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Polynomial-time algorithm for studying physical observables in chaotic eigenstates

Pavan Hosur
Department of Physics, University of Houston, Houston, Texas 77204, USA

and Texas Center for Superconductivity, Houston, Texas 77204, USA

(Received 24 April 2020; revised 22 March 2021; accepted 14 May 2021; published 28 May 2021)

We introduce an algorithm, the orthogonal operator polynomial expansion (OOPEX), to approximately
compute expectation values in energy eigenstates at finite energy density of nonintegrable quantum many-body
systems with polynomial effort, whereas exact diagonalization (ED) of the Hamiltonian H is exponentially hard.
The OOPEX relies on the eigenstate thermalization hypothesis, which conjectures that eigenstate expectation
values of physical observables in such systems vary smoothly with the eigenstate energy (and other macroscopic
conserved quantities, if any), and it computes them through a series generated by repeated multiplications, rather
than diagonalization, of H and whose successive terms oscillate faster with the energy. The hypothesis guarantees
that only the first few terms of this series contribute appreciably. We further show that the OOPEX, in a sense, is
the most optimum algorithm based on series expansions of H as it avoids computing the many-body density of
states, which plagues other similar algorithms. Then, we argue nonrigorously that working in the Fock space of
operators, rather than that of states as is usually done, yields convergent results with computational resources that
scale polynomially with N . We demonstrate the polynomial scaling by applying the OOPEX to the nonintegrable
Ising chain and comparing with ED and high-temperature expansion (HTX) results. The OOPEX provides access
to much larger N than ED and HTX do, which facilitates overcoming finite-size effects that plague the other
methods to extract correlation lengths in chaotic eigenstates. In addition, access to large systems allows us to
test a recent conjecture that the Renyi entropy of chaotic eigenstates has positive curvature if the Renyi index is
greater than 1, and we find encouraging supporting evidence.
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I. INTRODUCTION

Some quantum many-body systems are integrable,
i.e., they contain simplifying properties such as easy-to-
diagonalize conserved operators, emergent conservation laws
resulting from strong disorder [1–4], or factorizable scattering
matrices [5–8] that make them computationally—and some-
times analytically—tractable. Most lack these properties and
are said to be nonintegrable (NI). Recent years have revealed
that energy eigenstates with finite energy density in NI quan-
tum many-body systems provide portals into diverse areas of
physics and related fields. For instance, their properties rele-
vant to condensed matter, quantum information, fundamental
physics, gravity, and statistical mechanics, respectively, in-
clude the facts that they encode finite-temperature phase
transitions [9,10], form a quantum error-correcting code
[11–14], enable reconstruction of the entire Hamiltonian
[15,16], mimic conformal field theories [17–20], which in
turn mimic quantum gravity under the holographic mapping
[21,22], and resemble equilibrium statistical ensembles if only
simple measurements are made [23–32]. Here, “simple” usu-
ally means few-body and local, and refers to observables
that real experiments can measure. Such eigenstates are also
relevant to chaos, which earns them the name “chaotic eigen-
states.” First, if a quantum system has a well-defined classical
limit and the classical system is chaotic, the quantum eigen-
states are expected to satisfy the eigenstate thermalization

hypothesis (ETH) [33–35]. Second, quantum systems with
ETH-satisfying eigenstates exhibit, in many cases, temporal
correlations that resemble the famous “butterfly effect” from
classical chaos [30,36–44]. These unique properties make
simulating chaotic eigenstates an important goal of quantum
many-body physics.

Unfortunately, this is a Herculean task. Chaotic eigenstates
occur at finite energy density above the ground state, which
puts them beyond the reach of the numerous powerful al-
gorithms available for studying ground-state and low-energy
physics. Quantum Monte Carlo methods can study physics at
finite energy density with polynomial effort in N , the number
of degrees of freedom, if a suitable discrete symmetry cures
the sign problem [45,46]. If there is no symmetry—in which
case the model is maximally NI—the sign problem persists
and the complexity becomes exponential. Finally, the lack
of simplifying properties in NI systems makes brute force
exact diagonalization (ED) of H exponentially hard. Thus, the
problem of simulating chaotic eigenstates is generally deemed
unsolvable.

In this work, we introduce an algorithm—the orthogo-
nal operator polynomial expansion (OOPEX)—that extracts
useful information from chaotic eigenstates with polynomial
effort. It achieves this efficiency by exploiting the ETH, which
states that 〈A(Ei )〉, the expectation value of any simple oper-
ator A in an energy eigenstate |Ei〉 of a NI Hamiltonian H ,
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acquires the same value in nearby eigenstates at finite energy
density in the thermodynamic limit:

〈A(Ei )〉 N→∞−−−→ 〈A(Ej )〉 if
Ei − E0

N
N→∞−−−→ Ej − E0

N
�= 0, (1)

where E0 is the ground-state energy [15,25,32,35]. For sys-
tems with a bounded spectrum such as lattice models, (1)
is expected when E0 refers to the highest energy state as
well. Specifically, we will express ρ(Ei ) = |Ei〉〈Ei| as a power
series in H , modified such that higher-order terms capture
progressively more complicated observables. As a result, trun-
cating the series retains only the simple, ETH-satisfying,
experimentally accessible observables. In contrast, ED com-
putes the full wave function exactly before extracting simple
observables from it. This unnecessary computation is the
source of ED’s inefficiency. ED also requires storing H as a
matrix in the local Fock basis, which consumes an exponential
amount of memory. Here, we use the operator Fock space
representation (OFSR) [47,48], which eliminates the need to
store and manipulate state-vectors or operator-matrices and
consequently reduces computational needs to merely polyno-
mial in N . Crucially, we show that the OFSR is the natural
language for developing the OOPEX.

The OOPEX is distinct from a simple high-temperature
expansion (HTX), which entails Taylor expanding e−βH in
powers of β but fails to exploit nonintegrability of the system.
As explained in Sec. II C, it also differs crucially from other
polynomial expansion methods by avoiding computing the
density of states D(E ). D(E ) is usually not well-approximated
by polynomials, but algorithms such as the kernel polynomial
method [49] find a polynomial approximant to it nonetheless
and thereby converge much slower.

II. THE ALGORITHM

A. ETH-based truncation

Suppose our goal is to compute 〈A(Ei )〉 = tr[ρ(Ei )A]. If
the spectrum of H lacks degeneracies, as is expected for NI
systems, the Krylov space defined by 1, H, H2, . . . , Hd−1,
where d is the total Hilbert space dimension, forms a complete
basis for the space of operators that commute with H . An
alternate basis for this space is simply ρ(Ei ), i = 1, . . . , d .
Therefore, ρ(Ei ) is expressible as a power series in H . A
simple power series, however, does not produce progressively
diminishing contributions to 〈A(Ei )〉, so its truncation error is
uncontrolled. To rectify this problem, we first orthonormalize
the Krylov space and write

ρ(Ei ) =
d−1∑
m=0

pm(Ei )pm(H ), (2)

where pm(x) = ∑m
k=0 akmxk is an mth degree polynomial

of its argument that satisfies the orthogonality condi-
tions: tr[pm(H )pm′ (H )] = δmm′ ,

∑d−1
m=0 pm(Ei )pm(Ej ) = δi j .

Intuitively, i and m are conjugate variables with respect to the
definition (2), analogous to the conjugacies of frequency and
time with respect to Fourier transformation. While exact, (2)
is impractical because d grows exponentially with N . We now
argue, and later demonstrate using the NI Ising model, that
O(1) terms suffice in practice. Then, (2) involves computing

FIG. 1. Schematic of the OOPEX philosophy. 〈A(E )〉 varies
slowly with E far from the edges of the spectrum if A satisfies
the ETH. pm(E ) are polynomials with m roots, so they oscillate
faster with E as m increases. Thus, according to (2), 〈A(E )〉 receives
dominant contributions from small m.

only the first few powers of H via multiplication, which is far
more efficient than diagonalizing it.

To see why only the first few terms suffice, recall that
pm(Ei ) is a polynomial in Ei of degree m, so it varies slowly
(rapidly) with Ei for small (large) m. Alternately, in analogy
with Fourier transformation, pm(E ) with small m has smooth
E -dependence, whereas pm(E ) with large m will oscillate
rapidly with E . Therefore, if 〈A(E )〉 varies smoothly with E
over a small energy window ε, it will receive contributions
mainly from the first few terms in Eq. (2). This will allow
us to truncate (2) and make the OOPEX a viable method.
The philosophy is depicted in Fig. 1. Physically, the trunca-
tion discards information that distinguishes between nearby
eigenstates, but this information is stored in complicated ob-
servables that are impossible to measure in practice anyway
[47].

How many terms must we retain without incurring signifi-
cant truncation error? We can crudely estimate an upper bound
on mc, the value of m at which convergence occurs, as follows.
Energy is extensive, E ∝ N , while 〈A(E )〉 varies negligibly
over any subextensive interval ε ∝ Nα; α → 1− according to
(1). Crudely assuming that the m roots of pm(E ) are real
and equally spaced across the spectrum, ε will contain a root
if m > E/ε ∝ N1−α 	 N . Choosing mc ∼ N1−α = O(1) as
α → 1−, 〈A(E )〉 will receive both positive and negative con-
tributions from the interval ε for m > mc. The net contribution
will thus be small, signaling convergence.

This crude estimate receives two competing refinements in
practice: (i) the cancellation of positive and negative contribu-
tions to 〈A(E )〉 within the window ε for m > E/ε is not exact,
which means more terms must be retained in Eq. (2) to achieve
convergence; and (ii) the roots of pm(E ) cluster near the mid-
dle of the spectrum, which means some cancellation occurs
even when m < E/ε, thereby decreasing mc. In Sec. III, we
find numerically for the NI Ising model that mc � 3 = O(1)
indeed.

195159-2



POLYNOMIAL-TIME ALGORITHM FOR STUDYING … PHYSICAL REVIEW B 103, 195159 (2021)

Algorithm 1. Main steps of the OOPEX algorithm.

1. Express H as a column vector in its OFSR, ||H〉〉.
2. Compute the Krylov space K = {||1〉〉, ||H〉〉, . . . , ||Hmmax 〉〉}

for preselected mmax via repeated multiplication with |H〉.
The multiplication rules are determined by the algebra
of the OFSR basis operators.

3. Decompose K as K = QR, where Q is a 4N × (mmax + 1)
orthogonal matrix and R is a (mmax + 1) × (mmax + 1)
upper-triangular matrix.

(a) Q is precisely the orthonormalized Krylov space:
Q = (||p0(H )〉〉, ||p1(H )〉〉, . . . , ||pmmax (H )〉〉).

(b) R provides pm(E ) as pm(E ) = ∑m
k=0(R−1)kmEk .

(c) Using Q and pm(E ), determine ||ρ(E )〉〉 using (2).

4. Compute the inner product 〈〈ρ(E )||A〉〉 = tr[ρ(E )A].

B. Compression using OFSR

So far, we have reduced the computation from diagonal-
ization of H to repeated multiplications of H , but the runtime
and storage costs are still exponential because H , written as
a sparse matrix in a local basis, has at least O(d ) terms. To
reduce these costs, we work in the OFSR [47,48], in which
operators are expressed as vectors in operator Hilbert space:

A =
∑

�

α�O� → ||A〉〉 = (α1, α2, . . . )T , (3)

where each O� is a product of local operators, tr(O†
�O�′ ) =

δ��′ , and the notation || · · · 〉〉 has been defined to denote vec-
tors in operator Hilbert space. For instance, basis operators
for an N-site lattice with spin-1/2 on each site can be taken to
be O� = 2−N/2 ∏⊗

i∈sites σα
i , where σα

i is either a 2 × 2 identity
matrix or a Pauli matrix, and

∏⊗ denotes an outer product.
The OFSRs of a basis operator, a local Hamiltonian, and a
Hamiltonian with long-range p-body interactions contain a
single term, O(N ) terms, and O(N p) terms, respectively, as
opposed to O(d ) terms in their usual matrix representation in
a local basis. As a result, the OFSR reduces storage costs from
O(d ) to O(N pmc ) if we truncate (2) at mc, which is polynomial
in N for mc = O(1). Naturally, the runtime is polynomial too
since only polynomially large vectors are manipulated.

The OFSR is the natural language for developing
the OOPEX, because each step of the algorithm, sum-
marized in Algorithm 1, has a simple interpretation in
terms of the linear algebra of the OFSR-vectors. For in-
stance, applying standard QR-decomposition on the matrix
(||1〉〉, ||H〉〉, ||H2〉〉, . . . ) yields the orthonormalized Krylov
space Q = (||1〉〉, ||p1(H )〉〉, ||p2(H )〉〉, . . . ) as well as the
coefficients akm = (R−1)km and hence the polynomials pm(E ).
Moreover, the trace of a product of operators reduces to the
inner product of their OFSRs: tr(B†A) ≡ 〈〈B||A〉〉, which al-
lows us to compute 〈A(E )〉 easily by choosing B = ρ(E ).
The main tradeoff is that the rules for multiplying operators
in their OFSRs must be derived from the noncommutative
algebra of the basis operators. We find that this added cost
is easily overcome by the other gains. In contrast, the OFSR
is not useful for diagonalization-based algorithms such as ED

because diagonalization of a matrix does not correspond to
any obvious operation on its OFSR-vector.

C. Optimum polynomial expansion

In this section, we place the OOPEX in the broad context
of polynomial expansion methods. We show that the OOPEX,
unlike other methods, avoids computing the density of states.
This eliminates a major source of error and is presumably
responsible for rapid convergence.

Consider expressing A(E ) = 〈E |A|E〉 in terms of prese-
lected functions qm(E ) that are orthogonal with respect to the
weight w(E ) over an interval E ∈ [−E0, E0]. One can always
shift and rescale the Hamiltonian H so that all the energies Ei

lie in this interval. A(E ) can be written as

A(E ) = w(E )

D(E )

∑
m

μA
mqm(E ), (4)

where ∫ E0

−E0

qm(E )qm′ (E )w(E )dE = Nmδmm′ (5)

and D(E ) = ∑
i δ(E − Ei ) is the density of states. The un-

knowns above are the moments μA
m and D(E ). μA

m are
given by

μA
m = 1

Nm

∫ E0

−E0

A(E )qm(E )D(E )dE = 1

Nm
tr[Aqm(H )]. (6)

The last expression is relatively easy to compute since it is
simply the Hilbert-Schmidt inner product of A and qm(H ), or
the inner product 〈〈A||qm(H )〉〉 in terms of their OFSRs. To
determine D(E ), one chooses A = 1, which gives

D(E ) = w(E )
∑

m

μD
mqm(E ) ⇒ μD

m = 1

Nm
tr[qm(H )]. (7)

Thus, computing A(E ) entails separately computing the mo-
ments μA

m and μD
m, using the latter to determine D(E ), and

finally using (4).
The OOPEX simplifies the above process by effectively

choosing w(E ) = D(E ) and Nm = 1. Then,

A(E ) =
∑

m

tr[Aqm(H )]qm(E ), (8)

where∫ E0

−E0

qm(E )qm′ (E )D(E )dE = tr[qm(H )qm′ (H )] = δmm′ . (9)

In other words, qm(E ) defined by (9) are precisely the pm(E )
defined in Eq. (2). Note that the OOPEX never explicitly cal-
culates D(E ). Thus, it avoids a major source of error compared
to other methods that approximate D(E ) and achieve faster
convergence.

A well-known example of such an algorithm is the ker-
nel polynomial method, which rescales energy so that E0 =
1 and uses qm(E ) = Tm(E )/

√
1 − E2, where Tm(E ) is the

mth Chebyshev polynomial of the first kind. qm(E ) are or-
thonormal with respect to the weight w(E ) = π

√
1 − E2

and are normalized as Nm = (1 + δm,0)/2. If H is an
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TABLE I. OFSR of H , given by (10), and H2 for N = 2. The
operators are mapped to N-digit base-4 integers as σ 0

r → 0r , σ x
r →

1r , σ y
r → 2r , σ z

r → 3r , while the coefficients become the nonzero
entries in a sparse vector indexed by the base-4 integers. Even though
the overall length of the sparse vector grows as 4N , the OOPEX only
involves ||Hm〉〉 for small m, so the number of nonzero entries that
need to be stored grows mildly with N as ∼(3N )m.

Operator Index ||H〉〉 ||H2〉〉
1 00 J2 + 2h2

x + 2h2
z

σ x
2 01 hx

σ
y
2 02

σ z
2 03 hz 2Jhz

σ x
1 10 hx

σ x
1 σ x

2 11 2h2
x

σ x
1 σ

y
2 12

σ x
1 σ z

2 13 2hxhz

σ
y
1 20

σ
y
1 σ x

2 21
σ

y
1 σ

y
2 22

σ
y
1 σ z

2 23
σ z

1 30 hz 2Jhz

σ z
1 σ x

2 31 2hxhz

σ z
1 σ

y
2 32

σ z
1 σ z

2 33 J 2h2
z

infinite-dimensional random Hermitian matrix, then Wigner’s
semicircle law states that D(E ) = 2

π

√
1 − E2, so that

w(E )/D(E ) = π2/2. Then, the kernel polynomial method is
equivalent to the OOPEX up to an overall factor of π2/2
that can be absorbed into Nm. However, D(E ) differs sig-
nificantly from the semicircle law for realistic systems with
the local Hamiltonian, and accurately computing D(E ) can
require hundreds of Chebyshev moments μD

m. In contrast,
the OOPEX requires calculating only the moments μA

m since
μD

m = 1
Nm

tr[qm(H )] = δm,0 is trivially known.

III. ISING MODEL RESULTS

We now demonstrate the OOPEX on a prototypical NI
spin model, namely the 1D Ising model with transverse and
longitudinal fields, given by

H =
∑

r

(
Jσ z

r σ z
r+1 + hxσ

x
r + hzσ

z
r

)
, (10)

where {σα
r } are Pauli matrices. H is integrable if any one

of J , hx, and hz vanishes, but is NI otherwise. This model
is ideal for demonstrating the OOPEX because it does not
harbor any nonanalyticities such as phase transitions at finite
temperatures. As a result, the analytic expansion in Eq. (2) is
expected to converge quickly. We choose J = 1, hx = −1.05,
and hz = 0.5, and open boundary conditions to prevent mo-
mentum conservation. Then, ||H〉〉 contains 3N − 1 nonzero
terms with N , N , and N − 1 terms equal to hx, hz, and J ,
respectively, and can therefore be stored as a sparse vector
of length 4N with only 3N − 1 nonzero elements. Comput-
ing ||Hm〉〉 entails evaluating indices while keeping track of
the noncommutative algebra of the Pauli operators, which is
the main computational cost of the algorithm. However, it
requires storing a modest ∼(3N )m real numbers. Table I shows

FIG. 2. Comparison between computations of (a) Czz(1), (b) Mx ,
and (c) Mz using OOPEX (solid with markers), ED (dotted), and
HTX (dashed) for an N = 14-site chain. OOPEX results for trun-
cation at m = 2 agree excellently with ED, whereas HTX shows
significantly worse agreement even at m = 6. Insets show the trun-
cation order-dependence of the OOPEX and HTX at ε1 = −0.8475
(blue) and ε2 = −0.2048 (red) marked in the main figure. The
OOPEX converges almost immediately, while HTX shows drasti-
cally poor convergence away from the middle of the spectrum.
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FIG. 3. Normalized |Czz(�r)| using OOPEX at ε2, where HTX
agrees with ED for Czz(1). (a) At N = 14, strong finite-size effects
produce an upturn for �r � 4 that survives up to m = 6. (b) For
N = 30, the upturn occurs near the opposite edge, so it is missing in
the data shown. Moreover, m = 5, 6 data nearly overlap, indicating
convergence. Finally, clear exponential decay for �r � 5 allow us to
extract ξ , while a constant decay rate for m = 3, . . . , 6 implies that
ξ converges for m = 3. (c) N = 40 data are similar to data in (b), but
the near-overlap of m = 4, 5 data indicates faster convergence.

0 5 10 15

10-4

10-2

100

ED

HTX, m=1
HTX, m=2

HTX, m=4

HTX, m=5

HTX, m=6

HTX, m=3

FIG. 4. Normalized |Czz(�r)| at ε2 for N = 14 obtained using
ED and HTX. ED data show strong finite-size effects at N = 14,
making it impossible to determine ξ . HTX data show exponential
decay for �r � 5, but the accessible N (� 14) is too small to perform
finite-size scaling of ξ .

the explicit OFSRs of H and H2 for N = 2. All calculations
were performed on a 2.7 GHz 12-core processor with 64 GB
random access memory.

A. Observables

We study three simple representative observables: the
two-point function Czz(�r) = 1

2(N−�r)

∑
r,r′=r±�r (〈σ z

r σ z
r′ 〉 −

〈σ z
r 〉〈σ z

r′ 〉) and the one-point functions Mi = 1
N

∑
r 〈σ i

r 〉, i =
x, z. Figure 2 compares the expectation values of Czz(1),
Mx, and Mz using the OOPEX, ED, and HTX. The match
between ED and OOPEX is striking for just m = 2 over
a wide range of energy densities ε = E/N , whereas HTX
deviates significantly from ED even for m = 6 for |ε| � 0.5.
The inset shows rapid convergence of the OOPEX with
m at both ε1 = −0.8475 and ε2 = −0.2048. In contrast,
HTX converges poorly (well) for the former (latter) ε; note
|ε1| > 0.5 > |ε2|. Since the OOPEX and HTX are both power
series-based algorithms that work best near ε = 0, better
performance of the former is likely due to its ability to exploit
the nonintegrability of the system.

In Fig. 3, we examine the behavior of Czz(�r) at ε2, where
both HTX and OOPEX concur with ED for Czz(1). Fig-
ures 3(a)–3(c) show that access to large N with the OOPEX
helps avoid finite-size effects and enables extracting a cor-
relation length ξ . In contrast, Fig. 4 shows that extracting a
correlation is unreliable using the HTX and impossible using
ED at N = 14. At a lower energy density (relative to the
ground state) ε1, HTX behaves poorly even for Czz(1), as
Fig. 2 shows. In stark contrast, we find that the OOPEX not
only works well for Czz(1), it works well enough for Czz(�r >

1) to determine ξ . Thus, we extract ξ at ε1 in Fig. 5 and
show that merely m = 3 yields ξ that is well-behaved in the
thermodynamic limit. The curves flatten for large �r because,
for range-R Hamiltonians, the OOPEX can compute bare two-
point correlations between sites separated by up to O(mR)
sites. For larger separations, connected correlations receive
contributions only from the disconnected parts. In the current
example, this means 〈σ z

r σ z
r+�r〉 = 0 for large enough �r so
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FIG. 5. Normalized |Czz(�r)| at ε1 computed using the OOPEX
for N = 30, 40, . . . , 300 at m = 2, 3 and for N = 30, 40, . . . , 90 at
m = 4. Exponential decay is discernible in each data set for 1 �
�r � m + 1, allowing determination of ξ . The inset shows finite-
size scaling of ξ at various fixed m. For N → ∞, the m = 3, 4 data
produce nearly identical values of ξ , indicating convergence.

that 〈σ z
r σ z

r+�r〉 − 〈σ z
r 〉〈σ z

r+�r〉 = −〈σ z
r 〉〈σ z

r+�r〉 ≈ 〈σ z
r 〉2 up to

boundary effects.

B. Entanglement entropy

We now consider the second Renyi entanglement entropy
S2(A) between the leftmost NA sites and the rest of the
system. For chaotic eigenstates, it is well known that S2(A)
follows a volume law: S2/NA = O(1). Figure 6 shows S2 com-
puted using ED, OOPEX, and HTX at ε1,2 and N = 14. The
OOPEX at m = 3 shows a better match with ED than HTX
at m = 6, and the linear growth with NA is apparent. Since
the OOPEX can access only short-distance correlations and

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

14

(a)

FIG. 6. S2 computed using the OOPEX, ED, and HTX at ε1,2 at
N = 14. The OOPEX matches ED better than HTX does at a smaller
truncation order.

FIG. 7. S′′
2 computations using the OOPEX. (a) N3S′′

2 vs NA/N for
N = 14, ε = ε1 and various N at ε = ε2. For given (m, ε), accessing
a large enough N gives a state with S′′

2 > 0. For (m, ε) = (3, ε1), N =
14 suffices for almost all NA, while (m, ε) = (3, ε2 ) requires N � 80.
The N3 factor ensures clarity of the plot. (b) m-dependence of S′′

2

at ε = ε1, NA = N/2 for several N . Although data do not converge,
S′′

2 > 0 always and increases with m at larger N . (c) m-dependence of
S′′

2 at ε = ε2, NA = N/2 for several N . Increasing m turns S′′
2 negative,

but increasing N at fixed m tends the data toward a positive S′′
2 .
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FIG. 8. Scaling of time (a) and memory (b) requirements with
N at fixed m = 3. torth (tρ) denotes the time required to compute the
orthonormalized Krylov space [compute ρ(E ) at fixed E given the
orthonormalized Krylov space], while memorth (memρ) denotes the
minimum memory needed to compute this space [to store ρ(E ) at
fixed E ].

S2(A) = ∑
O�∈A |tr(ρO�)|2, where the sum runs over operators

that have support strictly in A, the agreement between OOPEX
and ED indicates that most of the Renyi entropy is carried by
short-distance correlations.

Recent work argued that S′′
2 = d2S2/dN2

A > 0 for chaotic
eigenstates [50]. Unfortunately, the hard constraints S2(0) =
S2(N ) = 0 and the positivity of S2 force S′′

2 < 0 when com-
puted using ED at the small N it can access. However, the
large N accessible with the OOPEX and the fact that ρ is pro-
duced by the OOPEX remove the constraint S2(N ) = 0 and
enable observing S′′

2 > 0. As shown in Fig. 7(a), S′′
2 > 0 for

almost all NA already at N = 14 when ε = ε1. When ε = ε2,
S′′

2 < 0 for small N , but it becomes >0 when N � 80. Thus,
access to a large N with the OOPEX is key for detecting the
convexity of S2.

The positivity of S′′
2 obtained using the OOPEX, however,

must be taken with a grain of salt. Figure 7(b) shows the m-
dependence of S′′

2 for several values of N at ε = ε1. Although

S′′
2 > 0 for all the cases shown, the data clearly have not con-

verged. However, S′′
2 grows with m at larger N , suggesting that

S′′
2 will probably converge to a positive value. The behavior is

less clear at ε = ε2, as shown in Fig. 7(c). Now, S′′
2 decreases

with m and becomes negative for m = 4 for all accessible N ,
while increasing N at fixed m increases S′′

2 . It is thus plausible
that S′′

2 > 0 once convergent results have been obtained in the
thermodynamic limit, but our program is currently unable to
settle this issue.

C. Computational cost

Figure 8 shows that the time and memory requirements
of the OOPEX for m = 3 scale as power laws in N with
modest exponents. In particular, the time and memory needed
to create the orthonormalized Krylov space [to compute ρ(E )
for a fixed E given the orthonormalized Krylov space] grow as
torth ∼ N4.1 (tρ ∼ N3.5) and memorth ∼ N3.95 (memρ ∼ N1.86).
Computing 〈A(E )〉 given ρ(E ) is practically instantaneous.
However, multiplying H with itself m − 1 times to create the
Krylov space demands resources that grow exponentially with
m, which limits computations to relatively small m.

IV. CONCLUSION

In conclusion, we have introduced an algorithm, the
OOPEX, that can compute expectation values in chaotic
eigenstates with polynomial effort, and we demonstrated it
on a prototypical model. The algorithm converges rapidly
thanks to ETH and gives access to system sizes of several hun-
dred sites, thus enabling computations of correlation lengths
that were beyond the capabilities of ED. Detailed compar-
isons with other algorithms including quantum Monte Carlo
methods [45,46], the finite-temperature density matrix renor-
malization group [51–54], and the kernel polynomial method
[49] will be presented in future work.

The OOPEX should be most useful for investigating
physics in interacting regimes where ξ is finite and the
E -dependence of physical quantities is smooth, such as
finite-temperature physics above quantum critical points and
theories with a holographic gravitational dual. The fundamen-
tal reliance of the OOPEX on the ETH implies that it could
also be a useful sensor of ergodicity breaking and, for ex-
ample, effectively probe the many-body localization transition
from the chaotic side. Finally, while extracting critical expo-
nents associated with phase transitions may be challenging for
the OOPEX, it might help to identify the presence of a phase
transition via a broad peak in the E -dependent correlations
of the order parameter. These problems will be investigated in
the future.
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