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In this work we study the competition or coexistence between charge density wave (CDW) and superconduc-
tivity (SC) in a two-band model system in a square lattice. One of the bands has a net attractive interaction (Jd )
that is responsible for SC. The model includes on-site Coulomb repulsion between quasiparticles in different
bands (Udc) and the hybridization (V ) between them. We are interested in describing intermetallic systems with
a d-band of moderately correlated electrons, for which a mean-field approximation is adequate, coexisting with
a large sp-band. For simplicity, all interactions and the hybridization V are considered site-independent. We
obtain the eigenvalues of the Hamiltonian numerically and minimize the free energy density with respect to the
relevant parameters to obtain the phase diagrams as function of Jd , Udc, V , band-filling (ntot), and the relative
depth of the bands (εd0). We consider two types of superconducting ground states coexisting with the CDW. One
is a homogeneous ground state and the other is a pair density wave where the SC order parameter has the same
spatial modulation of the CDW. Our results show that the CDW and SC orders compete, but depending on the
parameters of the model these phases may coexist. The model reproduces most of the experimental features of
high dimensionality (d > 1) metals with competing CDW and SC states, including the existence of first- and
second-order phase transitions in their phase diagrams.
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I. INTRODUCTION

Quantum phase transitions to or from a superconducting
state driven by pressure, doping, or magnetic field have long
been one of the most intriguing and extensively studied phe-
nomena in solid-state physics. These transitions can occur
directly from a normal Fermi liquid state, from a non-Fermi
liquid, or from another phase with broken symmetry. An inter-
esting example of the last of these is the charge density wave
(CDW)-superconductor (SC) phase transition [1–3]. Both SC
and CDW are symmetry breaking phases characterized by
an energy gap in the single-particle spectrum and with order
parameters representing the condensation of electron-electron
or electron-hole pairs, respectively.

The CDW phase corresponds to a condensate with pe-
riodic modulation of the electron density, often found in
low-dimensional transition metal dichalcogenides (TMD’s)
[1,2,4–13], A15 compounds [14–17], cuprates [18–20],
Ni- and Fe-based SCs [21–25], perovskites [26], quasi-
skutterudite SC [27–32], intercalated graphite CaC6 [33],
organic compounds [34,35], and sulfuride-based compounds
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at very high pressure [36]. It is surprising to find in this list
also three-dimensional materials since there were no expecta-
tions to find CDW in high dimensions [29].

In many cases these systems exhibit SC in normal condi-
tions [32,37,38] or upon tuning with nonthermal parameters,
such as physical pressure [2,5,16,29,39–42] and chemical
pressure from partial atomic substitution [29,32,37]. Typ-
ically, the SC is found to be abruptly enhanced upon
suppressing the CDW order with a phase diagram that remark-
ably resembles those of the cuprates [43,44], heavy fermions
[45,46], and iron-based superconductors [47–50], where the
competing order of SC is the charge order, instead of the
antiferromagnetic spin order.

In principle, these phenomena can be approached within
the framework of Bardeen-Cooper-Schrieffer (BCS) theory
[51,52] due to the nodeless nature of the superconducting
gap function [27,28,30,31,53], as indicated by the specific
heat temperature dependence, and the ratios 2�/kBTSC and
�C/γ TSC close to the expected value in BCS theory [51,52].

There is a longstanding question concerning the compe-
tition, coexistence, or even cooperation between CDW and
SC, as well as about the nature of the CDW phase transition.
For the phase transition, several works reported a first-order
structural phase transition where pressure initially suppresses
the CDW, but enhances the superconducting transition tem-
perature TSC [54], whereas others find a second-order phase
transition that extrapolates to a structural quantum critical
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point (SQCP), around which a dome-shaped variation of TSC

is found [37,38,55]. For instance, for the compound LaPt2Si2

[54] with transition temperature TSC = 1.87 K and a superlat-
tice structural transition at T � = 76 K, it is suggested that the
occurrence of a SC dome-like can be accounted for, within
the BCS theory, assuming there is a maximum in the density
of states N (EF ) upon the closure of the CDW gap. Then,
the evolution of TSC under pressure is likely driven by the
variation of N (EF ), with a sudden disappearance of CDW
order, which indicates that there is a first-order structural
transition suggesting the lack of a QCP in this material [54].
On the other hand, the cubic superconducting intermetal-
lic systems Lu(Pt1−xPdx )2In and (Sr1−xCax )3Ir4Sn13 present
second-order CDW phase transitions under chemical doping
and pressure, respectively [56].

In this work we investigate the interplay between CDW and
SC orders in a square lattice two-band model. The bands have
different effective masses and the CDW phase arises from
interband Coulomb correlations. On the other hand, the SC
is due to a local intraband attractive interaction. The interac-
tions and the hybridization between bands are considered, for
simplicity, to be k-independent. We also study and compare
the case where the SC can be modulated. Our results show
that this case does not support coexistence.

We are particularly interested in intermetallic com-
pounds and their alloys [13], like the layered SCs SrPt2As2

and LaPt2Si2 [54,57], the cubic superconducting systems
Lu(Pt1−xPdx )2In and (Sr1−xCax )3Ir4Sn13 [56], the cubic
Heusler alloys Lu(Pt1−xPdx )2In [3], and the large family
of superconducting stannides with composition A3T4Sn13,
where A = La; Sr; Ca and T = Rh; Ir [58]. These systems have
in common a rather narrow d-band with moderate electronic
correlations (as compared with the f -bands in heavy fermions,
where a large U approach is necessary [59]) coexisting with
large sp-bands [60]. Their multiband character, the existence
of moderate electronic correlations, the BCS nature of their
superconducting ground states, and the interplay of first- and
second-order transitions were guides to build our model and
for the approach we adopted.

The many-body problem posed by our Hamiltonian is
solved within a Hartree-Fock (HF) mean-field approximation.
We use Nambu’s spinor representation to write the Hamilto-
nian in matrix form. We obtain its eigenvalues numerically
and minimize the free energy density with respect to the
relevant variables to obtain the phase diagrams as functions
of parameters, such as the strength of the CDW and SC inter-
actions, hybridization, total number of particles, and relative
depth of the bands.

We find that there is an intrinsic competition between
CDW and SC orders, but depending on the parameters of
the model these phases may coexist. However, for modulated
SC, coexistence is totally suppressed. Our results show that
for half-filling, the fine-tuned point in the phase diagram
where superconductivity disappears is that associated with
the maximum value of the CDW critical temperature for very
small interband Coulomb correlations (Udc). The CDW phase
emerges around half-filling (ntot = 2.0), as expected [61]. It
spreads out in the phase diagram as the Coulomb interband
interaction increases. Away from half-filling we obtain coex-
istence of phases in qualitative agreement with experimental

results for compounds with a discontinuous vanishing of the
CDW order, although with a low temperature persistent SC
phase. In addition, a reentrant behavior of TCDW for large
values of Udc is observed, which is a direct signature of a
first-order phase transition.

We also identify another feature that acts in detriment of
the coexistence of phases within this model, that is shifting
the relative center of the bands (εd0). This can be relevant
when doping the d-elements with others of different rows in
the periodic table or when applying pressure in the system.
This suppression arises since SC is robust to this shift, while
the CDW phase is very sensitive to it. Therefore, we show
how hybridization (V ), relative center of the bands (εd0),
band-filling (ntot), strength of intraband attractive (Jd ), and
interband Coulomb (Udc) correlations affect the competition
between CDW and SC in multiband compounds.

The paper is organized as follows. In Sec. II, we present the
two-band model with its main features to study the competi-
tion or coexistence between CDW and SC in inter-metallic
systems. For simplicity, we consider local hybridization and
interactions. We also briefly describe the Hartree-Fock ap-
proach that allows to solve the many-body problem. In
Sec. III, we show our results for finite-temperature phase
diagrams as functions of the strength of the interactions, hy-
bridization, band-filling, and relative depth of the bands. We
investigate both cases of half-filling and away from half-filling
occupations. In addition, we discuss results for the competi-
tion between CDW and a homogeneous SC and with a pair
density wave order, which has the same spatial modulation of
the CDW. Finally, in Sec. IV, we point out and summarize our
main results.

II. MODEL

To analyze the interplay between SC and CDW in
intermetallic compounds and their alloys, we consider a two-
dimensional, two-band model in a square lattice with on-site
interband Coulomb repulsion (Udc) between electrons in dif-
ferent bands. Previously, one-band models were extensively
used for studying the interplay between such phases [62–65].

The quasiparticles have different effective masses in dis-
tinct bands. The band with larger effective mass, which we
refer to generically as the d-band, has a local attractive inter-
action Jd among its quasiparticles. This band hybridizes with
a wide band of c-electrons by means of a real, symmetric,
site-dependent hybridization.

The real-space Hamiltonian of the model is given by

H = tc
∑
〈i j〉σ

c†
iσ c jσ + td

∑
〈i j〉σ

d†
iσ d jσ

+
∑

iσ

Vi j (c
†
iσ d jσ + d†

iσ c jσ )

+ Udc

∑
i

nd
i nc

i + Jd

∑
i

d†
i↑di↑d†

i↓di↓, (2.1)

where tc (td ) are the nearest-neighbor hopping energies of
c(d )-electrons, c†

iσ (ciσ ) and d†
iσ (diσ ) are creation (annihi-

lation) operators associated with the c and d-electrons with
spin σ , respectively. The electrons in different bands are hy-
bridized by means of a matrix with site-dependent elements
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Vi. Udc is the on-site interband repulsive interaction (Udc > 0)
among the d and c electrons [59], and nd (c)

i are the occupation
numbers. We define the number of particles for each band
as nd (c) = nd (c)

↑ + nd (c)
↓ , where nd (c)

↑ = nd (c)
↓ since we are in-

terested in paramagnetic solutions. The last term in Eq. (2.1)
describes an on-site effective attraction between d-electrons
(Jd < 0) and is responsible for superconductivity. Differently
from Ref. [59], we consider intraband pairing, although, due
to hybridization, some interpairing is also induced [66]. No-
tice that this term also describes antiferromagnetic (AFM),
xy-type exchange interactions between these electrons, such
that magnetic and superconducting ground states are in com-
petition. In this work we are only interested in the latter. We
also neglected in this interaction an Ising term that when
decoupled in the superconducting channel leads to p-wave
pairing that is not considered here.

We consider the possibility of the CDW state by allowing
for a periodic modulation of the average values of the occupa-
tion numbers as follows [61]:

〈
nd

i

〉 = nd + δd cos (Q · Ri), (2.2)

〈
nc

i

〉 = nc + δc cos (Q · Ri), (2.3)

where 〈nd
i 〉 (〈nc

i 〉) is the average number of d (c)-electrons
per site, the modulation wave vector Q = (π/a, π/a) is the
nesting vector [67], and a is the lattice parameter. Moreover,
the order parameters of the CDW phase are δd and δc for d and
c electrons, respectively. Here, we neglect an excitonic phase,
that is, we consider 〈d†

iσ ciσ 〉 = 0.
For a homogeneous system, in the absence of charge or-

dering, a spatial uniform solution is assumed and within the
standard mean-field (MF) approach δd = δc = 0 for all values
of the Coulomb interaction [61].

We can decouple the interaction terms within a MF approx-
imation and write the Hamiltonian, Eq. (2.1), in momentum
space as

HMF =
∑
kσ

′εc
kc†

kσ ckσ +
∑
kσ

′εd
kσ d†

kσ dkσ

+ δc
∑
kσ

′(d†
k+Qσ dkσ + d†

kσ dk+Qσ )

+ δd
∑
kσ

′(c†
k+Qσ ckσ + c†

kσ ck+Qσ )

+
∑
kσ

′(Vkc†
kσ dkσ + V ∗

k d†
kσ ckσ )

+
∑

k

′(�d
kd†

k↑d†
−k↓ + �d∗

k d−k↓dk↑
) + C1, (2.4)

where �d
k is the superconducting order parameter and

εk = −2tc[cos(kxa) + cos(kya)], (2.5)

εc
k ≡ εk + Udcnd − μ, (2.6)

εd
k ≡ γ εk + Udcnc − μ + εd0, (2.7)

δd ≡ Udc

N

∑
k

′(〈d†
k+Qσ dkσ 〉 + 〈d†

kσ dk+Qσ 〉), (2.8)

δc ≡ Udc

N

∑
k

′(〈c†
k+Qσ ckσ 〉 + 〈c†

kσ ck+Qσ 〉), (2.9)

�d
k ≡ Jd〈d−k↓dk↑〉, (2.10)

C1 = −NUdcnd nc − Nδdδc/Udc − N |�d |2/Jd

+ Nμ(nc + nd ), (2.11)

with γ = td/tc the inverse ratio of effective masses and μ the
chemical potential. We consider a relative shift between the
band centers given by εd0 and remark that

∑′
k represents a

sum over the reduced Brillouin zone that is halved due to the
CDW instability. The bands are described by the dispersion
relations εc

k and εd
k for c and d electrons in a convenient

notation. Note that these dispersions are spin (σ ) independent
since we are not interested in magnetic solutions.

In the Hamiltonian, Eq. (2.4), the chemical potential μ has
to be adjusted self-consistently when we fix the total band-
filling, i.e., ntot = ∑

i (〈nd
i 〉 + 〈nc

i 〉) at different values.
Notice that Eq. (2.4) can be written in the form of a matrix

using the spinor Nambu basis

	† = (c†
k↑, c†

k+Q↑, d†
k↑, d†

k+Q↑, c−k↓, c−k−Q↓, d−k↓, d−k−Q↓),

(2.12)

such that

HMF =
∑

k

′	†
kM	k + C1 + C2, (2.13)

where C2 = ∑
k

′(εc
k + εc

k+Q + εd
k + εd

k+Q) and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εc
k δd Vk 0 0 0 0 0

δd εc
k+Q 0 Vk+Q 0 0 0 0

V ∗
k 0 εd

k δc 0 0 �d
k 0

0 V ∗
k+Q δc εd

k+Q 0 0 0 �d
k+Q

0 0 0 0 −εc
−k −δd −V ∗

−k 0
0 0 0 0 −δd −εc

−k−Q 0 −V ∗
−k−Q

0 0 �d∗
k 0 −V−k 0 −εd

−k −δc

0 0 0 �d∗
−k−Q 0 −V−k−Q −δc −εd

−k−Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.14)
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There are eight eigenvalues Emk but only four of them are
independent since E5k = −E1k, E6k = −E2k, E7k = −E3k,
and E8k = −E4k. Therefore, the diagonalized Hamiltonian
(Hdiag) can be written as

Hdiag =
∑

k

′ ∑
m=1,2,3,4

Emk(α†
mkαmk + β

†
mkβmk )

+ C1 + C2 + C3, (2.15)

where (α, β )†
mk and (α, β )mk are new operators given by a

linear combination of the original band operators (c, d )† and
(c, d ), and

C3 = −
∑

k

′(E1k + E2k + E3k + E4k ). (2.16)

The free energy density is calculated as follows [68]:

F = − 2T
∑

k

′ ∑
m

ln [1 + exp (−βEmk )]

+ C1 + C2 + C3, (2.17)

where β = 1/(kBT ) with kB the Boltzmann constant and T the
absolute temperature.

We remark that we consider a commensurate periodic mod-
ulation of the crystal lattice with Q = (π/a, π/a) that doubles
the Wigner-Seitz cell. Then, we divide by 2 the sum in k-
space, where the original Brillouin zone sum is done using
the special points technique developed by Chadi-Cohen [69].

III. RESULTS

In this section we present and discuss our results for
the finite-temperature phase diagrams as functions of the
strengths of the CDW and SC interactions, the total number
of particles per site, the hybridization, and the relative depth
of the bands. We point out that the last two parameters can be
modified by applying external pressure in the system and, that
for simplicity, we consider an k-independent hybridization,
such that Vk = Vk+Q = V . Initially, we consider the nesting
condition for the SC order parameter, i.e., �d

k = �d
k+Q ≡ �d

and later we investigate the effects of a modulation of this
parameter in the coexistence between SC and the CDW states.

The phase diagrams of the model can be obtained by nu-
merical minimization of the free energy density, Eq. (2.17),
with respect to the parameters of the model, that is, solving
numerically the self-consistent equations [70]

∂F

∂μ
= ∂F

∂nd
= ∂F

∂δd
= ∂F

∂δc
= ∂F

∂�d
≡ 0. (3.1)

Energies will be renormalized by the hopping tc, i.e., we
take tc = 1.0. Moreover, we take the lattice parameter a =
1.0, kB = 1.0, and for the inverse ratio of effective masses
γ = 0.4. This last equation is adequate for the sp and d-bands
of the intermetallic compounds and their alloys that we are
interested.

Since the values of CDW order parameters |δc| and |δd |
vanish at the same critical temperature and present similar
variations with Udc and other parameters, we present just the
behavior of |δc| in the next figures, except in Fig. 8 where
both are compared explicitly. We start with results for the
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T

Jd0.4-
0.8-

1.2-
1.6-

2.0-

dΔ

δc

FIG. 1. Plot of CDW (δc) and SC (�d ) order parameters as
functions of SC attractive interaction (Jd ) and temperature (T ), for
values of the Coulomb interband interaction Udc = 0.8, band-filling
ntot = 2.0, hybridization V = 0.0, and relative depth of the bands
εd0 = 0.0. The CDW order parameter δc does not vary with Jd in
the absence of the SC phase, being nearly constant for a fixed T .
The coexistence region emerges for |Jd | ≈ 1.2 > Udc. There is an
intrinsic competition between different orders in the coexistence
region and as we increase |Jd | in the SC phase, δc is suppressed
asymptotically. All phase transitions in this figure are second order
(continuous solid line).

half-filling case, ntot = 2.0, and then discuss different values
of band-filling.

A. Half-filling ntot = 2.0

1. Effects of Jd and Udc in the temperature-dependent
phase diagrams

In Fig. 1, we show the variation of the CDW and SC order
parameters δc and �d , respectively, as a function of tempera-
ture (T ) and the attractive interaction (Jd ) for Udc = 0.8. One
can see the competitive nature of the CDW and SC orders
in the coexistence region. In the region of the phase diagram
where there is only CDW order, its order parameter does not
vary with Jd , being nearly constant for a fixed T . However,
when the superconducting state sets in, δc decreases in the
coexistence region as we increase |Jd |.

For small temperatures, in the presence of the CDW state,
superconductivity requires a minimum value of the attrac-
tive interaction to appear. The scale for this critical value is
set by the Coulomb interband repulsion so that, in general,
|Jd | > Udc. Notice that as we keep increasing |Jd |, the SC
order becomes dominant at expenses of the CDW state, as δc

vanishes asymptotically.
One important result to be considered is that there is no

reciprocity between the different orders in the coexistence
region. While, the CDW phase is easily found inside the SC
phase, where TSC � TCDW, the opposite is not true, i.e., in the
region where TCDW � TSC, SC is rapidly suppressed when |Jd |
decreases, as shown in Fig. 1.

This kind of behavior can also be observed as a function
of the interband repulsion, as shown in Fig. 2(a). Again, the
regime in which the CDW phase is inside the SC phase,
a coexistence region, is observed for small values of Udc
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(a) V = 0.0
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0.6
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dΔ

δc (b) V = 0.5

0.4
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Udc
0.8

0.4

T
0.1

0.6
0.2

FIG. 2. Plots of δc and �d as functions of T and Udc, for Jd =
−1.0, ntot = 2.0, and εd0 = 0.0. (a) For V = 0.0 and (b) V = 0.5.
For V = 0.0 there is a small region of coexistence that is suppressed
when we switch on V . The hybridization acts in detriment of both
phases, but the SC order is destroyed faster when hybridization
increases. Notice that the phase transitions are second order (contin-
uous solid line) everywhere, except for V = 0.5, where a first-order
transition line (dashed line) separates the two ordered phases.

(Udc � 0.6). However, for large values of Udc, which favors
the CDW state, superconductivity hardly coexists. In Fig. 2(b)
we show that hybridization is responsible for destroying the
region of coexistence. The magnitudes of order parameters
are also affected, but SC is the most affected in this case.
In the presence of hybridization the order parameters van-
ish abruptly around Udc ≈ 0.53 at a first-order transition line
(dashed line).

2. T versus V

The ratio between hybridization and bandwidth, which de-
pends on the overlap of different wave functions and the depth
of the d-band are both sensitive to pressure and chemical
doping. Consequently, theoretical phase diagrams obtained
as a function of these quantities have a direct relevance to
those obtained experimentally when these parameters are var-
ied [71]. Here, we investigate the dependence of the critical
temperatures (solid lines) on hybridization for different values
of Udc, as shown in Fig. 3.
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SC + CDW
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+

CDW

T

V

(b) Udc = 0.66

FIG. 3. Critical temperatures (solid lines) as functions of V , for
Jd = −1.0, ntot = 2.0, and εd0 = 0.0. (a) For Udc = 0.56 there is
coexistence, with the CDW partially contained within the SC phase.
In this case the highest critical temperature of the CDW phase occurs
when superconductivity vanishes. (b) For a small increase of Udc the
CDW phase involves completely the SC phase.
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(a) Udc = 1.2

T

εd0

(b) Udc = 1.0

T

εd0
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T

εd0

SC + CDW

(d) Udc = 0.6

FIG. 4. Critical temperatures (solid and dashed lines) as func-
tions of εd0 for different values of Udc, for Jd = −1.0, ntot = 2.0,
and V = 0.0. Panels (a), (b), and (c) exhibit first- (dashed line) or
second-order (solid line) transitions depending on the values of the
parameters. (d) Coexistence occurs only for small values of Udc =
0.6. As |εd0| increases, the CDW order is eventually suppressed for
all values of Udc, while the SC phase vanishes asymptotically.

Figure 3 shows a direct competition between the phases
for two values of Udc < |Jd |. We find coexistence for small
hybridization V for both values of Udc. For the smaller value,
as shown in Fig. 3(a), SC is predominant for small V . For the
larger value of Udc, Fig. 3(b) shows that the CDW occupies a
larger region in the phase diagram, especially at large V . The
hybridization acts to destroy both phases, but SC goes faster
to zero than CDW, even in the case where TCDW < TSC. All
these transitions are second-order and are represented in the
figures by continuous solid lines.

3. Effects of changing the relative depth of the bands

Despite the discovery of many systems showing an in-
terplay between CDW and SC to date, only a few of them
show coexistence of these phases at ambient pressure [72–75].
To observe this behavior, it is necessary to apply external or
chemical pressure in the system. It is also possible to introduce
controlled disorder by, for example, electron irradiation or
doping [76,77]. In some cases these control parameters may
give rise to quantum critical points where the CDW or SC
phase vanishes at zero temperature.

In this section we consider a more subtle effect that consists
in varying the relative depth of the band centers by changing
the quantity εd0. In real systems we expect that this change
in εd0 can be implemented by considering systems where the
elements responsible for the d-band of the material belong
to different rows of the periodic table as 3d , 4d , or 5d , but
within the same column. As pointed out before, pressure can
also alter the relative position of the bands.

Figure 4 depicts the results for the variation of the critical
temperatures as functions of the relative depth of the bands,
εd0, and different values of Udc. One can see that increasing
of |εd0| is detrimental for both phases, but especially for
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T

ntot

SC + CDW
SC

CDW

(a) Udc = 0.56

SC

T

ntot

(b) Udc = 0.66

SC
+

CDW

T

ntot

(c) Udc = 1.2

CDW

FIG. 5. Critical temperatures as functions of ntot , for Jd = −1.0,
V = 0.0, and εd0 = 0.0. (a) For small values of Udc, CDW emerges
around half-filling values. In (b) and (c), as we increase the magni-
tude of Udc, the CDW phase spreads out from ntot = 2.0. Notice in
(c) that the SC phase is suppressed at half-filling for large Udc.

the CDW phase, which is suppressed for all values of Udc

investigated. On the other hand, the SC phase vanishes for
small values of |εd0| for Udc > 0.8, but survives for large
values of |εd0|. In other words, εd0 acts to shrink both phases,
but the CDW order is more rapidly suppressed, while SC
vanishes asymptotically. Also note that there is coexistence
of phases for Udc = 0.6, while for larger values of Udc we no
longer observe it. Notice that, depending on the parameters,
we obtain discontinuous first-order (dashed line) or second-
order (continuous solid lines) phase transitions, as verified by
calculations of the free energy density Eq. (2.17).

B. Away from half-filling

In this section we explore the effects in the phase diagrams
of changing the band occupations away from half-filling. This
brings new results and includes more realistic situations as
coexisting phases with a dominance of the CDW state for
some regions of parameter space.

1. T versus ntot

The critical temperatures as functions of the total number
of particles are shown in Fig. 5. The CDW phase appears at
half-filling and spreads out as we increase Udc. Concomitantly,
the region of the phase diagram occupied by the SC phase is
reduced. Moreover, for sufficiently large Udc, SC vanishes at
exactly half-filling.

T

V

SC + CDW
SC

CDW

(a) ntot = 1.6

CDW

SC

SC
+

CDW

T

V

(b) ntot = 1.8

FIG. 6. Critical temperatures as a function of V , for Udc = 1.2 >

|Jd |, Jd = −1.0, and εd0 = 0.0. (a) ntot = 1.6 and (b) ntot = 1.8. In
both cases the phase diagrams present a reentrant behavior that is
characteristic of first-order (dashed line) phase transitions. Also note
the asymptotic behavior for SC as a function of V in this case.

Also notice, from Fig. 5 that both critical temperatures
are symmetric around ntot = 2.0, and this holds even when
V 
= 0 (not shown). However, for finite, but small values of
|εd0|, this symmetry is lost and both critical regions are shifted
towards ntot < 2.0. Increasing further |εd0|, for instance for
εd0 = −1.0 and Udc = 1.2 as in Fig. 5(c), the SC lobes merge
and there is a finite superconducting critical temperature at
half-filling. In addition, the region of superconductivity in the
phase diagram is slightly shifted towards ntot < 2.0. On the
other hand, for this value of εd0 and Udc = 1.2 (not shown),
the CDW phase has been completely washed out from the
phase diagram, corroborating the deleterious effect of the
band shift on this phase.

2. T versus V

Figures 6(a) and 6(b) exhibit a qualitative agreement with
experimental results for compounds that present a discon-
tinuous vanishing of the CDW transition with pressure [54],
although with a persistent SC phase at low temperatures. The
reentrant behavior of TCDW for large values of Udc and away
from half-filling is a signature of a first-order phase transition
[78]. It is worth emphasizing the asymptotic behavior for SC
as a function of V in this case. This is very different when
compared to the half-filling results, see Fig. 3.

3. Effects of changing the relative depth of the bands for ntot �= 2.0

To investigate the combined effect of the total number
of particles ntot 
= 2.0 and εd0 in the phase diagrams, we
present in Fig. 7 our results for the variation of the critical
temperatures as functions of εd0 and ntot. For half-filling and
Udc = 1.2 there is no coexistence region, as already reported
in an earlier section, see Fig. 4. However, for ntot = 1.8 and
ntot = 1.6 the system presents a coexistence region for small
values of |εd0|. For ntot = 1.4, only SC order exists.

Summing up, the phase diagram of the system is sensitive
to the variation of εd0. The general effect of increasing |εd0| in
all scenarios we studied is to destroy faster the CDW phase,
while the SC phase persists even for large values of |εd0|. The
persistence of �d and the fast destruction of the CDW phase
as a function of εd0 can be rationalized by the variation of nc,
nd , μ, �d , δc, and δd as a function of εd0 shown in Fig. 8.
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T
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SC CDW

(b) ntot = 1.8

T

εd0
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T

εd0
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FIG. 7. Critical temperatures as functions of εd0 for different val-
ues of ntot , for Jd = −1.0, Udc = 1.2, and V = 0.5. (a) At half-filling
there is no coexistence. However, a small region of coexistence ap-
pears for (b) ntot = 1.8 and (c) ntot = 1.6. (d) For ntot = 1.4 appears
SC order only.

Keeping ntot fixed, there is an imbalance between nc and nd

when |εd0| increases, which disfavors the CDW phase, as can
be seen in Fig. 8. For fixed ntot = 2.0, nc = nd when εd0 = 0.
In this case the CDW order parameters, δc(d ) 
= 0 attain their
maximum values while the SC order parameter vanishes. As
|εd0| increases there is an abrupt variation of the occupation
numbers, while the chemical potential μ always decreases,
and the CDW phase is destroyed given place to the SC phase.

When the occupation deviates from half-filling, the ampli-
tude of the CDW order parameter decreases, allowing for an
initial coexistence of phases that disappears as δn = |ntot −
2.0| increases, as also shown in Fig. 5(c). The finite hybridiza-
tion included here, V = 0.5, is responsible for a reentrant
behavior that is seen for ntot = 1.6.

C. Inhomogeneous superconductivity

A possible ground state of a SC is a pair density wave phase
where the superconducting order parameter varies in space
according to some wave vector Q [67]. In general, this Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) [79,80] or pair density
wave state [81] is expected to occur in the presence of a
sufficiently strong magnetic field. Here we raise the question,
whether in the presence of charge modulation as occurs in a
CDW state this pair density wave state can be energetically
favored. We consider a modulated SC ground state charac-
terized by the same wave vector of the CDW (π, π ) and
investigate the presence of these phases in the phase diagram.
We find that they strongly compete and there is no coexistence
in the phase diagrams.

In Fig. 9 we compare the phase diagrams for CDW phase
with homogeneous (�d = �d

0 ) and inhomogeneous (�d
Q) SC

for ntot = 1.8. One can see that �d
Q suppress the coexistence

region that appears in the �d
0 case.
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−0.8

−0.6

−0.4

−0.2

0.0

−1.5−1.0−0.50.0

(f)

nc

εd0

ntot = 2.0
ntot = 1.8
ntot = 1.6
ntot = 1.4

nd

εd0

μ

εd0

Δd

εd0

δc

εd0

δd

εd0

FIG. 8. Occupation numbers (a) nc and (b) nd , chemical potential
μ (c), and order parameters (d) �d , (e) δc, and (f) δd as functions of
εd0 for T → 0, and Jd = −1.0, Udc = 1.2, and V = 0.5. For ntot =
2.0 and εd0 = 0.0, we have nc = nd and the CDW order parameters
attain their maximum values, but there is no SC phase. As |εd0|
increases, the occupations numbers become different. They change
abruptly for |εd0| ∼ 0.65 when SC appears and the CDW order
vanishes. For ntot 
= 2.0 these behaviors become smooth although
preserving the same tendencies.

D. Coexistence and first-order transitions

To investigate the nature of the coexistence of phases,
as shown in Fig. 9(a), which was found in several cases in
this study, it is necessary to obtain the free energy density
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0.1
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dΔ0
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(b)
dΔQ
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-0.2-0.4
-0.8

-0.6

FIG. 9. Plots of δc and �d as functions of T and εd0. (a) For
homogeneous SC (�d

0 ) and (b) inhomogeneous SC (�d
Q), i.e., a pair

density wave SC state. In the second case there is no coexistence
between SC and CDW phases. We used Jd = −1.0, Udc = 1.2, V =
0.5, and ntot = 1.8.
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FIG. 10. Free energy density map for δc and �d
0 for ntot = 1.8,

T = 0.001, Jd = −1.0, Udc = 1.2, and V = 0.5. The four panels cor-
respond to different values of εd0. (a) For εd0 = −0.41 the system is
in a homogeneous phase, with both order parameters finite and only
one minimum is observed. (b) For εd0 = −0.43 there are two minima
with a metastable one at δc = 0, �d

0 finite. In (c), for εd0 = −0.45,
these minima have exchange stability with an intervening first-order
transition. (d) Finally, for εd0 = −0.47 there is only minimum at
δc = 0 and �d

0 
= 0 that corresponds to a pure SC phase.

of the system as a function of the order parameters. These
calculations are costly numerically and although they were
performed to determine the nature of different transitions, we
are going to discuss in detail just the phase diagram shown
in Fig. 9(a). In this case, coexistence occurs as a function of
the shift between the band centers. Figure 10 shows the free
energy density as a function of the order parameters for the
same values of the parameters of Fig. 9(a). For ntot = 1.8
and εd0 = −0.41 we observe a single minimum in the free
energy at finite values of both δc and �d

0 , as can be seen
in Fig. 10(a). Then, for εd0 = −0.41, the system presents
homogeneous coexistence between the CDW and SC phases.
As |εd0| increases a new minimum appears at δc = 0, but at
a finite value of the superconducting order parameter, �d

0 , as
shown in Fig. 10(b). This is a metastable minimum as it has a
higher energy than the minimum with both order parameters
finite. Further increasing |εd0|, at εd0 = −0.45 these minima
have exchanged stability, as shown in Fig. 10(c). Eventually
the minimum corresponding to both order parameters finite
disappears, as one goes deep in the pure superconducting
phase leaving only the SC minimum as in Fig. 10(d) for
εd0 = −0.47.

The phases that have exchanged stability close to εd0 =
−0.45 are, a phase with homogeneous coexistence of SC and
CDW and a phase that is purely superconducting. Since there
is an intervening first-order transition, we may expect that
close to it the system presents regions with both CDW and

SC orders coexisting with regions that are purely supercon-
ducting.

IV. CONCLUSION

Electronic interactions on correlated systems may give rise,
at low temperatures, to different ground states as external
control parameters, such as pressure, doping, or magnetic
field are varied [82]. In these systems, competition or co-
existence of different phases described using multiple order
parameters might be observed experimentally. In particular,
the coexistence/competition between SC and CDW phases
has been recently reported in several compounds [1–3]. In
some cases, but not always, CDW seems to be accompanied
by a first-order structural phase transition [3,54]. It is also gen-
erally observed that pressure suppresses the CDW order but
enhances the superconducting transition temperature TSC [54].

To clarify the role of the relevant interactions in systems
exhibiting SC and CDW orderings we carried out in this
paper the study of a two-band model taking into account the
interplay between these phases in a square lattice. The choice
for this lattice is that it is computationally simpler, but still
expected to describe results in three dimensions within the
mean-field treatment of the interactions that we use. Our main
motivation are intermetallic systems that present a d-band
of moderately correlated electrons coexisting with a large
sp-band. The CDW phase emerges from interband Coulomb
interactions and SC is due to an intraband attractive interac-
tion. The moderate strength of the correlations in the materials
we are interested justifies our mean-field approach [61,83,84]
that makes the problem numerically tractable. Furthermore,
we neglected the k-dependence of the hybridization between
the bands and of the interactions. For completeness, we also
studied the possible coexistence of CDW with both, a homo-
geneous SC and that with a pair density wave with the same
modulation wave vector of the CDW.

The many-body problem is approached using a HF mean-
field decoupling that has been widely applied to deal with
SC and CDW in different models [61,83,84]. We proceed
writing the Hamiltonian in the Nambu representation. The
eight by eight Hamiltonian matrix is diagonalized numeri-
cally. We obtain the eigenvalues and eigenvectors numerically
and minimize the free energy density with respect to different
parameters to obtain the phase diagrams as functions of ex-
ternal control parameters, such as strength of the interactions,
hybridization, total number of particles, and relative depth of
the bands.

We show that for the model studied there is a direct com-
petition between CDW and SC orders, but depending on the
parameters these phases might coexist. We find that the CDW
phase emerges around half-filling, in agreement with other
approaches [61,83], and spreads out over the phase diagram
as the interband Coulomb interaction increases. Away from
half-filling, we obtain a qualitative agreement with reported
results for compounds that exhibit a discontinuous vanishing
of the CDW transition [54]. Moreover, we find a reentrant
behavior of TCDW for large values of Udc, which is an intrinsic
signature of a first-order phase transition [78].

We also obtained that as the distance between the band
centers increases, the CDW phase vanishes and only SC
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survives. The SC is robust to a change of the relative depth of
the bands. In other words, as we increase |εd0| the coexistence
of phases is suppressed, remaining in the SC phase only. On
the other hand, the pair density wave SC state does not support
coexistence with the CDW. We have not included the effects of
short-range order and fluctuations that are specially important
in two dimensions. However, the systems we are interested in
are nearly two-dimensional (2D) or three-dimensional (3D)
materials with well-defined CDW and SC mean-field-like
transitions, for which the present approach is appropriate.

Our results reproduce most of the experimental obser-
vations in CDW-SC intermetallic compounds with d-bands
and dimensions d � 2. It contributes to identify the relevant
interactions and parameters that determine the behavior of
these systems. It throws light on the nature of the coexistence
between CDW-SC phases and shows that in some cases these
phases may coexist homogeneously. We found both contin-
uous and first-order transitions depending on the parameters
of the model. The phase diagrams are very sensitive to the
specific values chosen for the parameters and for this reason
we did not compare our results with any particular system.
The connection of our results with experiments arises since

both the hybridization and relative depth of the bands are pres-
sure dependent. In addition, these compounds can be doped
with different elements and this is accounted in the model by
varying the total number of electrons.
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