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Anomalous quantum information scrambling for Z3 parafermion chains
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Parafermions are exotic quasiparticles with non-Abelian fractional statistics that could be exploited to
realize universal topological quantum computing. Here, we study the scrambling of quantum information in
one-dimensional parafermionic chains, with a focus on Z3 parafermions in particular. We use the generalized
out-of-time-ordered correlators (OTOCs) as a measure of the information scrambling and introduce an efficient
method based on matrix product operators to compute them. With this method, we compute the OTOCs for
Z3 parafermions chains up to 200 sites for the entire early growth region. We find that, in stark contrast to the
dynamics of conventional fermions or bosons, the information scrambling light cones for parafermions can be
both symmetric and asymmetric, even for inversion-invariant Hamiltonians involving only hopping terms. In
addition, we find a deformed light cone structure with a sharp peak at the boundary of the parafermion chains in
the topological regime, which gives unambiguous evidence of the strong zero modes at infinite temperature.
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I. INTRODUCTION

Non-Abelian anyons are elusive quasiparticle excitations
emerged from certain topological phases of matter [1].
They obey non-Abelian braiding statistics and are the build-
ing blocks for realizing topological quantum computing
[1,2]. A prominent example of non-Ableian anyons involves
parafermions [3–28], which generalize the extensively studied
Majornana fermions [29–31] and similarly underpin a host
of novel phenomena. In particular, braiding of parafermions
could supply a richer set of topologically protected operations
compared with the Majorana case. Although these operations
are still not sufficient to enable computational universality,
coupled parafermion arrays in quantum Hall architectures can
lead to Fibonacci anyons, which would then harbor universal
topological quantum computation [32]. Here, we study the
scrambling of quantum information in Z3 parafermion chains,
by introducing an efficient algorithm based on matrix product
operators (MPOs) to compute the generalized out-of-time-
ordered correlators (OTOCs) (see Fig. 1 for an illustration).

Information scrambling in quantum many-body systems
has attracted tremendous recent attention [33–38]. It plays an
important role in understanding a wide spectrum of elusive
phenomena, ranging from the black hole information problem
[33–37] and quantum chaos [39] to quantum thermalization
and many-body localization [40–42]. Whereas black holes
are conjectured to be the fastest scramblers in nature [43],
the information scrambling in a many-body localized sys-
tem is much slower [44–46]. For conventional bosonic or
fermionic systems with translation and inversion symmetries,
information scramble in a spatially symmetric way [47–49]. In
sharp contrast, it has been shown that asymmetric information
scrambling and particle transport could occur for Abelian
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anyons due to the interplay of anyonic statistics and inter-
actions [50]. In addition, asymmetric butterfly velocities in
different directions have also been studied for certain spin
Hamiltonians and random unitary circuits [51,52]. Yet, despite
these notable progresses, scrambling of information in sys-
tems with non-Abelian anyons still remains barely explored.
A major challenge faced along this line is that the computation
of the OTOC, which is a characteristic measure of information
scrambling, is notoriously difficult owing to the exponential
growth of the Hilbert dimension involved.

In this paper, we study the scrambling of information in
Z3 parafermion chains. We mainly address two questions:
(a) How to efficiently access information scrambling for
parafermion chains and (b) how information scrambles in
parafermion chains? For (a), we propose an efficient algorithm
based on MPOs [53–59] to compute the generalized OTOCs
and demonstrate its effectiveness by computing the OTOCs
for Z3 parafermion chains as long as 200 sites for the entire
early growth region. For (b), we find that the information
scrambling light cones for parafermions can be both sym-
metric and asymmetric depending on the specific parameter
values, even for inversion-invariant Hamiltonians involving
only hopping terms. In addition, we find a deformed light cone
with a sharp peak at the boundary of the parafermion chains in
the topological region, which provides unambiguous evidence
for the existence of strong zero modes at infinite temperature.
Our results reveal some crucial aspects of information scram-
bling for non-Abelian anyons, which would provide a valuable
guide for future studies on such exotic quasiparticles in both
theory and experiment.

II. THE MODEL HAMILTONIAN

We consider the following Hamiltonian for a Z3

parafermion chain [24], which arises from coupled domain
walls on the edge of two-dimensional (2D) fractionalized
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topological insulators [3,6,9,60]:

H = −t1
∑

j

eiθα
†
j α j+1 + t2

∑
j

eiφα
†
j α j+2 + H.c., (1)

where α j are parafermion operators obeying α3
j = 1, α†

j = α2
j ,

and commutation relations αiα j = α jαiω
sgn( j−i), ω = ei 2π

3 ,
and t1, t2 control the strength of nearest-neighbor and next-
nearest-neighbor hoppings, respectively. Below, we set t1 = 1
as the energy unit. By the generalized Jordan-Wigner transfor-
mation [61] α2 j−1 = (

∏ j−1
k=1 τk )σ j, α2 j = ω(

∏ j−1
k=1 τk )σ jτ j , the

parafermion chain can be mapped to an extended Z3 clock
model,

Hc = −t1
∑

j

eiθωσ
†
j σ j+1 − t1

∑
j

eiθωτ j

+ t2
∑

j

(eiφσ
†
j τ j+1σ j+1 + eiφσ

†
j τ jσ j+1) + H.c., (2)

where σ j and τ j are generalized spin operators, satisfying
σ 3

j = τ 3
j = 1, σ jτ j = ωτ jσ j on site and commute with each

other off site.
A key quantity to measure information scrambling for

parafermion chains is the generalized squared commutator of
two local parafermion operators, defined as

Cj,k (t ) = 〈[α j (t ), αk]†
ω[α j (t ), αk]ω〉, (3)

which is closely related to the out-of-time-ordered correlator

Fj,k (t ) = 〈α†
j (t )α†

k (0)α j (t )αk (0)〉ωsgn( j−k), (4)

through the relation Cj,k = 2[1 − Re(Fj,k )]. Here the commu-
tator [α j, αk]ω is defined as [α j, αk]ω = α jαk − ωsgn(k− j)αkα j ,
and the average 〈·〉 ≡ Tr(·)/3L is measured from the infinite-
temperature ensemble. Due to the mathematically equivalence
of these two models, one can calculate the physical quantities
for the parafermion chains by using the mapped clock models.
Yet, local operators in the parafermion model will become
highly nonlocal in the mapped clock model due to the string
operators in the generalized Jordan-Wigner transformation.
This poses a notable challenge in computing the OTOCs for
parafermions. In the following, we introduce an efficient al-
gorithm that could overcome this difficulty.

III. ALGORITHM

Our algorithm is inspired by Xu and Swingle’s MPO ap-
proach to computing OTOCs for spin systems in Ref. [57].
Suppose we are considering the OTOC for two local Heisen-
berg operators W0 and Vr with distance r � 0, the expansion
of W0(t ) approximately forms a light cone, which is con-
fined by the Lieb-Robinson bound [62]. The entanglement
grow massively inside the light-cone while remain vanish-
ingly small outside. As a result, for computing OTOCs near or
outside the light-cone a moderate bond dimension for MPOs
suffices. In other words, as long as the local operator Vr

lies outside the light-cone of W0(t ), the calculation of the
OTOC using MPO is always efficient and effective. However,
for parafermion models, local parafermion operators become
highly nonlocal string operators under the Jordan-Wigner
transformation. For instance, we consider the OTOC between

FIG. 1. A schematic illustration of the matrix product op-
erator algorithm for computing the out-of-time-ordered correla-
tors for parafermion chains. Here, the computation of F̃j,k =
〈α†

j (t )α̃†
k (0)α j (t )α̃k (0)〉 is shown. The white (blue, red) blocks rep-

resent the local identity (τ or τ †, σ or στ or στ †) operators. The
yellow blocks represent the Heisenberg time-evolved gates and the
shaded regions indicate the induced light cones of α j (t ) and α†

j (t ),
respectively. For more details, see Appendix A.

α2 j+1 and α2k+1 for parafermions, which is equivalent to cal-
culate the OTOC of two nonlocal operators (

∏ j−1
n=1 τn)σ j and

(
∏k−1

n=1 τn)σk in the Z3 spin model. These two string operators
have vanishing distance between them, which renders the
direct MPO approach inapplicable.

To overcome this problem, we find that instead of Fj,k one
can calculate the equivalent quantity F̃j,k defined as

F̃j,k (t ) =
{〈α̃†

j (t )α†
k (0)α̃ j (t )αk (0)〉, j � k

〈α†
j (t )α̃†

k (0)α j (t )α̃k (0)〉, j < k
, (5)

where α̃ j (t ) ≡ P†α j (t ) with P = ∏
j τ j being the parity op-

erator satisfying P3 = 1 and [H, P] = 0. Mathematically,
we can prove that Fj,k = F̃j,k , see Appendix A. Now, the
left-string operator α2k+1 = (

∏
n<k τn)σk+1 changes into the

right-string operator α̃2k+1 = (
∏

n�k τ †
n )σk+1, which restores

the distance between two operators in computing OTOCs via
the MPO approach. Our algorithm is pictorially illustrated in
Fig. 1.

For the time-evolved MPOs in the early growth regime
(before the wavefront reaches the left side of the right-
string operator α̃k), the truncation error is bounded own-
ing to the entanglement lightcone structure and wiped
off by the average over the infinite-temperature ensem-
ble. To access the OTOC for a longer time, we may
use the time-splitting MPO method: F̃j,k (t ) = F̃ late

j,k (t ) =
〈α†

j (t/2)α̃†
k (−t/2)α j (t/2)α̃k (−t/2)〉 for j < k, where we

evolve both local parafermion operators in forward and
backward directions. With this method, we can capture the
information scrambling in parafermion chains in both early-
time and later-time regimes.
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FIG. 2. (a) A comparison between results from the MPO algo-
rithms and exact diagonalization (ED). Here, the bond dimension
χ = 48 is used. (b) The results of Cj,k in the early-growth regime
by the MPO algorithm with j = 100 and k = 80, 60, 40, 20.
(c) The results of Cj,k for the later-time regime with j = 60 and
k = 50, 40, 30, 20, 10. (d) The light-cone structure of the OTOC
Re[Fj,k (t )] is plotted with j = 100. We fix θ = φ = 0 and other
parameters are chosen as: t2 = 1 for (b) and t2 = 0.5 for (a), (c), and
(d); L = 14, 200, 120, 200 for (a), (b), (c), and (d), respectively.

IV. LIGHT-CONE STRUCTURE

We now study the scrambling of information for
parafermion chains. We first benchmark the effectiveness
and accuracy of our algorithm. In Fig. 2(a), we compare
the MPO results with that from the exact diagonalization
(ED) for a short parafermion chain with L = 14. We find
that with a moderate bond dimension (χ = 48), the MPO
method without time-splitting works excellently for the en-
tire early-growth regime, whereas for later times it becomes
inaccurate due to the growth of entanglement. In contrast, the
time-splitting MPO method works for both the early-time and
later-time regimes with relative error smaller than 1%. In the
following, we will use the time-splitting MPO method with a
small Trotter step dt = 0.002 by default.

Then we compute the OTOCs for much longer parafermion
chains, which are far beyond the capability of the ED method.
In Fig. 2(b), we plot the result of Cj,k in the early-growth
regime with the system size L = 200. It is clear that the curves
for bond dimension χ = 8 match almost precisely with that
for χ = 48, indicating that a small bond dimension is suffi-
cient for computing OTOCs in the early-growth regime. For
the later-growth regime, we also calculate Cj,k with different
bond dimensions for a parafermion chain with system size
L = 120, and our result is shown in Fig. 2(c). We find that
the curves for χ = 48 match that for χ = 64 in the regime
Cj,k < 0.4, but after that deviations will show up owning to
the growth of entanglement.

The above discuss have clearly demonstrated the effec-
tiveness of our MPO method in computing OTOCs for
parafermion chains in the entire early-growth regime. Trun-
cation to small bond dimension only results in errors after
the wavefront, and the scrambling of information ahead of
and up to the wavefront can be captured accurately with
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FIG. 3. (a) The dynamics of the OTOCs for a parafermion chain
with length L = 120, which characterizes the quantum information
spreading from the middle of the chain ( j = 60) to the left k =
50, 40, 30, 20, 10. The black arrows mark the positions where
the OTOCs drop 1% of their initial values, which are used to extract
the butterfly velocity through linear fit as shown in the inset. Here,
the bond dimension χ = 32 is used and other parameters are chosen
as θ = φ = 0 and t2 = 0.9. (b) The extracted left (V l

b ) and right
(V r

b ) butterfly velocities as a function of t2. The inset shows the
ratio R = V r

b /V l
b versus t2. (c) Dependence of V l

b and V r
b on φ when

θ = π/6 and t2 = 0.5, with the inset showing the corresponding
ratio. (d) The symmetric light-cone structure of the OTOCs with
θ = π/6, φ = π/2, and t2 = 0.5.

our approach. Now, we discuss the anomalous quantum in-
formation scrambling for parafermion chains. First, we note
that the model in Eq. (1) is integrable when θ = φ = 0 and
t2 = 0, where the OTOCs map out a symmetric light cone, see
Appendix D, similar to the cases for conventional fermions or
bosons. However, as shown in Fig. 2(d), when we turn on the
next-nearest-neighbor hoppings (t2 �= 0) the light cone will
become asymmetric, implying that the information propaga-
tion is asymmetric for the left and right directions. We stress
that from the perspective of parafermions, the Hamiltonian
is fully left-right symmetric when θ = φ = 0. The dynamic
broken of the left-right symmetry is a reflection of anyonic
statistics of the parafermions.

A more precise way to quantify the asymmetry of the
information spreading is to utilize the butterfly velocity V l

b
(V r

b ) for the left (right) directions. We defined the butterfly
velocity V l/r

b by the boundary of the space-time region where
Re(Fj,k ) drops by at least 1% of its initial values, as marked
by arrows in Fig. 3(a). The linear fits of butterfly velocities
V l,r

b with varying t2 are shown in Fig. 3(b), from which it
is clear that V r

b > V l
b for the whole region t2 > 0, indicating

that information scrambles faster to the right direction. In
addition, it is also interesting to note that V r

b increases mono-
tonically as t2 increases. Whereas the dependence of V l

b on
t2 is nonmonotonic: it decreases at first and then increases. A
maximum deviation of V l

b from V r
b occurs around t2 = 0.5. In

Fig. 3(c), we plot V l,r
b with varying φ and fixed θ = π/6. In-

terestingly, V l,r
b have a crucial dependence on φ: one can make
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information scrambles faster to the right (or left) direction by
tuning φ. When φ = π/2, we find that V l

b = V r
b and the light

cone is fully symmetric, as shown in Fig. 3(d).

A. Symmetry analysis

In the Fig. 3(c), we find that V l
b (φ) = V r

b (π − φ) and the
preferred information scrambling direction can be reversed by
sending φ → π − φ. Here, we show that this observation can
be understood from the symmetry analysis of the Hamilto-
nian. In fact, one can use two successive transformations,

(σ → σ †, τ → τ †), (6)

(τ → ω−1τ, σ2 j → ω−1σ2 j, σ2 j+1 → σ2 j+1), (7)

to obtain

Hc(θ = π/6, φ) → −Hc(θ = π/6, π − φ) (8)

and α
φ
j (t ) → α

(π−φ)†
j (−t ), where the α

φ
j (t ) donates the evo-

lution of a parafermion α j (0) under the Hamiltonian Hc(θ =
π/6, φ), see more details in Appendix B. Noting in addition
that

〈α†
j (t )α†

k (0)α j (t )αk (0)〉 = 〈α†
j (0)α†

k (−t )α j (0)αk (−t )〉, (9)

we thus obtain Cφ

j,k (t ) = Cπ−φ

k, j (t ), which explains the inver-

sion symmetry between curves of V l
b and V r

b . Particularly,
when φ = π/2 we have Cπ/2

j,k (t ) = Cπ/2
k, j (t ), giving rise to the

fully symmetric light cone shown in Fig. 3(d).

B. Scrambling for strong zero modes

Strong zero modes lead to degeneracies across the en-
tire spectrum and thus may offer potential advantages in
building fault-tolerant qubits that works at high temperatures.
With the introduced MPO algorithm, we are able to study
information scrambling for strong zero modes at even in-
finite temperature. To this end, we consider the following
parafermion chain model with alternating nearest-neighbour
couplings [4,63]:

H = −J1

∑
j

eiϕα
†
2 jα2 j+1 − J2

∑
j

α
†
2 j−1α2 j + H.c. (10)

The stability of the zero modes in this model has been dis-
cussed and the regime where the strong zero modes may
exist has also been estimated based on perturbation analy-
sis and density matrix renormalization group algorithm near
the ground states [63]. In the limit J2 → 0, the outermost
parafermion operators drop out from the Hamiltonian (similar
as in the Kitaev chain for Majoranas [29]) and represent local-
ized zero modes that guarantee a threefold degeneracy for the
whole spectrum. However, unlike the Majorana case for this
Z3 parafermion chain there are strong evidences that localized
zero modes disappear completely upon introducing arbitrarily
small J2 when ϕ = 0, which is rather counterintuitive given
that the system is in a gapped topological phase. Whereas, for
nonzero ϕ, stable localized zero modes seem to survive small
nonzero J2 indeed [4,63].

For our purpose, we compute the OTOC of two
parafermion operators at the open ends F1,L (t ) and our results

FIG. 4. The light-cone structures of the OTOCs Re[F1,k (t )] for
the parafermion chain model defined in Eq. (10), with ϕ = −π/6,
J1 = 1, L = 40, and J2 = 0.4, 0.5, 0.6 respectively in (a), (b),
and (c). The bond dimension is χ = 48. (d) The results of C1,L

with varying J2 = 0.1, 0.2, . . . , 1.0 from right to left. The curves
for χ = 32 matches that of χ = 64 precisely, indicating a negli-
gible truncation error for the MPO algorithm in computing these
OTOCs.

are shown in Fig. 4. Here, we choose ϕ = −π/6 since at
this point the zero modes are suspected to be the most robust
[63,64]. In Figs. 4(a)–4(c), we plot Re[F1,k (t )] with L = 40,
J1 = 1 and varying J2. From Fig. 4(a), we see a sharp peak
at the boundary of the light cone for J2 = 0.4, indicating a
drastically lengthened scrambling time for the zero modes
localized at the ends of the chain. Given that the our OTOC is
calculated at infinite temperature, this sharp peak is a clear-cut
evidence of the existence of strong zero modes at the ends
of the parafermion chain for nonzero J2. When J2 increases,
this peak diminishes and nearly disappears when J2 = 0.6, as
shown in Figs. 4(b) and 4(c). This implies the transition point
is in the regime J2 = 0.4 ∼ 0.6, which is consistent with the
perturbative analysis in Ref. [63]. To see it more clearly, we
calculate the C1,40 for increasing J2 in Fig. 4(d). As we can see,
for a fixed time window t < 100, the squared commutator C1,L

increases rapidly and saturate to its maximum value very soon
for J2 � 0.6. While for J2 < 0.6, it increases much slower,
indicating the presence of strong zero modes as well.

In the most fragile limit ϕ = 0, it is known that there are
no localized zero modes for any finite J2. Here, we show that
the peak at the boundary of light cone immediately disappear
as we increase J2 from zero, see more details in Appendix D.
These results suggest that the OTOC is a strong indicator of
zero mode. To characterize the zero-mode, the main advantage
of OTOC over the traditional operator Tr(α†

1 (t )α1) is that our
OTOC calculation could access a much longer chain. As a
result, the OTOC calculation could significantly reduce the
finite size effects. In addition, OTOC, as a quantity to measure
information scrambling, is physically reasonable to be used
for detecting the decoupled degree of freedom, particularly
for strong zero modes. From this points of view, our results
also indicate that strong zero modes preclude information
scrambling, which may be of independent interest as well.
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V. DISCUSSION AND CONCLUSION

A number of protocols for measuring OTOCs in various
systems have been proposed [65–71]. Indeed, recently exper-
imental measurement of OTOCs has been demonstrated with
trapped ions [72] and nuclear magnetic resonance quantum
simulators [73,74]. For Z3 parafermions, different blueprints
for their experimental realization have also been introduced in
a variety of systems, ranging from lattice defects in fractional
Chern insulators [8] and fractionalized topological insula-
tors/superconductors [9,60] to quantum Hall bilayers [10,75]
and bosonic cold atoms [76]. Yet, to the best of our knowl-
edge, no experimental proposal of measuring OTOCs for Z3

parafermions has been introduced hitherto. In the future, it
would be interesting to study how OTOCs for parafermion
chains can be measured in experiment and consequently ob-
serve the anomalous information scrambling predicted in this
paper.

In summary, we have introduced a low-cost MPO algo-
rithm to calculate the OTOCs for parafermion chains, which
can capture the scrambling of quantum information in the
entire early-growth regime with modest bond dimension. With
this powerful algorithm, we have explored the anomalous
information dynamics for Z3 parafermion chains up to a
system size far beyond the capability of previous numerical
approaches. We found that information can scramble both
symmetrically and asymmetrically for parafermion chains,
even for inversion-invariant Hamiltonians involving merely
hopping terms. In addition, we found a deformed light cone
structure with a sharp peak at the boundary, which offers
unambiguous evidence of the strong zero modes at infi-
nite temperature. Although we have only focused on Z3

parafermions, our introduced algorithm applies to the general
Zn parafermions and Abelian anyons (such as the anyon-
Hubbard model) as well. Our results not only provide a
powerful method for accessing quantum information scram-
bling in systems with exotic quasiparticles, but also uncover
the peculiar information dynamics for parafermions which
would benefit future studies in both theory and experiment.
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APPENDIX A: THE MPO ALGORITHM

In the main text, we have given a brief introduction to the
MPO algorithm for calculating the OTOCs in parafermion
chains. Here we generalize this method to some other models
which consist of on-site symmetries and give more details of
the MPO algorithm.

1. General models

Our algorithm is generally applicable for Hamiltonians
which obey certain on-site symmetry, that is

S = ⊗nun. (A1)

Here, un is an on-site operator on the n site and [S, H] = 0. A
general OTOC can be written as

Fi j = 〈W †
i (t )V †

j Wi(t )Vj〉, (A2)

where W and V are unitary operators. By inserting the identity
operator I = SS† into the OTOC, we obtain

Fi j = 〈eiHtW †
i eiHtV †

j SS†eiHt SS†WiSS†e−iHt SS†Vj〉. (A3)

If we add the condition S†WiS ∼ Wi (∼ means equal up to a
constant), accompanying with S†eiHt S = eiHt , the OTOC Fi j

reduces to

Fi j ∼ 〈W †
i (t )(V †

j S)Wi(t )(S†Vj )〉. (A4)

Then the OTOC between Wi and Vj is equivalent to the OTOC
between Wi and S†Vj .

Taking anyon-Hubbard model for example. The anyon-
Hubbard model can be written as

HA = −J
∑
j=1

(a†
j a j+1 + H.c.) + U

2

∑
j=1

n j (n j − 1), (A5)

and the OTOC is defined as

F A
jk (t ) = 〈a†

j (t )a†
k (0)a j (t )ak (0)〉eiθsgn( j−k). (A6)

The Hamiltonian has symmetry SA = e−iθ
∑

j a†
j a j . By utilizing

the same transformation as Eq. (A3), F A
jk (t ) is transformed to

F A
jk (t ) = 〈a†

j (t )(a†
k (0)SA)a j (t )(S†

Aak (0))〉. (A7)

Since ak = bke−iθ
∑

j<k a†
j a j is a left string operator, (S†

Aak (0))
become a right string operator. Here, bk is the Boson annihi-
lation operator.

In the next part, we calculate the OTOCs in parafermion
chains with L = 20 as an illustrating example.

2. The details of the MPO algorithm

In the main text, we have introduced the algorithm from
entanglement points of view, especially emphasized the im-
portance of the distance between two local operators in the
calculation of OTOCs. In this section, we give more details
about the reason why this condition is essential for the MPO
method to work well in the early-growth regime. However,
this condition is not sufficient, as we would mention below,
the calculation of OTOC with infinite-temperature ensembles
is also important.

Without loss of generality, we consider the calculation of
the OTOCs

Fj,k (t ) = 〈α†
j (t )α†

k (0)α j (t )αk (0)〉ωsgn( j−k), (A8)

in a 20-sites parafermion chain, which can be mapped to a
10-sites Z3 spin chain. Next, we take j = 5 and k = 13 for
example. The local parafermion operators can be written as

α5 = τ1τ2σ3,

α13 = τ1τ2τ3τ4τ5τ6σ7, (A9)

and the general MPO calculation of Fj,k (t ) is illustrated in
Fig. 5. We use blue(red) blocks to represent the operator
τ (σ ) and use white blocks to represent the identity opera-
tor. The MPO evolution is based on real-time density matrix
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FIG. 5. Graphical representation for the OTOC Fj,k ( j < k) in the
natural tensor network form, in contrast to the modified F̃j,k in Fig. 1
in the main text. Here, we choose the parameter j = 5, k = 13.

renormalization group (tDMRG) method [77], which is repre-
sented by yellow blocks. The trace operation corresponds to
contracting all the physical indices from top to bottom. The
grey regions correspond to the induced operator light-cone
expansion. However, this direct MPO calculation could only
capture the early time regime of OTOC growth, due to the
rapid growth of entanglement which induces huge truncation
errors.

In order to get rid of these truncation errors, we calculate
the modified but mathematically equivalent quantity obtained
by inserting the parity operator P = ∏

j τ j inside the OTOC:

F5,13(t ) = 〈α†
5 (t )α†

13(0)PP†α5(t )PP†α13(0)〉ω2

= 〈α†
5 (t )(α†

13(0)P)α5(t )(P†α13(0))〉
= 〈α†

5 (t )α̃†
13(0)α5(t )α̃13(0)〉 ≡ F̃5,13(t ), (A10)

where the operator α̃13 = τ7σ7τ8τ9τ10 becomes right string
form, as illustrated in Fig. 1 in the main text.

The MPO calculation of F̃5,13(t ) could be simplified using
the product form of α̃13, see Fig. 6(a). Here, we have replaced
α

†
5 (t ) with W(t ) in MPO form, and Wi(t ) are tensors of W (t )

at site i. Then, taking advantage of the left canonical condition
of MPO ∑

σl ,σl′

W σl ,σl′ †
i W σl ,σl′

i = I, (A11)

which is shown in graphical representation in Fig. 6(b), the
MPO of OTOC reduces to the structure of Fig. 6(c).

Now we see that the calculation of the OTOC is only
related to the contraction of the tensor right to the site k.
Therefore, as long as the truncation error is small for these
local MPO tensors, the MPO algorithm is effective. In fact, as

FIG. 6. (a) Reduction of the tensor network from the Fig. 1 in the
main text. The α5(t ) is replaced by MPO W(t ). (b) Left canonical
condition of MPO tensors is illustrated in diagram, σl and σl ′ are
physical indices and al , al ′ , al−1 are virtual indices. (c) Simplified
MPO representation of OTOC.

the truncation error is confined by the light-cone in the early-
growth regime, our method is efficient. It is worth mentioning
that the left canonical condition entails the trace operation,
which means that the OTOC computed is averaged at infinite-
temperature.

APPENDIX B: HAMILTONIAN AND
DYNAMICAL SYMMETRIES

In the main text, we have mentioned the relevant sym-
metries for the OTOC dynamics. Here, we give the detailed
derivation for them.

1. Hamiltonian symmetry

To discuss the symmetry in an explicit way, we give the
representation of σ j and τ j in the matrix form:

σ =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, τ =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠, ω = e2π i/3.

(B1)
First, we consider the symmetry of the mapped clock Hamil-
tonian and define the inversion transformation I as

I : σ j → σN− j+1, τ j → τN− j+1. (B2)

Then, we introduce the following time-reversal antiunitary
transformation T as

T : σ j → σ j, τ j → τ
†
j . (B3)

The composition T ◦ I defines a new operation which leave
the Hamiltonian invariant. This transformation changes the
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Hamiltonian Hc as

H̃c = −t1

N−1∑
j=1

e−iθω2σ
†
N+1− jσN− j − t1

N∑
j=1

e−iθω2τ
†
N+1− j

+ t2

N−1∑
j=1

e−iφσ
†
N+1− jτ

†
N− jσN− j

+ t2

N−1∑
j=1

e−iφσ
†
N+1− jτ

†
N+1− jσN− j + H.c. (B4)

From the parafermion perspective, this transformation T ◦ I
inverses the parafermion sites as

T ◦ I : α j → α̃− j ≡ Pα− j, (B5)

and the antiunitary operation preserve the commutation rela-
tion αiα j = α jαiω

sgn( j−i). The detailed transformation of α j

by T ◦ I is

α2 j−1 =
(

j−1∏
k=1

τk

)
σ j (B6)

→ α̃2N+2−2 j =
(

N+2− j∏
k=N

τ
†
k

)
σN+1− j, (B7)

α2 j = ω2

(
j−1∏
k=1

τk

)
σ j (B8)

→ α̃2N+1−2 j = ω

(
N+1− j∏

k=N

τ
†
k

)
σN+1− j, (B9)

which leaves the commutation relation invariant

α̃3
j = 1, α̃

†
j = α̃2

j , α̃iα̃ j = α̃ j α̃iω
sgn( j−i). (B10)

However, this symmetry does not guarantee the symmetry of
the OTOC dynamics.

2. Dynamical symmetry

In the main text, the special line θ = π/6, φ = π/2
exhibits OTOC dynamical symmetry with regard to the
parafermion chain model. We consider the effect of two suc-
cessive transformations on the OTOC. Initially, we assume the
Hamiltonian is Hc(θ = π/6, φ). We define a transformation U
as

U : σ → σ †, τ → τ †, (B11)

where U is a unitary transformation with matrix representation

U =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠, (B12)

and the transformation maps the Hamiltonian as

Hc(θ = π/6, φ) → Hc(θ = −π/6, 2π/3 − φ). (B13)

In the second transformation, we redefine

τ → ω−1τ, σ2 j → ω−1σ2 j, σ2 j+1 → σ2 j+1, (B14)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(b)

FIG. 7. Level space distribution of the spectra for model (1) in
the main text with chain length L = 12. The spectra are restricted in
parity P = 0 subspace and the results for P = 1 and P = 2 are sim-
ilar. Dashed curves are P(s) = e−s(red) and P(s) = π

2 se− π
4 s2

(green),
typical for integrable or quantum chaotic systems.

the Hamiltonian changes as

Hc(θ = −π/6, 2π/3 − φ) → −Hc(θ = π/6, π − φ).
(B15)

Then under the two successive transformations, the Hamilto-
nian changes as

Hc(θ = π/6, φ) → −Hc(θ = π/6, π − φ). (B16)

Whereas the parafermion operator changes as

α
φ
j (t ) → α

(π−φ)†
j (−t ), (B17)

where α
φ
j (t ) is defined by

α
φ
j (t ) ≡ eiHc (θ=π/6,φ)α je

−iHc (θ=π/6,φ). (B18)

Then Fj,k = 〈αφ†
j (t )α†

k (0)αφ
j (t )αk (0)〉ωsgn( j−k) changes to

〈απ−φ
j (−t )αk (0)α(π−φ)†

j (−t )α†
k (0)〉ωsgn( j−k). (B19)

Using the identity

〈α†
j (t )α†

k (0)α j (t )αk (0)〉 = 〈α†
j (0)α†

k (−t )α j (0)αk (−t )〉,
(B20)

as well as the property of trace operation, the OTOC becomes

〈α†
j (0)α(π−φ)†

k (t )α j (0)απ−φ

k (t )〉ωsgn( j−k) ≡ F †
k, j . (B21)
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FIG. 8. OTOC growth Re(Fj,k ) are obtained within MPO ap-
proach for differen angles θ , φ in (a) and (c) and squared
commutators Cj,k are plotted in late and early-growth regime in
(b) and (d). The light-cone structure of OTOC is plotted in (a) with
parameters θ = φ = 0, t2 = 0 and θ = π/6, φ = π/2, t2 = 0 in
(c). In both figures, the color maps are interpolated to better illus-
trate the light-cone structure. The late-growth regime of the squared
commutator Cj,k are plotted in (b) with parameters θ = 0, φ = 0,
t2 = 0.5, j = 60 for varying k = 60, 70, 80, 90, 100, 110 and
the early-growth regime of the squared commutator Cj,k are plotted
in (d) with parameters θ = 0, φ = 0, t2 = 1, j = 100 for varying
k = 120, 140, 160, 180. The light-cone structures of the OTOCs
Re[F1,k (t )] for the parafermion chain model defined in Eq. (10), with
ϕ = 0, J1 = 1, L = 20, and J2 = 0.05, 0.1 respectively in (e) and
(f), The bond dimension is χ = 32.

Finally, taking advantage of Ci, j = 2(1 − Re(Fi, j )), we obtain

Cφ

j,k (t ) → Cπ−φ

k, j (t ), (B22)

which explains the symmetry of dynamics in the main text.

APPENDIX C: LEVEL STATISTICS

To check whether a many-body Hamiltonian in a certain
regime is integrable or quantum chaotic, we calculate the level
space distribution of the spectra, which is a strong indicator
for quantum chaos [78].

In Figs. 7(a) and 7(b), we show the level space distri-
bution for the Hamiltonian in Eq. (1) in the main text for
different parameter regimes. In the special point, where the
next-nearest-neighbor interaction is turned off and θ = 0, the
model is integrable, which is illustated in Fig. 7(a). The
levels show no repulsion and the probability distribution of
spacings is approximately given by P(s) = e−s. Despite this
point, as we increase the next-nearest-neighbor interaction,
see Fig. 7(a), or add a no-zero chiral phase, see Fig. 7(b),
we find a level repulsion and the statistics follows the

-2 0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIG. 9. The OTOC Re[F1,L (t )] between parafermions in the two
open ends for increasing chain length L = 6, 8, 10, 12 with ED
method. The parameter is J2 = 0.2, ttol = 105 and the time is in the
log scale.

Wigner-Dyson distribution. The level spacing distribution has
the following shape, P(s) = π

2 se− π
4 s2

, which indicates the
nonintegrablility of the model.

APPENDIX D: MORE NUMERICAL RESULTS

In this section, we give more numerical results on the
OTOC calculation. We first consider the special case, when
the angle θ = φ = 0. We can clearly see from Fig. 8(a) that
the information spreading asymmetric between two directions
when the next-nearest-neighbor coupling is turned off. The
information scrambles much faster to the right than to the left
and it seems that there does not exist a clear wavefront in the
left-hand side. This is due to the integrability of the model
with only nearest-neighbor couplings at the point θ = φ = 0.
In Fig. 8(c), we plot the OTOC in time-space with parameter
θ = π/6, φ = π/2, t2 = 0, and find the light-cone structure
is indeed symmetric, which is consistent with the symmetry
analysis results in B. In Figs. 8(b) and 8(d), we calculate the
OTOC both in the early and later growth regime and set j < k,
which are in parallel with the results j > k in the Fig. 2 in the
main text. These results indicate that the scrambling can be
well captured by the MPO algorithm in both directions with
modest bond dimension.

To show the sensitivity of OTOC in detection of zero
modes, we also calculate the F1,k (t ) in the most fragile case, in
which ϕ = 0 and J2 = 0.05, 0.1, as illustrated in Figs. 8(e)–
8(f). We can see that there are no peaks in the light cone even
for such small J2, which indicates that zero modes is absent
for any finite J2.

APPENDIX E: THE OTOC IN
THE TOPOLOGICAL REGIME

The OTOC between parafermions at the two open ends can
be written as

F1,L = 1

3L/2
Tr(α†

1 (t )α†
Lα1(t )αL )ω−1. (E1)
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By utilizing the energy eigenstates as a basis, F1,L can be
expanded as

F1,L = ω−1

3L/2

∑
s,l,m,n

ei�Et 〈s|α†
1 |l〉〈l|α†

L|m〉

× 〈m|α1|n〉〈n|αL|s〉, (E2)

where �E = Es + Em − El − En and s, l, m, n are energy
eigenstate indices. In the long-time limit, the contribution
from all terms �E �= 0 vanishes due to the averaging over
all eigenstates.

If there exist left/right strong zero modes αl,r in some
parameter regimes, then the whole spectra of the parafermion
Hamiltonian should be three-fold degenerated up to expo-
nentially small finite-size corrections. In other words, the
spectrum can be classified into triplets of eigenstates with
different parity P = 1, ω, ω2, that become exponentially

degenerate as the system size increase. For each eigenstate,
acting αl,r on it cycles its parity by ω. Donating the three
eigenstates in the subspace as |ψ0,1,2〉, with the index marking
the parity. In a suitable guage, we assume αl |ψ2〉 = |ψ1〉,
αl |ψ1〉 = |ψ0〉 and αl |ψ0〉 = |ψ2〉. Due to the commutation re-
lation αlαr = ωαrαl , the action of αr should satisfy αr |ψ2〉 =
ω|ψ1〉, αr |ψ1〉 = |ψ0〉 and αr |ψ0〉 = ω2|ψ2〉.

In the topological limit J2 → 0, αl = α1, and αr = αL, all
the nondiagonal components in the Eq. (E2) vanish and only
the diagonal terms contribute, in which case Es = El = Em =
En. When departing from this limit, one expects α1,L consists
of a large overlap with αl,r and the diagonal terms dominate
the contribution. To show the evidence of strong zero modes,
we calculate the OTOC Re[F1,L(t )] between parafermions at
the two open ends using the exact diagonalization method,
see Fig. 9. As the length of the chain increases, we find that
the scrambling time increases expotentionally in the regime
J2 = 0.2, which implies the existence of strong zero modes.
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