = 4 is almost 8 eV.

Table III presents the long-range screening energy contri-
bution to the defect energies, using this calibrated RJost = 1.1
Bohr, for defects with charge up to | q | = 4, for the range of
supercell sizes considered in these defect calculations. This
modified-Jost model, calibrated using a single defect, is used
in all charged defect calculations without any further modi-
fication. Its performance for other defects (presented below)
can be used as additional verification of its accuracy.

The fine quantitative accuracy with which this modified
Jost screening [Eqs. (1)–(3)) achieves its converged extrapola-
tion is practical evidence of its validity. Its faithful expression
of the nominal physical formulation depicted in Fig. 2 is con-
ceptual evidence. This Jost expression uses the experimental
dielectric constant, it does not need to be refit; this is an
accurate description of the long-range screening. The optimal
skin depth has the correct sign, to represent an unscreened
region within the supercell, and has a reasonable magnitude,
to represent a screening distance on the order of less than
a bond length, consistent with analogous skin depths (i.e.,
correlated with lattice constant) determined in Si, GaAs, and
other III-V semiconductors [20,22].

These cubic crystals lead to supercells that have Wigner-
Seitz volumes that are roughly spatially isotropic, so that the
mapping onto a spherical Jost model is a good representation
of the missing screening, and one can straightforwardly use a
series of supercells to calibrate and verify the modified Jost
model. Other SiC polytypes, and hexagonal crystals (such as
GaN) generally, supercells will not be conveniently isometric,
so that a spherical Jost approximation will not be as appro-
priate. This makes a workable system in a hexagonal system
less straightforward and more difficult to verify. However,
one can carefully select supercells that are approximately
isotropic in size that could be amenable to a spherical Jost
correction. For example, for the (5 × 5 × 3) 300-atom super-
cell in 2H-SiC (wurtzite structure), the supercell c

a ratio is
1.015, an aspect ratio close enough to ideal to be amenable
to a spherical Jost screening. This analysis and the corre-
sponding results for hexagonal polymorphs will be reported
elsewhere.

IV. RESULTS

Table IV presents the computed PBE formation energies
and ground state spin for the relaxed structures of an extensive
set of intrinsic neutral defects in 3C-SiC: the simple silicon
vacancy v′

Si, the site-shifted vacancy v∗
Si (forming a vC-CSi

vacancy-antisite pair), the carbon vacancy vSi, the simple vv′
and site-shifted vv∗ divacancy, the carbon Ci and silicon Sii

interstitials, the single carbon CSi and silicon SiC antisites, and
the SiCCSi di-antisite.

The formation energy Eform for the neutral defects is quoted
in the Si-rich limit, evaluating

Eform[defect] = Edefect (cell ) − nSiμSi − nCμC, (5)

where Edefect (cell) is the computed total energy of the super-
cell with the defect, nSi and nC are the number of Si and C
atoms, respectively, in the defected supercell, and μSi and μC

are the atomic chemical potentials. The formation energy of
the perfect SiC crystal supercell is, by definition, zero, so
that the sum of the silicon and carbon chemical potentials,
μSi + μC, must exactly equal the energy of a formula unit in
bulk 3C-SiC, E (3C-SiC). In the Si-rich limit, the chemical
potential for the silicon μSi is defined as the energy of Si
in bulk Si, and the carbon chemical potential is determined
as μC = E (3C-SiC) − μSi. We note that, with the knowledge
of the SiC heat for formation �Hf from bulk Si and bulk
C (quoted in Table I), the Si-rich formation energy can be
trivially converted to a C-bulk (or stoichiometric) limit [46].

Defect structures are concisely described, e.g., the Ci(0)
ground state adopts a split-(001)C interstitial structure with
D2d symmetry. Where defects have multiple stable structures,
they are listed separately. The simple Si vacancy has Td -
symmetric and distorted C3v and C2v structures. The silicon
interstitial Sii(0) has a stable Ti(C) site (interstice with four C
nearest neighbors), and a split-(110)Si interstitial configura-
tion.

One immediate observation is the high propensity toward
high-spin (triplet) ground states in SiC defects, in contrast
to the low-spin tendency of defects in silicon or middle-row
III-V’s such as GaAs [22]. The dangling bonds of the first-row
carbon atoms exposed in these often high-symmetry defects
display strong exchange couplings. While our LDA results
mostly capture these ground state structures, the prominence
of spin polarization makes use of a GGA such as PBE more
advisable, and we therefore proceed with a full set of results
using PBE.

Dependence of formation energy on supercell size in
neutral defects reflects finite size errors due to artificial
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TABLE IV. Computed PBE neutral defect formation energies, in Si-rich limit (eV). A significant fraction of the defect structures have
high-spin ground states. The predicted spin for each structure is either T (triplet) or S (singlet). Defect formation energies are determined as in
Eq. (5). The notations for the defects and associated structure types is described in the text.

Supercell (number of atoms)

(2×2×2) (3×3×3) (4×4×4) (5×5×5) Ref. [13]

Defect Structure Spin [64] [216] [512] [1000] PBE HSE

v′
Si Td T 7.47 7.53 7.55 7.56 7.54 8.14

v′
Si C3v T a 7.30 7.30 7.30 - -

v′
Si C2v T 7.44 7.47 7.48 7.48 - -

v∗
Si vCCSi-C3v S 6.51 6.39 6.32 6.28 6.20 7.37

vC pair-D2d S 3.91 3.84 3.82 3.82 3.95 4.78
vv′ C3v T 7.14 7.16 7.17 7.17 - -
vv∗ vC-CSi-vC–C2v S 9.46 9.32 9.29 9.28 - -
Ci (001)C-D2d T 6.82 6.64 6.61 6.61 6.66 8.87
Sii Ti,C-Td T 10.04 8.84 8.67 8.60 8.10 9.84
Sii (110)Si-C2v S 8.83 8.56 8.51 8.51 8.24 9.43
CSi Td S 3.75 3.69 3.67 3.67 - -
SiC Td S 3.51 3.37 3.34 3.34 - -
SiCCSi C3v S 5.16 5.09 5.08 5.07 - -

aCorrupted electronic state collapses to Td .

interactions with periodic defect images through confined
elastic relaxation range [47] or electronic states corrupted by
defect banding. Except for Sii-Ti,C , the defect results in 512-
atom supercells are fully converged to a bulk limit, closely
matching the formation energies computed in 1000-atom
supercells. The 216-atom supercell results are qualitatively
similar, and still well converged to within about 0.1 eV. The
results in the 64-atom supercells, in contrast, differ from larger
supercell results by 0.2 eV or more, and in some cases are
qualitatively wrong.

For the ground state Si vacancy, defect state banding in in-
adequately sized supercells gives a corrupted electronic state
that collapses to a symmetric Td structure rather than the
actual C3v structure cleanly favored in the larger supercells
(by more than 0.2 eV). This is akin to the error that small
supercells make in describing the neutral Si vacancy in silicon
that favors the incorrect Td symmetry rather than the actual
D2d ground state.

The Si interstitial Sii-Ti(C) converges very badly with super-
cell size, and completely fails in the smallest 64-site supercell.
This failure has yet another origin: the electronic states states
are very close to the conduction band edge (CBE) and cannot
be unambiguously distinguished from a CBE state. These
delocalized occupied states interact strongly across supercell
boundaries.

This extrapolation study for just the neutral defect reveals
that 64-site supercells are unreliable for studies of defects in a
wide-gap semiconductor such as SiC. Supercells with 512 site
sites are (mostly) converged, while 216-site supercells should
be adequate except for edge cases that should be examined
more closely. In Table IV, defect energies extracted from
Oda et al. [13], using PBE and HSE are also listed. The
good agreement with their PBE results for this selection of
(neutral) defects (excepting the problematic Sii-Ti,C), is again
confirmation that the local orbital basis here gives a represen-
tation of defect properties comparable to a highly converged,
plane-wave basis, separated from the more contentious and

complicated issues associated with charge boundary condi-
tions and the band gap problem.

A. Charged defect spectrum and effective defect band gap

Before we discuss the detailed features of individual de-
fects, we present the full defect level spectrum, assembled
from a full set of size-converged calculations, including all de-
fect charged states that yield localized levels in the band gap.
We show this set of computed thermodynamic levels for all
the defects in Fig. 4. This level diagram distinguishes between
the simple silicon vacancy and its site-shifted counterpart (C
antisite-C vacancy pair) but otherwise ignores any barriers
between different configurations of other bistable defects (di-
vacancy, Si interstitial) that might impede observing a given
transition in a thermal measurement such as DLTS. These
defect levels are obtained by taking total energy differences
between the fully relaxed lowest energy structure for each
defect in each charge state, each verified to to arise from a
defect calculation with the Fermi level in the KS band gap, i.e.,
localized eigenstates. Calculating the available charge states
for each defect, using the methods described above to deter-
mine ionization potentials, leads to a set of levels in the band
gap all defined relative to each other. When considered to-
gether, the collected thermodynamic levels define a minimum
span of the effective defect band gap. We do not determine
directly where the band edge is. It may be inferred by the
identification of a shallow level (but not too shallow, as such
levels may not be distinguished from the edges). For this set
of calculations, the zero is set by aligning to the lowest clearly
localized state, which in this case is the (4 + /3+) silicon
antisite defect level. The highest state shown in Fig. 4 is for
v′

Si, at about 2.5 eV. This particular state is still not converged
at 512 atoms, continues to fall in larger systems, while also
showing increased interaction with conduction band states.
We judge this is possibly not a valid charge state in these
PBE calculations, but include it for completeness. The highest
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FIG. 4. Computed thermodynamic defect levels for 3C-SiC cal-
culated using PBE functional and a total energy approach using the
LMCC method for charged defects, extrapolated from the 512-site
supercell results. From left to right, the defects are silicon vacancy
(simple v′

Si, and site-shifted vSi-CSi), carbon vacancy, divacancy, sili-
con antisite, the diantisite, carbon interstitial, and silicon interstitial.
Each mark indicates the level where the system charge changes,
and the expected defect charge is indicated by numbers between
the predicted transition levels. For example, for the simple silicon
vacancy v′

Si, the charge state is (2+) below a Fermi level of ∼0.4 eV,
and changes at this level to be (1+) up to the next level at ∼0.7 eV.
The effective zero (valence band edge) is aligned to the lowest clearly
defined, well-localized defect level, in this case the (4 + /3+) silicon
antisite defect level. The rest of the spectrum is placed in relation
to the effective zero, and together, the extent of the levels defines a
minimum extent of the effective defect band gap. The v′

Si (2 − /1−)
(in parenthesis) shows contamination by conduction band states with
supercell size, and is likely not converged at 512 atoms. This is
possibly not a valid charge state in these PBE calculations, but likely
only marginally outside the gap, and thus included for completeness.

fully converged, well-defined charge state is the divacancy
(vv) (2−). The full span of defect levels is just under 2.4 eV,
right at the experimental band gap for this material.

Just as in the case of defect level diagrams in silicon
[20], gallium arsenide [22], and in a CsI ionic crystal [21],
generated with the LMCC method and a conventional local
functional such as PBE, the defect levels computed in 3C-SiC
with the PBE functional and presented in Fig. 4 are unhin-
dered by a band gap problem and, indeed, span the full width
of the experimental band gap.

The width of the effective defect band gap is not imposed,
scaled, or otherwise fitted in these PBE calculations. Unlike
a more empirical hybrid functional approach, which is fit to
reproduce the experimental band gap [17], the width of the
effective defect band gap is not predetermined in these PBE
calculations. The band edges are not set by a KS band edge,
but arise naturally as upper and lower bounds of the defect
ionization potentials computed as total energy differences in
Eq. (4).

A possible counterargument is that the expanded defect gap
is the accidental consequence of an artificially inflated gap

TABLE V. Supercell band gaps.

Supercell (number of atoms)/k grid LDA PBE

(2×2×2) [64]/32 1.906 1.944
(3×3×3) [216]/22 1.906 1.944
(4×4×4) [512]/22 1.674 1.718
(5×5×5) [1000]/22 1.556 1.603
· · · · · · · · ·
�→X 1.326 1.380

Effective defect gap (∼PBE)a 2.4

Experiment: 2.417 eV (Ref. [43])

aThe full defect series needed to identify the defect level bounds
was not completed in the LDA, but the partial results show close
similarity to the corresponding PBE results.

from performing the calculations in finite supercells and dis-
crete k grids. The summary of the computational band gaps in
Table V probes this notion. The (2 × 2 × 2)/32 and (3 × 3 ×
3)/22 supercells, having formally equivalent k points, share
the same supercell band gap, 1.9 eV. This shrinks to 1.7 eV in
the (4 × 4 × 4)/22 supercell and yet further to 1.6 eV in the
(5 × 5 × 5)/22 supercell. While larger than the PBE band gap
(1.38 eV), these are all smaller than the computed effective
defect band gap. Moreover, as will be shown below, most
defect levels are mostly insensitive to the supercell size and
the associated shrinking supercell KS gap. See Fig. S1 in
Ref. [48] for the cell-size convergence of the full defect level
diagram.

B. Intrinsic defects

The details of each defect are presented in this section.
Individual defect level figures are aligned to the level positions
obtained from the full gap-spanning defect spectrum shown in
Fig. 4.

1. Silicon vacancy - v′
Si

The silicon vacancy is the iconic defect of SiC, quite simple
and well-understood in some respects, but thus far completely
inscrutable in others. It is the subject of numerous experimen-
tal [49–51] and computational studies [5,7,8,11,13–15,52,53]
that have yet to resolve very basic questions about the defect.

The vSi in SiC was identified early to be metastable [52]. It
adopts both a simple v′

Si and a site-shifted configuration v∗
Si as

depicted in Fig. 5, where a neighboring C atom shifts to the

FIG. 5. Schematic depiction of the vSi bistability between the
simple vacancy v′

Si and site-shifted vacancy v∗
Si (= vCCSi).
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FIG. 6. The defect levels for the simple silicon vacancy, v′
Si (left)

and site-shifted vacancy v∗
Si (= vCCSi) (right). For v′

Si, results from
left to right are: LDA using small systems from Torpo(LDA1) [14]
and Zywietz(LDA2) [5], 216 atoms using PBE and HSE levels from
Oda [13] (black lines and solid triangles) and the current results using
LMCC-PBE for system sizes 64, 216, 512, and 1000 atoms, depicted
using open brown circles, solid green triangles, open blue squares,
and solid red pentagons, respectively. For vCCSi, Oda PBE and HSE,
and the current LMCC-PBE results are shown. The charge states for
each level are depicted as in Fig. 4. For the v′

Si, differences in the
levels are due due to both boundary conditions, and differing defect
geometry. The LDA, PBE, and HSE results have a Td ground state
structure for all charge states. For LMCC, we have a sweep through
differing ground state geometry with each charge. The geometry
is Td (2+) → C2v(1+) → C3v(0) → Td (1-). At (2-), the system
remains at Td . The quality of this higher charge state is question-
able, showing differing levels of contamination with CB states that
increases with supercell size. It is included to show the limits of the
shallow band edge, marking the upper limit of the possible gap. The
v∗

Si results show reasonable agreement with the HSE calculations.

vacated Si site to form a CSi-vC pair. We find the simple v′
Si

adopts stable charge states from (2+) up to (almost?) (2−),
and the site-shifted v∗

Si takes stable charge states from (2+) to
(0). In GaAs, the v′ and v∗ was shown to interconvert with low
barriers [24] motivating treating the metastability as a single
defect. Computing such barriers is beyond the scope of this
work, and is expected to exhibit complex behavior involving
allowed spin transitions in concert with atomic motion and
changing with the system fermi level. In addition, calculations
from Bruneval and Roma [11] and Van Ginhoven [54] indicate
large (>2 eV) barriers for interconversion. Therefore in the
current work, we present results for v′

Si and v∗
Si levels as

separate defects in Fig. 6.
The vSi(1−) is well-understood. Itoh et al., observed a

defect center in EPR (electron paramagnetic resonance)[49]
they labeled T 1 with Td symmetry, with a quartet spin state,
and assigned to the symmetric Td v′

Si(1−). In a symmetric Td

structure, the v′
Si exhibits a triply degenerate t2 state in the gap.

In the (1−), each of these is occupied by one electron, high-
spin coupled in line with Hund’s Rule, into a 4A2 (S = 3/2)
state, as shown in DFT calculations [14]. This assignment was

further bolstered by agreement of calculated hyperfine tensors
[53] with the data. Our results agree, predicting a high-spin
Td (1-) ground state from the smallest 64-site to the largest
1000-site supercell.

Unambiguous characterization of other charge states of the
vacancy, either in experiment and especially in computational
modeling, has been more challenging. Adding or removing
electrons from the (1−) would lead to a degenerate total
ground state, where Jahn-Teller instability should trigger a
structural distortion from the Td to a lower energy structure
that eliminates the degeneracy. Torpo et al. [14] did not find
a distorted structure for any charge state of v′

Si nor did later
computational studies [5,7,8]. This result was particularly
perplexing for the neutral vacancy. The DFT results indicate
a mid-gap range (1 − /0) level, indicating an ostensibly lo-
calized neutral defect, which should lead to a triplet-spin Td

structure that should be observable in experiment. Experi-
ments showed no signs of this DFT-predicted structure [49,50].

Deak et al., having anticipated, and not found, a D2d distor-
tion analogous to that seen for the vacancy in silicon, reasoned
that a proper description of v′

Si(0) in the Td -conserving struc-
ture would be indescribable within the one-electron picture
of DFT and require a multi-configurational description [7].
In a small cluster-based configuration interaction (CI) cal-
culation, they determined that a singlet state (1E) would be
be 0.17 more stable than the high-spin triplet. Introducing
a “mixed spin” approach, exploring anti-ferromagnetic spin
configurations within a reduced D′

2d electronic symmetry (but
within an ionic configuration and total electron density that
remained Td ), Zywietz et al. [15] also found a S = 0 state
to be lower than the high-spin triplet, by 0.02 eV in LDA
and 0.06 eV in GGA. Oda et al. expanded upon this analysis
to more general spin configurations and other charge states
and found a mixed-spin S = 0 state to be 0.22 and 0.07 eV
lower than the high-spin Td triplet state using PBE, and HSE,
respectively [13].

We find a distorted C3v structure to be the ground state for
the neutral v′

Si. This is a conventional (for DFT) triplet-spin
structural distortion that eliminates the Jahn-Teller degeneracy
in the Td symmetry. As shown in Table IV, this distorted
triplet-spin C3v structure is 0.26 eV below the Td triplet state,
a margin that surpasses energy lowering computed for the
singlet-Td in either the CI [7] or mixed-spin DFT [5,13] cal-
culations. This result indicates the dominance of exchange
coupling among the carbon dangling bonds of the defect and
favors a high-spin triplet over these singlet-spin candidates as
the ground state.

The L3 center observed in ODMR (optically detected mag-
netic resonance) was a triplet-spin, C3v defect and believed to
be vSi-involved. While plausible to assign this C3v symmetry
defect to this experimental defect center and thereby resolve
the mystery of the missing vSi(0), the differing annealing
behavior observed for the T 1 = vSi(1−) EPR center [49] and
the L3 ODMR center [50] leads to caution in making this
assignment.

This unexpected (after so many previous studies) result
requires explanation. A rationalization comes from the failure
to obtain a localized C3v(0) in the 64-site cell. Such a highly
localized state (as evidenced by the near-perfect convergence
in larger supercells) would be expected to manifest also in the
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smaller 64-atom cell. It does not because of finite cell errors.
The defect banding is large enough to overwhelm the degener-
acy splitting induced by the lowered symmetry. The electronic
KS state is corrupted as a mixed orbital state, the averaged
occupations cause a collapse to the symmetric Td structure.
This misbehavior would be exacerbated by the conventional
practice of using an artificial electronic temperature in DFT

calculations (our calculations are T = 0). This smearing tends
to reduce differentiation between the three t2-descended state
occupations, biasing toward a Td description with equal occu-
pations. Early studies involved small O(100) supercells were
not able to isolate a stable C3v , and later studies emphasized
what was deemed a more plausible D2d distortion instead
[7,15].

As presented in Table IV, a triplet-spin C2v distortion also
results in lower energy, although not as low as the C3v . We
were unable to find a significant D2d distortion from the vSi(0),
significant being defined as the ∼0.01 eV practical resolution
to differentiate defects within the DFT calculations. This re-
produces the earlier results concerning the stability of the D2d

[7,14,15].
The Td and C3v lie on different DFT potential energy sur-

faces. The ground state configuration in the Td (0) has an
averaged 2/3 electron occupation in each of the three degen-
erate t2 orbitals: t2/3

2,x t2/3
2,y t2/3

2,z . Projecting up to the Td symmetry,
the ground state configuration for the C3v maps to e↑e↑a0

111 →
t↑
2′t

↑
2′t0

2′,111 (rotating the t2 basis to orient one of them along
the 111 axis). Leaving aside that the average occupations
in the Td structure leads to an improper mixed state while
the C3v structure provides a proper single-electron, integer-
electron-per-orbital state, the important difference lies in the
spin density distribution produced by these different elec-
tronic configurations. The Td structure (and, incidentally, the
symmetry-reduced D2d structure) distributes the spin density
equally over all four neighboring carbon atoms. In the C3v ,
the triplet coupled electrons occupy degenerate e orbitals with
a node along the (111) axis. The spin density is distributed
over only three carbon centers. This strengthens the exchange
coupling between the electrons, resulting in a larger spin po-
larization from the more localized electronic spin density.

The spin doublet v′
Si(1+) also undergoes a Jahn-Teller dis-

tortion in these calculations, to a C2v structure that is >0.1 eV
lower than the Td . This distortion strengthens with increasing
cell size, confirming its stability,

We could not isolate any stable distortion in the v′
Si(2−).

Given the presence of the level right at the band edge (Fig. 6),
this additional electron is very delocalized at best, and un-
able to drive a significant distortion. The calculations indicate
contamination with the CBE, a hybridization increasing with
larger supercells. We judge this is possibly not a valid charge
state in these PBE calculations, but likely only marginally
outside the gap.

The site-shifted v∗ is far lower energy for all of its stable
charge states. The v∗(0) is already almost hybridized with the
CBE, so no v∗(1−) exists. The v∗(0) is 1.0 eV more stable
than v′(0), the (1+) more stable by more than 2.4 eV and the
(2+) by more than 3.5 eV. In p-type SiC, the site shift will
dominate and the simple vacancy will occur only in negligible
populations.

The defect levels constrained to the site-shift structure
are 1.5 eV above the VBE for (2 + /1+) and �2.1 eV for
(1 + /0). These differ greatly from earlier PBE defect levels
[13], but instead are in good agreement with the HSE hybrid
functional defect levels presented by Oda et al., as illustrated
in Fig. 6. That the quoted PBE levels differ can be directly
attributed to the use of a more rigorous LMCC-based treat-
ment of the charge boundary conditions in the current work. It
is intriguing that the HSE results obtain similar results as the
LMCC-PBE, despite the lack of proper control of the charge
boundary conditions in the HSE.

Considering the v′
Si and v∗

Si as a single defect, the vSi(0)
is not thermodynamically stable for any position of the Fermi
level in the gap. The stability jumps from v′

Si(1−) to v∗
Si(1+) in

what would be a −U (1 − /1+) transition. Such an electronic
transition is unlikely to be activated at reasonable tempera-
tures due to the predicted large barriers for the site shift in
3C-SiC.

Figure 6 displays the defect levels for the simple silicon
vacancy, v′

Si and site-shifted vacancy v∗
Si (= vCCSi) as com-

pared to corresponding previous studies using LDA [5,14]
and PBE/HSE [13]. The LMCC results plainly demonstrate
the need for larger supercells to reliably predict the charged
states of this defect. These differences are due to both the
boundary conditions, and also the different (distorted) defect
geometries. For the v′

Si, differences in the levels are due to
both boundary conditions, and differing defect geometry. The
LDA, PBE, and HSE results have a Td ground state struc-
ture for all charge states. For LMCC-PBE, we have a sweep
through differing ground state geometry with each charge.
Reading upwards with the number of electrons (2+) → (1+)
→ (0) → (1−), the geometry is Td → C2v → C3v → Td .
At (2−), the system remains at Td . As discussed above, the
quality of this (2−) state is questionable, showing differing
levels of contamination with CB states that increases with
supercell size. It is included to show the limits of the shallow
band, marking the upper limit of the possible gap. On the other
hand, the v∗

Si, with its clearly defined geometry and strong
localization for all examined charge states, shows remarkable
agreement between the jellium-HSE and our LMCC-PBE re-
sults.

2. Carbon vacancy - vC

The immediate environment of the carbon vacancy in SiC
is chemically equivalent to the silicon vacancy in silicon: a
vacant site with four silicon nearest-neighbor atoms, each with
an inward-directed dangling bond. As in elemental silicon,
this neutral vacancy distorts to a paired-D2d structure, as does
the positive vacancy, while the doubly ionized vacancy returns
to the symmetric Td structure.

As shown in Table VI, the neutral vacancy in SiC has a
stronger distortion from a Td to a pair-D2d than in Si. The
cell-converged distortion energy �ETd

f is roughly the same
(0.4 eV), but the paired-D2d distortion dominates in even the
small 64-site SiC supercell. In silicon, supercells are signifi-
cantly more affected by finite-size errors, to the point that the
64-site system is so badly compromised that a D2d structure
cannot be isolated.
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TABLE VI. Distortion parameters for 3C-SiC:vC (carbon vacancy in SiC) and Si:vSi (silicon vacancy in silicon). ED2d
f is the formation

energy of the neutral D2d ground state geometry. �ETd
f is the difference in energy from the Td geometry, the amount by which the D2d is

favored. The parameter ct/at is a measure of tetragonal (D2d ) distortion in the near neighbor atoms, as defined in Reference [29]. RD2d
Si-Si and

RTd
Si-Si are the distances between the nearest-neighbor silicon atoms adjacent to the vacancy site in SiC and pure Si, respectively.

ED2d
f �ETd

f RD2d
Si-Si RTd

Si-Si

(eV) (eV) ct/at (Å) (Å)

vC (3C-SiC)
(2×2×2) 3.911 −0.39 1.244 2.782 3.117
(3×3×3) 3.841 −0.50 1.259 2.764 3.202
(4×4×4) 3.823 −0.45 1.265 2.758 3.258
(5×5×5) 3.822 −0.38 1.263 2.759 3.278
vSi (silicon)
(2×2×2)a 3.619 −0.00 1.015 3.587 3.609
(3×3×3) 3.616 −0.17 1.306 3.069 3.505
(4×4×4) 3.595 −0.32 1.305 3.032 3.493
(5×5×5) 3.589 −0.41 1.309 3.021 3.494

aCollapses to Td because of corrupted electronic state.

The D2d tetragonal distortion ratio ct/at [29] converges far
from the Td ideal value of 1. The SiC vacancy has shorter
bonds for Si-Si pairs, as seen in RD2d

Si-Si, in part because the
smaller SiC lattice starts with shorter Si–Si distances across
a vacancy.

A comparison of electrical levels is shown in Fig. 7. In
silicon, the D2d (0) → Td (2+) structural rearrangement dis-
plays a negative-U transition near the VBE edge [55], the
(0/1+) defect level below the (1 + /2+) charge transition.
Early LDA studies [5,8,56] echoed this behavior in 3C-SiC,
with −U ranging from 0.15 [8] to 0.31 eV [5,57]. More recent
calculations [13] and our converged PBE results do not show
−U , with the vC(0/1+) level at VB + 1.81 eV being 0.06 eV
above the vC(1 + /2+) level at 1.75 eV. We find that the

FIG. 7. Defect levels for the carbon vacancy, vC. LDA results
from Zywietz (LDA1) [5], Bechstedt (LDA2) [57], and Bockstedte
(LDA3) [8], and PBE and HSE results from Oda [13] are depicted to
from left to right next to the current LMCC-PBE levels. System sizes
for LMCC-PBE are indicated as in Fig. 6. The relaxed structure is
the same for all system sizes, and the spacing of the ionization levels
is well converged at 216 (green triangle) or 512 (blue square) atom
supercells.

vC-D2d is unambiguously a deep defect (levels 0.6 and 0.7 eV
below the CBE), with its Kohn-Sham states cleanly inside the
Kohn-Sham band gap.

Our PBE defect levels differ from Oda’s PBE results and
instead resemble their HSE0.15 defect levels [13]. The vC(0)
PBE formation energies (Table IV) only differ by 0.1 eV, and
we again attribute the modest differences in the defect level
diagram to use of the more rigorous treatment of charged
defects via the LMCC. Additionally, in the distorted D2d

structure, the current results exhibit no contamination with
the CB [13] and thus lie deeper in the gap than the HSE0.15
results.

3. Divacancy - vv

As for the silicon vacancy, vSi, the divacancy in SiC can
either appear as the simple divacancy vv′, or undergo a site
shift to vv∗, as shown in Fig. 8. We discuss the configurations
in detail separately below. In Fig. 9, we show the thermody-
namic levels for each structure separately, and then combined
as that might correspond better to experimental observations.

The simple divacancy. The nearest-neighbor vacancy pair
vC-vSi, the simple divacancy vv′, has been identified as an
extremely stable defect in 3C-SiC [58]. The vv has proved
to be important defect in materials such as GaAs [24] where
it was shown to be a prominent defect center in irradiated
material. While a high absolute formation energy of the vv,
7.17 eV from Table IV, precludes any significant population in
equilibrium grown material, the neutral divacancy is as stable

FIG. 8. Schematic depiction of the vvSi bistability between the
simple divacancy vv′ and site-shifted divacancy vv∗ (= vC-CSi-vC).
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FIG. 9. Thermodynamic levels for the divacancy complex. From
left to right, levels for the simple divacancy (vv′), the site-shifted
(vv∗), and the combined levels using the lowest energy configuration
for each charge state. Charge states are indicated as in Fig. 4, and
LMCC system sizes as in Fig. 6.

as the simple Si vacancy, suggesting it might be a common
defect in implanted/irradiated SiC.

In an early LDA study, Torpo et al. [58] found charge
states ranging from (2+) through (2-) for vv′ in 3C-SiC,
contingent on the means used to incorporate finite cell electro-
static errors (the (2+) might disappear into the CB). Gordon
et al. despite finding stable (1−) and (2−) charge states
in 4H-SiC, found no stable negative charge states using
the HSE functional for vv in 4C-SiC [59]. The neutral vv

was claimed to be the stable charge state for Fermi levels
above VB + 1.0 eV.

For the simple vv′, we find stable charge states ranging
from (2+) through (2−), confirming the earlier LDA result
[58]. The vv′(0) adopts a C3v structure, the pair of electrons in
the degenerate e doubleton being triplet coupled in the ground
state. The intermediate (1−) and (1+) charge states would
lead to degenerate electronic configurations in C3v .

Our results exhibit Jahn-Teller-induced distortions to
doublet-spin C1h, distortions that increased in cell size,
amounting to more than 0.03 eV for the (1−) and more than
0.25 eV for (2+). The doubly charged defects are nondegen-
erate and remain singlet spin in a C3v structure.

The 64-site supercell proved inadequate. Finite cell er-
rors overwhelmed the correct description of the defect. The
singly charged defects, rather than undergoing a Jahn-Teller
distortion, collapsed to the unphysical C3v . Defect state band-
ing from the dense array of supercell defects corrupted the
electronic state occupations. Despite this failure in the small
64-site cell, the results proved well-converged in just the next
larger 216-site supercell.

The simple divacancy has defect levels that almost span
the full SiC band gap. The vv′(2 + /1+) is 0.36 eV above the
VBE, stepping through levels at 1.18, 2.13, and ultimately to
a vv′(1−/2−) level at 2.42 eV. The KS occupied states of the
latter are cleanly in the gap, separate from distinct CBE KS
marker states. This vv′(2−/1−) transition serves as the lower

bound on the location of the conduction band edge on this
energy scale.

The results for this single defect refute the prevalent belief
that a KS band gap problem compels a defect level band gap
problem. The KS gap for PBE is only 1.33 eV, yet the range
of properly referenced, total-energy-derived defect levels in
vv′ by itself span just over 2.1 eV. We note that the levels
extrapolated using the Jost model from the 216-site supercell
and the 512-site supercell almost exactly match; the largest
difference is only 26 meV. This precision of agreement and
fine-scale convergence is achieved from an analysis includ-
ing Jost long-range screening energy contributions that are
100 times larger (see Table III). This indicates, first, that the
vv′, despite failing in the 64-site supercell, is well-localized
in the 216- and 512-site supercells (otherwise such conver-
gence would be impossible) and, second, that the remaining
finite cell effects are predominantly due to classical dielectric
screening that is accurately approximated by the modified Jost
model.

Divacancy site shift. The divacancy in SiC can access yet
more highly charged states, down to (4+), through the site
shift as depicted in Fig. 8. A neighboring carbon atom shifts
into the vacated Si site to form a vC-CSi-vC complex we denote
as vv∗. While a site shift in a simple single vacancy is found
to be relatively common in other compound semiconductors
[22] and manifests in the vSi discussed in above, it has not
been documented in a divacancy.

The vv∗(0), the highest stable site shift, has a formation
energy 2.1 eV above the simple vv′(0). As electrons are
removed, however, it becomes relatively more stable very
quickly, as the Si dangling bonds in the vv∗ ionize more easily
than the C dangling bonds in vv′. The vv∗(1+) is only 1.3 eV
above the vv′(1+) and comes within <0.2 eV in the (2+)
charge state.

The site-shift reconfiguration of the defect induces a
negative-effective-U (1 + /3+) transition. The vv(2+) is
thermodynamically unstable and the vv′(1 + /2+) level at
0.36 disappears, subsumed into the −U vv′(1+)/vv∗(3+)
transition emitting two electrons at 0.72 eV above the VBE.
The divacancy’s final ionization is the new vv∗(3 + /4+)
level at 0.66 eV.

The full divacancy can adopt charge states ranging from
(4+), in its site-shift vv∗ form, to (2−) in its simple vv′ form.
This indicates the importance of not only fully exploring local
distortions in a defect’s configuration but also investigating
potential site shifts in all vacancy-related defects, including
divacancies.

4. Silicon interstitial - Sii

The silicon interstitial, Sii has two competitive structures,
previously identified as the symmetric C2v split-(110)Si and
the tetrahedral interstice with carbon near neighbors Ti(C)

[8,9,13,60]. After an extensive search through split-(001) and
-(110) configurations at both C and Si sites and Ti(C) and
Ti(Si) sites, including consideration of symmetry lowering dis-
tortions, we confirm that the Ti(C) site (high-spin) and the
C2v-(110)Si (low-spin) are the dominant structures for Fermi
levels across the band gap. We find that both configurations
can take charge states from (4+) through (0), although the
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FIG. 10. The defects levels for the silicon interstitial with split
configuration C2v-(110)Si (left) and tetrahedral interstice with carbon
near neighbors Ti(C) (right) shown as separate defects. Results using
PBE and HSE by Oda [13] are shown with the LMCC-PBE results
for all system sizes. Charge states are indicated as in Fig. 4 and
LMCC system sizes as in Fig. 6. The full Sii level diagram in (Fig. 4)
combines these defects to traverse from the (110)Si(0) through the
positively charged Ti(C) sites.

Ti(C)(0) is likely a shallow state. The one unanticipated result
is the finding that the split-(110) (2+) defect prefers a triplet-
spin state rather than the singlet, by 0.24 eV, prompted by an
accidental near-degeneracy between two orbitals.

For the neutral interstitial, the two structures are close in
energy, (see Table IV) with (110)Si ∼0.1 eV lower in the
largest supercell. The (110)Si(0) formation energy converges
well with larger cell size, but the Ti(C) site converges poorly,
and gives a very bad (>1 eV higher) result for the 64-site
supercell. For positive charge systems, the Ti(C) site is favored.
At (+1), it is more favorable by 0.4 eV, and the margin
increases with charge state through the (4+), to 3.2 eV.

Figure 10 shows the site-resolved computed level diagrams
for (110)Si(0) and Ti(C). As the spinless (110)Si defect was
used as the Jost model calibration benchmark in Fig. 3,
it is little surprise that the spin-polarized (110)Si exhibits
near-perfect convergence with cell size here. This is a well-
localized defect in all its charge states. The Ti(C) convergence
is less good, especially for the 64-site cell, and particularly
for the (0/1+) level, which changes 0.5 eV across the cell
sizes. This kind of large drift in the levels can be indicative
of contamination with a band edge, a notion supported by the
severe error in the neutral formation energy in the 64-site cell,
as shown in Table IV.

Examination of the Ti(C)(0) KS eigenstates does reveal
potential hybridization with the CBE, not fully resolved in
even the largest 1000-site supercell: the defect KS state and
a shifted CBE marker state in the defect calculation bracket
the CBE KS eigenstate in the perfect crystal. The Jahn-
Teller-vulnerable (3+) and (2+) states show small, but clearly
resolved distortions (lowering the energy 0.03 eV) that shift
the interstitial along the (111)-axis, while the quartet-spin
(1+) conserves a nondegenerate Td symmetry. The triplet (0)

FIG. 11. Defect levels for the carbon interstitial, Ci. From left to
right results are from Lento (LDA) [9], Oda (PBE and HSE) [13],
and the current LMCC-PBE work. Charge states are indicated as in
Fig. 4, and LMCC system sizes as in Fig. 6.

also shows a distortion, although smaller (<0.02 eV relax-
ation), suggesting it too is a stable local state, but perhaps very
shallow.

Once again, our LMCC-PBE levels for the Ti(C) structure
resemble the levels computed with HSE more than the con-
ventionally referenced PBE [13]. Our (110)Si results exhibited
good cell-size convergence and the defect KS eigenstates were
cleanly resolved from the conduction band edge, unlike the
contamination reported by Oda et al. [13]. Instead, we find
that the (1−) charge state is not a stable charge state and does
not lead to a level in the gap.

5. Carbon interstitial - Ci

Figure 11 shows our predicted defect levels for the carbon
interstitial Ci. The LMCC-derived thermodynamic PBE defect
levels traverse stable charge states from (2+) through (1−).
The level structure is again similar to the HSE result from
Oda et al. [13] with the addition of a (1−/0) state near the
conduction band edge. Our results differ quantitatively from
their PBE levels as well as earlier LDA calculations [9], again
reflecting the more rigorous total-energy treatment offered by
the LMCC boundary conditions.

The ground state for all of the Ci charge states is a
(001)C-split configuration. The (2+) adopts a symmetric D2d

structure. A degeneracy in the symmetric (1+) defect prompts
a Jahn-Teller-like distortion to a twisted D2 structure [8],
favored by 73 meV over the C1h tilted-(001)C distortion. This
confirms that the Ci(1+) is a viable assignment for the D2-
symmetry T 5 center seen in EPR [49]. The triplet-spin D2d (0)
is nondegenerate and is the neutral ground state. In contrast
to Bockstedte et al. [8], we find the twisted-D2 (1−) to be
in the conduction band, but instead find the tilted-(001)C to be
ground state of the Jahn-Teller distorted Ci(1−). The excellent
convergence of the LMCC results with cell size illustrates the
effectiveness of the classical Jost screening in evaluating the
long-range screening energy in independently extrapolating
each cell result to the infinitely dilute limit.
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The (1−) charge state is barely in the gap. In the larger
supercells, it becomes contaminated slightly with the CBE,
explaining the minor drop-off with cell size for the (1−/0)
level at the largest cell size. This indicates this state is right at
or near the CBE, and the clean 216-site (1−/0) defect level at
2.38 eV represents a lower bound of the CBE. The positions
of the other transitions differ significantly from Lento’s LDA
levels [9] and Oda’s PBE levels [13]. This is certainly due to
the LMCC boundary conditions used here. With the (1−/0)
right near the band edge, we see no sign of a stable (2−) state
that might give rise to the (2−/1−) seen in these other DFT

studies.
While there is no stable (2−) state that leads to a (2−/1−)

level in the split-(001)C structure, we do find a (just barely)
stable (2−) in the split-(001)Si configuration. This (2−)
charge state is not thermodynamically accessible [it would
spontaneously emit an electron and reconfigure to the (001)C

(1−) structure]. Its direct ionization to (001)Si (1−) leads to a
level at 2.39 eV, and provides yet another confirmation on the
bound on the CBE.

6. Carbon antisite - CSi

We find the carbon antisite CSi (the isoelectronic carbon
replacing a silicon atom in the lattice) retains the Td symmetry
of the site and has no levels in the band gap. Only the neutral
charge state is stable. This result is in agreement with Torpo
et al. [4].

The smaller carbon atom induces a significant 12% con-
traction in the bond length to its carbon neighbors. Despite
this strong contraction, the formation energy is well converged
in even the small 64-atom supercell; the elastic finite size cell
error is surprisingly small.

The relatively low formation energy for the neutral defect,
3.67 eV (see Table IV), is nonetheless high enough that few
will be present in equilibrium grown material. Being chem-
ically and electronically inert, the defect is technologically
unimportant, except perhaps as a secondary defect that acts
as an invisible sink in radiation-damaged material.

7. Silicon antisite - SiC

The silicon antisite SiC (isoelectronic silicon replacing a
carbon in the lattice) is complicated [4], and our analysis is not
entirely conclusive in even the largest 1000-atom supercells.

The SiC(0) remains Td , with bonds to the neighboring Si
dilated by 14% with respect to the perfect lattice. This 2.16-Å
Si-Si bond distance leaves the antisite Si-Si bonds strongly
compressed (9%) with respect to the ideal 2.37-Å Si-Si bond
distance (for bulk PBE silicon). The formation energy (see
Table IV) converges well with supercell size, although less
well than for the carbon antisite. The 64-site supercell silicon
antisite is almost 0.2 eV higher than the converged supercell
result, highlighting the impaired reliability of this small su-
percell. The severe compression in the antisite bonds pushes
a tripleton of degenerate states 0.19 eV above the Kohn-Sham
VB, and the silicon antisite therefore acts as a donor. The chal-
lenge becomes, theoretically, to resolve how many of these
six electrons in the p-like states ultimately can be extracted
from the defect before the remaining electron states are pulled
below the VBE.

The (1+) antisite is unambiguously a stable charge state,
with its KS eigenstates cleanly inside the KS band gap. In the
Td structure, the ionized defect would leave a triply degen-
erate state. We resolve a distortion to a C2v structure for the
SiC(1+). The positive antisite atom shifts slightly off-center
resulting in two slighter shorter 2.17-Å bonds and two longer
2.20-Å bonds to its neighbors. This distortion is already estab-
lished in the small 64-atom supercell and strengthens slightly
into the larger volume afforded by the larger supercells. The
total energy lowering from the Td (including spin polarization)
is 30–40 meV, again well converged in even the smallest
supercell.

The (0/1+) defect level converges well, to 0.65 eV above
the VBE. We point out this level is significantly different from
the KS scale, where the defect eigenstate at only 0.19 eV
above the VBE. This confirms the quantitative disconnect
between the total-energy-derived defect levels and defect KS
state eigenvalues documented in the Ga antisite in GaAs [29],
where the properly referenced total energy calculations led to
levels that were expanded from the energy scale given by the
KS eigenvalues.

A second ionization to form the Td (2+) still leaves the
defect KS eigenstates distinctly, if only slightly (0.05 eV),
above a set of KS eigenstates that can be cleanly associated
with the crystal VBE eigenstates. A significant spin polar-
ization energy (to a triplet) testifies to the continued locality
in this charge state, but this spin polarization shrinks with
cell size, from 0.10 eV in the small cell to 0.03 eV in the
1000-atom supercell. A small structural distortion in response
to the Jahn-Teller degeneracy is likely present, but amounts to
less than 20 meV, and cannot be cleanly resolved.

The third and fourth ionization become further delocalized
in these discriminating probes of locality [29]. However, a
distinct, seemingly unperturbed VBE marker eigenstate per-
sists with the defect eigenstates above it. It is only with the
removal of a fifth electron that the defect KS eigenstate clearly
sinks below the VBE marker eigenstate. This stability of the
antisite from the neutral to the (4+) charge state matches the
early LDA result of Torpo et al. [4]. These deeper ionizations
remain in the band gap, but lack the unambiguous signatures
used to discriminate deep states from shallow states in GaAs
[29]. This suggests that these highly charged states in SiC are
likely shallow states.

Figure 12 shows the SiC levels as function of supercell.
The computed levels reflect the analysis depicted above. The
(0/1+) level is cleanly a deep defect, converged at even the
smallest cells size, to �0.6 eV above the VBE. The (1 + /2+)
level also converges cleanly in larger cells, to ∼0.4 eV. The
deeper transitions, however, are still shifting strongly and not
fully converged at even at the largest cell sizes, consistent
with a weak localization associated with a shallow transition.
Our spin-polarized PBE levels in these large supercells are
roughly consistent with earlier LDA results. Torpo et al. [4]
had associated their LDA antisite levels with the H1, H2, and
H3 hole traps seen by Nagesh et al. [61] in DLTS (deep level
transient spectroscopy) experiments. It is not clear that these
traps correspond to the same defect, as they have different
annealing behavior but, particularly given that the H2 trap
was noted to possibly encompass two different levels, it is
very tempting to assign the four transitions of the Si antisite
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FIG. 12. Defect levels for the silicon antisite SiC. From left to
right are results from Torpo (LDA) [4], using a 128 atom super-
cell, experimental DLTS results from Nagesh (DLTS) [61], and the
current LMCC-PBE work. Charge states are indicated as in Fig. 4,
and LMCC system sizes as in Fig. 6. The DLTS results do not have
unambiguously identified charge transitions, are identified only as
H1, H2, and H3. The LMCC results clearly show that the smaller
supercells are not reliable for this defect, with higher charge states
disappearing into the VB for systems smaller than 512 atoms.

to these trap states. The accuracy in assigning the antisite
levels to the H1-H2-H3 traps would be consistent with the
typical accuracy (<0.2 eV) obtained using LMCC methods
for computed defect levels in Si [20] and GaAs [24].

8. Di-antisite - SiCCSi

A diantisite is a common defect in radiation-damaged ma-
terials, the consequence of sequential knock-ons channeled
along a (111) axis. Like the single antisites, the switch of
the C and Si along the bond creates an atomic configura-
tion isoelectronic with the undefected crystal. The diantisite
results very closely parallel the silicon antisite, exhibiting
stable charge states from (0) to (4+). The defect levels, with
almost identical level positions and almost identical cell-size
dependence, yield almost the identical defect levels diagram
for SiC depicted in Fig. 12 and would be experimentally in-
distinguishable from the silicon antisite.

V. DISCUSSION

The current results, despite a formal KS band gap prob-
lem, show better alignment with the hybrid functional results
[13] than nominally equivalent PBE results using a jellium
neutralization [13]. The principal reason for the difference
between our and previous DFT studies in 3C-SiC is that con-
ventional jellium-based approaches are unable to properly
reference charge states in supercell calculations. Given the
close similarities between HSE and PBE defect calculations
in Oda [13], with geometries and electron densities nearly
identical, the two approaches must follow nearly identical
potential energy surfaces. That their inferred energy for levels
differed so greatly indicates the importance of treating long-
range screening, and referencing to a perfect crystal potential.

The close parallel of HSE and our LMCC-PBE results in most
cases is evidence that the PBE and HSE give similar defect
results regardless of the nominal KS band gap.

In many comparisons to previous DFT results above, the
differences can be ascribed partially to the use of the small
supercells in older computational studies. Our analysis of
finite cell dependence indicates O(100)-site supercells are
qualitatively unreliable, that 216-site supercells are the min-
imum needed to get a qualitatively reliable result, and that
512-site supercells are the minimum needed to verify quan-
titative convergence. Moreover, there exist defects, especially
near band edges, that are not resolved even with large 1000-
site supercells. This observation documents that is is crucial
to perform finite-cell convergence tests in any DFT defect
study, even in wide band gap materials such as SiC, to make
predictions of defect character or the defect levels with any
confidence.

We reiterate that the cell size convergence observed in
these results is not the result of rescaling to an experimental
band gap or re-referencing to KS eigenvalues, but are the
results of total energy differences that have no information
about, or referencing to, band edges, either experimental or
Kohn-Sham eigenstates. The typical 10–20 meV agreement
between the levels computed for the 512-site and 1000-site
cells emerges naturally with long-range screening contribu-
tions up to 10 eV (Table III). This resolution is of order 1
part in 1000 of the long-range classical screening energy,
testimony both to the convergence of the finite-cell results, and
to the effectiveness of the modified Jost model to accurately
evaluate long-range screening effects in finite size supercell
calculations.

VI. CONCLUSION

We have presented a detailed analysis of defect structures
and energies for an extensive set of intrinsic defects in 3C-SiC.
This analysis is grounded in a systematic assessment and un-
derstanding of finite cell effects, documented to be converged
to infinitely dilute bulk limit and using rigorous boundary
conditions that are demonstrated to not manifest a band gap
problem in the computed defect levels.

We quantify the widely unappreciated magnitude of long-
range screening energy in finite cell supercells (almost 8 eV
even in the largest 1000-site supercells, more than three times
the band gap) and demonstrate the validity and effectiveness
of a simple modified Jost model to incorporate the long-range
classical dielectric screening outside the volume defined by
the supercell. The fine scale cell-size convergence, few 10’s
of meV, between the results between the largest supercells,
across almost the entire set of computed defect levels in-
cluding this large empirical term, testifies to the robustness
of an approach that takes rigorous and explicit account of
electrostatic boundary conditions in charged supercells using
the LMCC approach.

We tested for finite size errors and assess convergence of
the calculations to the infinite bulk limit in supercell cal-
culations that range from small 64 atom supercells through
1000-atom supercells. Supercells below 216 sites are shown
to give results that are qualitatively unreliable, while the re-
sults are shown to converge very well with larger supercells.
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This demonstrates the necessity of using larger supercells
to get reliable results, and of yet larger supercells to verify
convergence to a bulk limit. We expect that similar scale
supercells will be needed, and be sufficient, for investigations
of defects in other SiC polytypes, e.g., the technologically
relevant 4H-SiC where size-scaling verification studies are
more problematic.

The silicon vacancy had long been an unresolved mystery,
in particular, the vSi(0) had inspired hypotheses of exotic
behavior not exhibited in other SiC defects. The results here
showed that the singlet-spin Td structures that were superior
to the triplet-spin Td , are inferior to a triplet-spin distortion to
a reduced symmetry C3v structure, and that the other viable
charge states of the simple vacancy that showed Jahn-Teller
degeneracies also proved unstable to symmetry-lowering dis-
tortions.

The simple divacancy in SiC, touted as a possible candidate
as an optically active spin qubit center [62], was shown to
have an unprecedented site-shift bistability that would dom-
inate in p-type materials, similar to the vSi, and adds a new
unanticipated wrinkle that needs to be considered in future
studies. These benchmark defect results in the 3C-SiC will be
invaluable to inform investigations of the analogous defects in
the more common polytypes such as 4H-SiC.

The nominal KS band gap problem of PBE (and LDA)
proved not be a problem for defects in 3C-SiC. In fact, the
effective defect band gap, defined as the span of valid local-
ized defect transitions computed across all defects, was found
to match the experimental band gap very closely. The PBE de-
fect levels computed here showed closer alignment with good
quality (216-site) empirically tailored hybrid functional defect
levels [13] than with any earlier DFT levels computed lacking

rigorous control of the boundary conditions. The lingering
question this poses, however, is: given the evidence presented
here that a careful treatment of charge boundary conditions is
crucial to get a good description of defect levels, how does a
jellium-based hybrid functional approach do as well lacking
any such rigor in the electrostatics?
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